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Abstract
In this paper, by using Green’s functions for second order differential equations, we estab-
lish new Lyapunov-type inequalities for third order linear differential equations with two
points boundary conditions. By using such inequalities, we obtain sharp lower bounds for
the eigenvalues of corresponding equations.
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1. Introduction
In [15], Lyapunov obtained the following remarkable result: If q ∈ C

(
[0,∞),R+) and

y(t) is a nontrivial solution of
y′′ + q (t) y = 0 (1.1)

with Dirichlet boundary condition
y (a) = y (b) = 0 (1.2)

where a, b ∈ R with a < b, and y (t) 6≡ 0 for t ∈ (a, b), then the following inequality
4

b− a
≤
∫ b

a
q (s) ds (1.3)

holds. The inequality (1.3) is the best possible in the sense that if the constant 4 in the left
hand side of (1.3) is replaced by any larger constant, then there exists an example of (1.1)
for which (1.3) no longer holds (see [12, p. 345], [14, p. 267]). The inequality (1.3) provides
a lower bound for the distance between two consecutive zeros of y. Furthermore, this result
has found many applications in areas like eigenvalue problems, stability, oscillation theory,
disconjugacy, etc. Since then, there have been several results to generalize the above linear
equation in many directions [1–19]. Before stating many efforts, it is worth to the mention
following work.
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By using Green’s function, Hartman [12] obtained the generalized inequality as follows:
If q ∈ C ([0,∞),R) and y(t) is a nontrivial solution on (a, b) for problem (1.1)-(1.2), then

1 ≤
∫ b

a

(s− a) (b− s)
b− a

q+ (s) ds (1.4)

holds, where q+ (t) = max {q (t) , 0}. It is easy to see that the functionM(t) = (t− a) (b− t)
takes the maximum value at a+ b

2 , i.e.

M(t) ≤ max
a≤ t ≤b

M (t) = M

(
a+ b

2

)
=
(
b− a

2

)2
. (1.5)

Thus, from (1.5), the inequality (1.4) is a natural generalization of the inequality (1.3).
In this paper, we prove new Lyapunov-type inequalities for third order linear differential

equation of the form
y′′′ + q (t) y = 0, (1.6)

where q ∈ C (R,R) and y (t) is a real solution of (1.6) satisfying the following linearly
independent two-point boundary conditions

Y1 (y) := γ11y (a) + γ12y
′ (a) + γ13y (b) + γ14y

′ (b) = 0
Y2 (y) := γ21y (a) + γ22y

′ (a) + γ23y (b) + γ24y
′ (b) = 0

Y3 (y) := y′′ (a) + y′′ (b) = 0
(1.7)

or 
Y4 (y) := γ11y

′ (a) + γ12y
′′ (a) + γ13y

′ (b) + γ14y
′′ (b) = 0

Y5 (y) := γ21y
′ (a) + γ22y

′′ (a) + γ23y
′ (b) + γ24y

′′ (b) = 0
Y6 (y) := y (a) + y (b) = 0

(1.8)

where a, b ∈ R with a < b, and y (t) 6≡ 0 for t ∈ (a, b).
Now, we present Green’s functions to be used in the proofs of our main results. Assume

that y (t) is a nontrivial solution of (1.1) satisfying the linearly independent two-point
boundary conditions Y1 (y) = Y2 (y) = 0. Thus, this condition implies that, of six deter-
minants contained in the matrix[

γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24

]
, (1.9)

not all are zero. Therefore, either∣∣∣∣ γ11 γ12
γ21 γ22

∣∣∣∣ 6= 0 or
∣∣∣∣ γ13 γ14
γ23 γ24

∣∣∣∣ 6= 0 (1.10)

or else [13, p. 216]. We know that the solution of (1.1) satisfying Y1 (y) = Y2 (y) = 0 is
given by

y (t) =
∫ b

a
G1 (t, s) y′′ (s) ds (1.11)

with Green’s function

G1 (t, s) =


A1 (s)B2 (t)−A2 (s)B1 (t)

C
+ t− s ; a ≤ s ≤ t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

; t ≤ s ≤ b
(1.12)

where
γ11 + γ13 6= 0, (1.13)

Ai (t) = (b− t) γi3 + γi4, (1.14)
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Bi (t) = (t− a) (γi1 + γi3)− (γi2 + (b− a) γi3 + γi4) (1.15)
for i = 1, 2, and

C =
∣∣∣∣γ11 + γ13 γ12 + γ13 (b− a) + γ14
γ21 + γ23 γ22 + γ23 (b− a) + γ24

∣∣∣∣ (1.16)

(See the proof of the following Lemma 2.1 for the construction of the Green’s function
(1.12)). We also know that non-homogeneous linear boundary value problem y′′ (t) = g (t)
satisfying Y1 (y) = Y2 (y) = 0 has only the trivial solution under the condition

D (Y ) =
∣∣∣∣Y1 (y1) Y1 (y2)
Y2 (y1) Y2 (y2)

∣∣∣∣ 6= 0, (1.17)

where y1(t) = 1 and y2(t) = t are the solutions of the corresponding homogeneous linear
equation. Thus, we have the following condition

D (Y ) =
∣∣∣∣γ11 + γ13 γ11a+ γ12 + γ13b+ γ14
γ21 + γ23 γ21a+ γ22 + γ23b+ γ24

∣∣∣∣ 6= 0 (1.18)

instead of (1.17). It is clear that D (Y ) = C. Here we note that the condition (1.18)
is also valid for the problem (1.6) with the two-point boundary conditions (1.7) or (1.8).
We also know that if the problem (1.1) satisfying Y1 (y) = Y2 (y) = 0 is well posed (if, in
other words, the problem (1.1) satisfying Y1 (y) = Y2 (y) = 0 has only the trivial solution
y (t) ≡ 0), then it has a unique Green’s function.

It is easy to see that under the condition∣∣∣∣γ11 γ12
γ21 γ22

∣∣∣∣ =
∣∣∣∣γ13 γ14
γ23 γ24

∣∣∣∣ , (1.19)

the Green’s function G1 (t, s) is symmetric, that is, G1 (t, s) = G1 (s, t) for t, s ∈ [a, b] .
Moreover, we know that this symmetry is a result of self-adjoint of the equation (1.1)
satisfying Y1 (y) = Y2 (y) = 0 [13, p. 215]. Thus, if the condition (1.19) holds, then we
have

y (t) =
∫ b

a
G (t, s) y′′ (s) ds, (1.20)

where

G (t, s) =


A1 (t)B2 (s)−A2 (t)B1 (s)

C
; a ≤ s ≤ t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

; t ≤ s ≤ b
(1.21)

is a symmetrized Green’s function instead of (1.12). Therefore, in this paper, by using the
symmetrized Green’s function (1.21) for the equation (1.1) satisfying Y1 (y) = Y2 (y) = 0
under the condition (1.19), we prove new Lyapunov-type inequalities for third order linear
differential equation (1.6) with the two-point boundary conditions (1.7) or (1.8). By
using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding
equations.

2. Main results
We state some important lemmas which we will be used in the proofs of our main

results. In the following first lemma, we construct Green’s function for the second order
nonhomogeneous differential equation

y′′ = g (t) (2.1)
with two-point boundary conditions Y1 (y) = Y2 (y) = 0.
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Lemma 2.1. If y (t) is a solution of (2.1) satisfying Y1 (y) = Y2 (y) = 0, then the integral
equation (1.11) holds.

Proof. Integrating Eq. (2.1) from a to t to find y, we get

y′ (t) = d1 +
∫ t

a
g (s) ds (2.2)

and

y (t) = d0 + d1 (t− a) +
∫ t

a
(t− s) g (s) ds, (2.3)

where d0 and d1 are arbitrary constants. Thus, the general solution of (2.1) is (2.3). Now,
by using the boundary conditions Y1 (y) = Y2 (y) = 0, we can find the constants d0 and
d1. Thus, we have

d1 =
∫ b

a

(γ11 + γ13)A2 (s)− (γ21 + γ23)A1 (s)
C

g (s) ds (2.4)

and

d0 = −
∫ b

a

[
(γ12+(b−a)γ13+γ14)[(γ11+γ13)A2(s)−(γ21+γ23)A1(s)]+CA1(s)

C(γ11+γ13)

]
g (s) ds, (2.5)

where Ai (t), i = 1, 2, and C are given in (1.14) and (1.16), respectively. Substituting the
constants d0 and d1 in the general solution (2.3), we get

y (t) =
∫ t

a

[
A1 (s)B2 (t)−A2 (s)B1 (t)

C
+ t− s

]
g (s) ds+∫ b

t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

g (s) ds. (2.6)

This completes the proof. �

Lemma 2.2. Let (1.19) hold. If y (t) is a solution of (1.6) satisfying the two-point bound-
ary conditions (1.8), then the following inequality

|y (t)| ≤
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds (2.7)

holds, where

G (t) = 1
2

∫ b

a
|G (u, t)| du (2.8)

and G (t, s) is given in (1.21).

Proof. Assume that y (t) is a solution of (1.6) satisfying Y4 (y) = Y5 (y) = Y6 (y) = 0. It
is easy to see that, by using Y4 (y) = Y5 (y) = 0 and proceeding as in the proof of Lemma
2.1, we have

y′ (t) =
∫ b

a
G (t, s) y′′′ (s) ds, (2.9)

where G (t, s) is the Green’s function (1.21). Integrating (2.9) from a to t, we get

y (t) = y (a) +
∫ t

a

(∫ b

a
G (u, s) y′′′ (s) ds

)
du. (2.10)

Similarly, integrating (2.9) from t to b, we get

y (t) = y (b) +
∫ b

t

(
−
∫ b

a
G (u, s) y′′′ (s) ds

)
du. (2.11)
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Adding (2.10) and (2.11), and by using Y6 (y) = 0, we have

y (t) = 1
2

{∫ t

a

(∫ b

a
G (u, s) y′′′ (s) ds

)
du+

∫ b

t

(
−
∫ b

a
G (u, s) y′′′ (s) ds

)
du

}
.

(2.12)
By taking the absolute value of (2.12), we obtain

|y (t)| ≤ 1
2

∫ b

a

(∫ b

a
|G (u, s)|

∣∣y′′′ (s)∣∣ ds) du (2.13)

and hence

|y (t)| ≤ 1
2

∫ b

a

∣∣y′′′ (s)∣∣ (∫ b

a
|G (u, s)| du

)
ds, (2.14)

where

G (u, s) =


A1 (u)B2 (s)−A2 (u)B1 (s)

C
; s ≤ u ≤ b

A1 (s)B2 (u)−A2 (s)B1 (u)
C

; a ≤ u ≤ s.
(2.15)

Therefore, we have the inequality (2.7). This completes the proof. �

By using the inequality (2.7), we have the following result which is an useful tool to
determine a lower bound of distance between a and b points of solution of the equation
(1.6) under the boundary conditions (1.8).

Theorem 2.3. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.8), then the following Lyapunov-type inequality

1 ≤
∫ b

a
G (s) |q (s)| ds (2.16)

holds, where G (t) is given in (2.8).

Proof. Assume that y(t) is a solution of (1.6) satisfying Y4 (y) = Y5 (y) = Y6 (y) = 0 and
y is not identically zero on (a, b). From (1.6) and (2.7), we get∣∣y′′′ (t)∣∣ = |q (t)| |y (t)| ≤ |q (t)|

∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds. (2.17)

Multiplying both sides of (2.17) by G (t) and integrating from a to b, we get∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds ≤ ∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds ∫ b

a
G (s) |q (s)| ds. (2.18)

Next, we prove that

0 <
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds. (2.19)

If (2.19) is not true, then we have∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds = 0. (2.20)

From (2.7), we get

|y (t)| ≤
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds = 0. (2.21)

It follows from (2.21) that y(t) ≡ 0 for t ∈ (a, b), which contradicts with (1.8) since
y (t) 6= 0 for all t ∈ (a, b). Thus, by using (2.19) in (2.18), we get the inequality (2.16). �
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Now, we give another main result for the equation (1.6) under the boundary conditions
(1.7).

Theorem 2.4. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.7), then the following Lyapunov-type inequality

1 ≤ G0

∫ b

a
|q (s)| ds (2.22)

holds, where G0 = 1
2
∫ b
a |G (t0, s)| ds and |y(t0)| = max{|y(t)| : a ≤ t ≤ b}.

Proof. Assume that y(t) is a solution of (1.6) satisfying Y1 (y) = Y2 (y) = Y3 (y) = 0 and
y is not identically zero on (a, b). By integrating y′′′ (t) from a to t, we get

y′′ (t) = y′′ (a) +
∫ t

a
y′′′ (s) ds. (2.23)

Similarly, by integrating y′′′ (t) from t to b, we have

y′′ (t) = y′′ (b)−
∫ b

t
y′′′ (s) ds. (2.24)

Adding the inequalities (2.23) and (2.24), and by using Y3 (y) = 0, we have

2y′′ (t) =
∫ t

a
y′′′ (s) ds−

∫ b

t
y′′′ (s) ds. (2.25)

By taking the absolute value of (2.25), we obtain∣∣y′′ (t)∣∣ ≤ 1
2

∫ b

a

∣∣y′′′ (s)∣∣ ds. (2.26)

Next, pick t0 ∈ (a, b) so that |y(t0)| = max{|y(t)| : a ≤ t ≤ b}. From (1.20), (2.26), and
(1.6), we get

|y (t0)| ≤
∫ b

a
|G (t0, s)|

∣∣y′′ (s)∣∣ ds
≤ 1

2

∫ b

a
|G (t0, s)| ds

∫ b

a

∣∣y′′′ (s)∣∣ ds (2.27)

= G0

∫ b

a
|q (s)| |y (s)| ds

≤ G0 |y (t0)|
∫ b

a
|q (s)| ds. (2.28)

Dividing both sides by |y(t0)|, we get the inequality (2.22). �

Remark 2.5. To the best of our knowledge, the inequality (2.16) (or (2.22)) is new
Lyapunov-type inequality for third order linear differential equation (1.6) under the two-
point boundary conditions (1.8) (or (1.7)).

It is easy to see that since

G (t) = 1
2

∫ b

a
|G (u, t)| du ≤

∼
C (t)
2 |C| , (2.29)

where
∼
C (t) =

∼
A1 (t)

∫ t

a

∼
B2 (u) du+

∼
A2 (t)

∫ t

a

∼
B1 (u) du

+
∼
B2 (t)

∫ b

t

∼
A1 (u) du+

∼
B1 (t)

∫ b

t

∼
A2 (u) du, (2.30)
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∼
Ai (t) = (b− t) |γi3|+ |γi4| , (2.31)

and
∼
Bi (t) = (|γi1|+ |γi3|) (t− a) + |γi2|+ |γi3| (b− a) + |γi4| (2.32)

for i = 1, 2, we have the following result from Theorem 2.3 and hence the proof is omitted.

Corollary 2.6. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.8), then the following Lyapunov-type inequality

1 ≤
∫ b

a

∼
C (s)
2 |C| |q (s)| ds (2.33)

holds, where C and
∼
C (t) are given in (1.16) and (2.30), respectively.

Remark 2.7. Note that if we take γ11 = γ13 = γ23 = 1, γ21 = −1, and γi2 = γi4 = 0 for
i = 1, 2 in (1.8), we have

8 ≤
∫ b

a
(b− s) (b− 4a+ 3s) |q (s)| ds (2.34)

from (2.33), and hence

6
(b− a)2 ≤

∫ b

a
|q (s)| ds. (2.35)

Now, we give another result for the equation (1.6) by using the following inequality

|G (t, s)| ≤
∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

|C|
(2.36)

obtained by taking the absolute value of (1.21). Thus, we have the following result from
Theorem 2.4 and hence the proof is omitted.

Corollary 2.8. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.7), then the following Lyapunov-type inequality

1 ≤
∫ b

a

∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

2 |C| ds

∫ b

a
|q (s)| ds (2.37)

holds, where C,
∼
Ai (t),

∼
Bi (t), i = 1, 2, are given in (1.16), (2.31), (2.32), respectively.

Now, we give an application of the obtained Lyapunov-type inequalities for the following
eigenvalue problem

y′′′ + λk (t) y = 0 (2.38)

under the boundary conditions (1.7). Thus, if there exists a nontrivial solution y (t) of
linear homogeneous problem (2.38), then we have

2 |C|∫ b
a

( ∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

)
ds
∫ b
a |k (s)| ds

≤ |λ| , (2.39)

where C,
∼
Ai (t),

∼
Bi (t), i = 1, 2, are given in (1.16), (2.31), (2.32), respectively.
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