PAPER DETAILS

TITLE: Generalizations of prime submodules

AUTHORS: S MORADI, A AZIZI

PAGES: 587-595

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/655254

 $\bigwedge^{}_{}$ Hacettepe Journal of Mathematics and Statistics Volume 44 (3) (2015), 587–595

Generalizations of prime submodules

S. Moradi * and A. Azizi †

Abstract

Let R be a commutative ring with identity and M a unitary R-module, and n > 1 an integer number. As a generalization of the concept of prime submodules, a proper submodule N of M will be called n-almost prime, if for $r \in R$ and $x \in M$ with $rx \in N \setminus (N : M)^{n-1}N$, either $x \in N$ or $r \in (N : M)$. We study n-almost prime submodules, in this paper.

2000 AMS Classification: 13C99, 13C13, 13E05, 13F05, 13F15.

Keywords: Essential multiplicatively closed subsets; *n*-almost prime submodules; Prime submodules.

Received 06/01/2011: Accepted 15/01/2013 Doi: 10.15672/HJMS.20154411041

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we consider R to be a commutative ring with identity, M an R-module, n > 1 a positive integer and \mathbb{N} the set of positive integers.

Let N be a submodule of an R-module M. The set $\{r \in R | rM \subseteq N\}$ is denoted by (N:M) and particularly we denote $\{r \in R | rN = 0\}$ by ann(N).

Let N a proper submodule of M. It is said that N is a *prime submodule* of M, if for $r \in R$ and $x \in M$ with $rx \in N$, either $x \in N$ or $rM \subseteq N$. In this case, if P = (N : M), then P is a prime ideal. The concept of prime submodules has been studied in many papers in recent years (see, for example, [3, 8]).

^{*}Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, IRAN

Email: smoradi@shirazu.ac.ir

[†] Email:aazizi@shirazu.ac.ir

2. *n*-Almost Prime Submodules

According to [1] an ideal I of R is called an *n*-almost prime ideal if for $a, b \in R$ with $ab \in I \setminus I^n$, either $a \in I$ or $b \in I$. The case n = 2 is called an almost prime ideal and it is due to [5]. We will generalize this definition to modules as follows:

Definition. Let n > 1 be an integer number. A proper submodule N of M will be called n-almost prime, if for $r \in R$ and $x \in M$ with $rx \in N \setminus (N : M)^{n-1}N$, either $x \in N$ or $r \in (N : M)$. A 2-almost prime submodule will be called an almost prime submodule.

Evidently every prime submodule is an *n*-almost prime submodule, for any integer n > 1.

The following remark is an evident consequence of the definition of being almost prime submodules.

Remark.

- (i) The zero submodule is an almost prime submodule.
- (ii) Let N be a proper submodule of M such that $(N:M)^{n-1}N = N$. Then N is n-almost prime.
- (iii) Let N be a proper submodule of a torsion-free divisible module M. Then N is prime if and only if N is n-almost prime.
- (iv) Every n-almost prime submodule of an R-module M is m-almost prime, where $3 \le n$ and $1 < m \le n$.

2.1. Lemma. Let M be an R-module, and I an ideal of R.

- (i) If $n \in \mathbb{N}$, then $(IM : M)^n M = I^n M$.
- (ii) If K is a submodule of M such that (K : M) is a maximal ideal, then K is a prime submodule.
- (iii) If $1 < n \in \mathbb{N}$ such that $M \neq IM = I^n M$, then IM is an *n*-almost prime submodule.
- (iv) Let F be a free R-module. Then I is an n-almost prime ideal of R if and only if IF is an n-almost prime submodule of F.
- (v) Consider the *R*-module $F = \bigoplus_{i \in \mathbb{N}} R$ and let $N = I \oplus (\bigoplus_{1 < i \in \mathbb{N}} R)$. Then the following are equivalent:
 - (a) N is a prime submodule of F;
 - (b) N is an n-almost prime submodule of F;
 - (c) I is a prime ideal of R.

PROOF. The proofs of (i),(ii) and (iii) are clear.

(iv) Consider $F = \bigoplus_{i \in \alpha} R$. It is easy to see that (IF : F) = I, for any ideal I of R. Then I is a proper ideal of R if and only if IF is a proper submodule of F. Also $(IF : F)^{n-1}IF = I^n F$.

Suppose I is a proper ideal of R, which is not n-almost prime. Then there exist $a, b \in R \setminus I$ such that $ab \in I \setminus I^n$. So $a(b, 0, 0, 0, \cdots) \in IF \setminus I^nF$, but $a \notin I = (IF : F)$, also $(b, 0, 0, 0, \cdots) \notin IF$, that is IF is not an n-almost prime submodule.

For the converse, suppose I is an n-almost prime ideal of R. We consider the following two cases:

Case 1. $F = R \oplus R$, that is rank F = 2.

Let $r(a,b) \in IF \setminus I^n F$, where $r \in R \setminus (IF : F) = I$ and $a, b \in R$. Then $ra, rb \in I$, and ra or rb is not in I^n . Without loss of generality, we may assume $ra \notin I^n$. Then $ra \in I \setminus I^n$ and as $r \notin I$, $a \in I$. Similarly if $rb \notin I^n$, then $b \in I$ and so $(a,b) \in IF$.

Now let $rb \in I^n$. Then $r(a + b) \in I$, and $ra \notin I^n$, and so $r(a + b) \in I \setminus I^n$, and $r \notin I$, hence $a + b \in I$. Also $a \in I$, therefore $b \in I$, that is $(a, b) \in IF$.

Case 2. *F* is a free module of arbitrary rank.

If $a \in F$, then $a \in \bigoplus_{i=1}^{n} Ra_i$, where $a_1, a_2, \cdots, a_n \in F$ for some integer n. Now by using case 1, we get the results.

(v) The proofs of (a) \implies (b) and (c) \implies (a) are straightforward.

(b) \implies (c) It is easy to see that I is an n-almost prime ideal of R. Now if I is not a prime ideal, then there exists $a, b \in R \setminus I$ such that $ab \in I$. Since I is an n-almost prime ideal, $ab \in I^n$. Therefore $a(b, 1, 1, 1, \dots) \in N \setminus (N : M)^{n-1}N$, however $a \notin I = (N : M)$ and $(b, 1, 1, 1, \dots) \notin N$, which is a contradiction.

Examples.

(1) If I is an ideal of R generated by idempotents, then by Lemma 2.1(iii), IM is an almost prime submodule, or IM = M, for any R-module M. For a specific example, let R' be an arbitrary ring, and consider $R = \prod_{n=1}^{\infty} R'$ and $I = \bigoplus_{n=1}^{\infty} R'$, particularly I is an almost prime ideal.

(2) Let $R = K[[X^3, X^4, X^5]]$, where K is a field, and $I = \langle X^3, X^4 \rangle$. By [1, Example 11], I is an almost prime ideal, which is not a 3-almost prime ideal.

Let F be a free R-module. By Lemma 2.1(iv), the submodule IF is an almost prime submodule, which is not a 3-almost prime submodule.

(3) Let R be an Artinian ring. Then for any ideal I of R, there exists an $n \in \mathbb{N}$ such that $I^n = I^{n+1}$. So the ideal $J = I^n$ is an almost prime ideal, and by Lemma 2.1(iv), for any free R-module F, the submodule JF is an almost prime submodule.

Let M, M' be two *R*-modules. For a projective resolution

 $\cdots \xrightarrow{f_3} P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{\varepsilon} M \longrightarrow 0, \quad \text{of } M, \text{ consider the complexes} \\ \cdots \xrightarrow{f_3} P_2 \xrightarrow{f_2} P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0=0} 0, \quad \text{and} \quad \cdots \xrightarrow{f_3 \otimes 1} P_2 \otimes M' \xrightarrow{f_2 \otimes 1} P_1 \otimes M' \xrightarrow{f_1 \otimes 1} P_0 \otimes M' \xrightarrow{f_0 \otimes 1} 0. \\ \text{Now recall that } Tor_n(M, M') \text{ is defined to be } Tor_n(M, M') = \frac{Ker(f_n \otimes 1)}{Im(f_{n+1} \otimes 1)}.$

2.2. Proposition. Let M be an R-module, and suppose that I is an ideal of R with $IM \neq M$. If $Tor_1(\frac{R}{I}, \frac{M}{IM}) = 0$, then IM is an n-almost prime submodule for each $1 < n \in \mathbb{N}.$

PROOF. Put K = IM. By the short exact sequence $0 \to K \to M \to \frac{M}{K} \to 0$, and according to [7, Theorem 6.26], there is an exact sequence

$$0 = Tor_1(\frac{R}{I}, \frac{M}{K}) \xrightarrow{f} \frac{R}{I} \otimes_R K \xrightarrow{g} \frac{R}{I} \otimes_R M.$$

The natural homomorphism $h: K \longrightarrow \frac{M}{IM}$ induces a homomorphism $\bar{h}: \frac{K}{IK} \longrightarrow \frac{M}{IM}$. Also note that there is an isomorphism $\theta_L: \frac{R}{I} \otimes_R L \longrightarrow \frac{L}{IL}$, for each R-module L.

In the following diagram the rows are exact and it is easy to see that the rectangle is commutative:

$$0 = Tor_1(\frac{R}{I}, \frac{M}{K}) \xrightarrow{f} \frac{R}{I} \otimes_R K \xrightarrow{g} \frac{R}{I} \otimes_R M$$
$$\downarrow \theta_K \qquad \qquad \downarrow \theta_M$$
$$\longrightarrow Ker\bar{h} \xrightarrow{K} \frac{\bar{h}}{IK} \xrightarrow{\bar{h}} \frac{M}{IM}$$

It follows that $Ker\bar{h} \cong Kerg = Imf = 0$. On the other hand, $Ker\bar{h} = \frac{IM}{IK}$, hence K = IM = IK. Therefore by Lemma 2.1, (K:M)K = (IM:M)IM = I(IM:M)M = I(IM:M)M = I(IM:M)M = I(IM:M)M = I(IM:M)MI(IM) = IK = K, and evidently (K:M)K = K implies that K is an n-almost prime submodule for each $1 < n \in \mathbb{N}$.

2.3. Corollary. Let M be an R-module and I an ideal of R with $IM \neq M$. Then IM is an n-almost prime submodule of M, for each $1 < n \in \mathbb{N}$, if one of the following holds:

(i)
$$\frac{M}{IM}$$
 is a flat $\frac{R}{Ann M}$ -module

(ii) $\frac{R}{T}$ is a flat *R*-module.

PROOF. Put K = IM. Note that $\frac{(K:RM)}{Ann M} = (K:_{Ann M} M)$, thus K is an n-almost prime R-submodule of M, if and only if it is an n-almost prime $\frac{R}{Ann M}$ -submodule of M.

Therefore we can replace $\frac{R}{Ann M}$ with R for simplification. We know that if $\frac{R}{I}$ or $\frac{M}{K}$ is a flat R-module, then $Tor_1(\frac{R}{I}, \frac{M}{K}) = 0$ (see for example [7, Theorem 7.2]). Now the proof follows from Proposition 2.2.

The following example shows that the converse of Corollary 2.3 is not necessarily true.

Example. Let $M = R = \mathbb{Z}$, and $I = 2\mathbb{Z}$. Then evidently $2\mathbb{Z}$ is a prime ideal [resp. submodule] of R [resp. the R-module M], with Ann M = 0. However $\frac{R}{T}$ is not a flat *R*-module, since it is not torsion-free.

Recall that a ring R is called a Von Neumann regular ring, if for any $a \in R$, $Ra = Ra^2$. By [7, Corollary 4.10], every semi-simple ring is a Von Neumann regular ring.

2.4. Corollary. Let M be an R-module, where R is a Von Neumann regular ring and suppose I is an ideal of R. If $IM \neq M$, then IM is an n-almost prime submodule for each $1 < n \in \mathbb{N}$.

PROOF. According to [7, Theorem 4.9], every module over a Von Neumann regular ring is flat. So the proof is given by Corollary 2.3.

2.5. Lemma. Let N be an n-almost prime submodule of M.

- (i) If there exist $x \in M \setminus N$ and $r \in R \setminus (N : M)$ with $rx \in N$, then $rN \cup (N : M)$ $M)x \subseteq (N:M)^{n-1}N.$
- (ii) If $0 \neq x + N \in \frac{M}{N}$, where $x \in M$, then $(ann(x+N))N \subseteq (N:M)N$. (iii) $(N:M)N = (\bigcup_{x \in M \setminus N} ann(x+N))N$.

PROOF. (i) As N is n-almost prime, $rx \in (N:M)^{n-1}N$. Let y be an arbitrary element of N. Then $y + x \notin N$ and $r(y + x) = ry + rx \in N$ and since N is n-almost prime, $r(y+x) \in (N:M)^{n-1}N$. Therefore $ry \in (N:M)^{n-1}N$, and so $rN \subseteq (N:M)^{n-1}N$.

Now let s be an arbitrary element of (N:M). Clearly $r+s \notin (N:M)$ and $(r+s)x \in N$ and as N is n-almost prime, $(r+s)x \in (N:M)^{n-1}N$. Then since $rx \in (N:M)^{n-1}N$, $sx \in (N:M)^{n-1}N$. Hence $(N:M)x \subseteq (N:M)^{n-1}N$.

(ii) Let $r \in ann(x+N)$. Then $rx \in N$. If $r \in (N:M)$, then clearly $rN \subseteq (N:M)N$. If $r \notin (N:M)$, then in this case by part (i), $rN \subseteq (N:M)^{n-1}N \subseteq (N:M)N$.

(iii) Evidently $(N:M) \subseteq \bigcup_{x \in M \setminus N} ann(x+N)$. Then by part (ii) we have,

$$(N:M)N \subseteq (\bigcup_{x \in M \setminus N} ann(x+N))N \subseteq \bigcup_{x \in M \setminus N} (ann(x+N)N) \subseteq (N:M)N.$$

2.6. Proposition. Let I be an ideal of a ring R and N a submodule of an R-module M

- (i) If $IM \neq IN$, $IN \neq N$, then K = IN is *n*-almost prime if and only if $K = (K : M)^{n-1}K$.
- (ii) If for some positive integer k > 1, $I^{k-1}M \neq I^kM = K$, then K is n-almost prime if and only if $K = (K : M)^{n-1} K$. Consequently in this case K is almost prime if and only if K is n-almost prime, for any (or some) positive integer $n \ge 3$.
- (iii) Let R be an integral domain and M a Noetherian module with ann(N) = 0. Then for every proper ideal I of R with $IM \neq IN$, IN is not n-almost prime.

PROOF. (i) If $K = (K : M)^{n-1}K$, then clearly K is n-almost prime. Now assume K is *n*-almost prime. Evidently K is almost prime. If $K \neq (K:M)K$, then consider $a \in I$ and $x \in N$, where $ax \notin (K:M)K$. Then since $ax \in IN = K \setminus (K:M)K$, either $a \in (K:M)$ or $x \in K$. Let $a \in (K:M)$. As $K = IN \subset IM$, $I \not\subseteq (K:M)$ and so we can choose an element $r \in I \setminus (K:M)$. As $rx \in IN = K$, Lemma 2.5(i) implies that $(K:M)x \subseteq (K:M)K$, and so $ax \in (K:M)K$.

Now suppose that $x \in K$. By our assumption $N \not\subseteq K$, hence there exists $z \in N \setminus K$. Note that $az \in IN = K$. Again by Lemma 2.5(i), $aK \subseteq (K : M)K$. Then in this case $ax \in (K : M)K$.

Therefore K = (K : M)K, and consequently $K = (K : M)^{n-1}K$.

(ii) We have $IM \neq K$, otherwise $I^{k-1}M \subseteq IM = K = I^kM \subseteq I^{k-1}M$, which is impossible. Now apply part (i) for $N = I^{k-1}M$.

(iii) Clearly $N \neq IN$, otherwise by Nakayama's lemma, there exists $s \in I$ such that (s+1)N = 0 and since ann(N) = 0, $1 = -s \in I$, which is a contradiction with the fact that $I \neq R$.

Note that $(IN : M)N \subseteq IN$. If IN is *n*-almost prime, then IN is almost prime and so by part (i), $IN = (IN : M)IN = I(IN : M)N \subseteq I^2N \subseteq IN$, that is $IN = I^2N$. Again by Nakayama's lemma, for some $t \in I$, (t+1)IN = 0. As ann(N) = 0, (t+1)I = 0. So $1 = -t \in I$ or I = 0, which is a contradiction with the fact that $I \neq R$ and $IM \neq IN$. Consequently IN is not *n*-almost prime.

Recall that a ring R is said to be ZPI-ring, if every non-zero proper ideal of R can be written as a product of prime ideals of R (see [6, Chapters VI and IX]). According to [6, Theorem 9.10], every ZPI-ring is a Noetherian ring.

2.7. Theorem. Let *M* be an *R*-module and *I* an ideal of *R* with $IM \neq M$.

- (i) If R is a ZPI-ring and IM is an n-almost prime submodule, then $IM = I^n M$, or IM = PM, where P is a prime ideal of R.
- (ii) If R is a Dedekind domain, then IM is an n-almost prime submodule if and only if $IM = I^n M$ or IM is a prime submodule of M.
- (iii) If (R, m) is a local ZPI-ring and IM is finitely generated, then IM is *n*-almost prime if and only if IM = 0 or IM = mM.

PROOF. (i) Let $I = P_1^{k_1} \dots P_m^{k_m}$, where $P_i's$ are distinct prime ideals of R and $k_i's$ are positive integers.

Assume that $IM \neq PM$ for each prime ideal P of R. Then $IM = P_1^{k_1} \dots P_m^{k_m} M$ and without loss of generality we may suppose that $IM \neq P_1^{k_1-1}P_2^{k_2} \dots P_m^{k_m} M$ and $(k_1-1) + k_2 + k_3 + \dots + k_m > 0$. Put $N = P_1^{k_1-1}P_2^{k_2} \dots P_m^{k_m} M$ and K = IM. Then $K = P_1N$ and $P_1M \neq K$ and $K \neq$

Put $N = P_1^{k_1-1}P_2^{k_2}...P_m^{k_m}M$ and K = IM. Then $K = P_1N$ and $P_1M \neq K$ and $K \neq N$, then by Proposition 2.6(i), $K = (K : M)^{n-1}K$, that is $IM = (IM : M)^{n-1}(IM)$, and by Lemma 2.1(i), $(IM : M)^{n-1}(IM) = I(IM : M)^{n-1}M = I^nM$. Thus $IM = I^nM$.

(ii) Let R be a Dedekind domain and suppose IM is an n-almost prime submodule. By part (i), $IM = I^n M$, or IM = PM, where P is a prime ideal of R.

If IM = PM, where P is a prime ideal of R, then P = 0 or P is a maximal ideal of R. Evidently P = 0 implies that $I^n M = 0 = IM$. Now suppose P is a maximal ideal of R. As $P \subseteq (PM : M)$, we have P = (PM : M) or PM = M. By our hypothesis $PM = IM \neq M$, then (IM : M) = (PM : M) = P and so IM is a prime submodule of M, by Lemma 2.1(ii).

Now for the converse, suppose that $IM = I^n M$. Then by Lemma 2.1(iii), IM is *n*-almost prime.

(iii) If IM = mM, then by Lemma 2.1(ii), mM is a prime submodule. Also clearly 0 is an *n*-almost prime submodule.

Now assume that IM is an n-almost prime submodule of M. By [6, Theorem 9.10], R is a Noetherian ring. If $m = m^2$, by Nakayama's lemma, m = 0, then R is a field and so IM = 0.

Now let $m^2 \neq m$. Choose $x \in m \setminus m^2$. Then $m^2 \subset m^2 + Rx \subseteq m$. By [6, Theorem 9.10], there are no ideals of R strictly between m^2 and m. So $m^2 + Rx = m$ and by Nakayama's lemma, m = Rx.

Now let P be a non-zero prime ideal of R, and $0 \neq y \in P$. By the Krull Intersection Theorem, we have $\bigcap_{n=1}^{+\infty} m^n = 0$. Thus there is a positive integer k such that $y \in m^k$ and $y \notin m^{k+1}$. Since $y \in m^k = Rx^k$, there exists an element $u \in R$ such that $y = ux^k$, and since $y \notin m^{k+1}$, $u \notin m$. Then u is a unit element of R. Hence $x^k = u^{-1}y \in P$. We know that P is a prime ideal of R, so $x \in P$, that is m = P. Whence m is the only nonzero prime ideal of R. Now by part (i), $IM = I^n M$ or IM = mM

If IM = mM, then Lemma 2.1(ii) implies that IM is a prime submodule. In case $IM = I^n M$, Nakayama's lemma implies that IM = 0.

The following result is an obvious consequence of the above theorem.

2.8. Corollary. Let R be a ZPI-ring and I a proper ideal of R.

- (i) I is an n-almost prime ideal if and only if $I = I^n$ or I is a prime ideal.
- (ii) If (R,m) is a local ring, then I is an n-almost prime ideal if and only if I = 0 or I = m.

2.9. Proposition. Let M be an R-module, and I an ideal which is a product of a finite number of maximal ideals of R. Then IM is an n-almost prime submodule if and only if IM is a prime submodule of M, or $IM = I^n M$.

PROOF. For each maximal ideal P of R, we have $P \subseteq (PM : M)$, then by Lemma 2.1(ii), PM is a prime submodule or PM = M. Thus if IM is an n-almost prime submodule, which is not a prime submodule, then there exist maximal ideals P_i , $1 \leq i \leq m$ and positive numbers k_i , $1 \leq i \leq m$ such that $IM = P_1^{k_1} P_2^{k_2} \cdots P_m^{k_m} M$ and $IM \neq P_1^{k_1-1} P_2^{k_2} \cdots P_m^{k_m} M$. Therefore if we put $N = P_1^{k_1-1} P_2^{k_2} \cdots P_m^{k_m} M$ and $K = P_1 N$, since K is not prime, we get $K \neq P_1 M$, also $K = P_1 N \neq N$, hence by Proposition 2.6(i), $K = (K : M)^{n-1} K$.

Consequently by Lemma 2.1(i), $K = IM = (IM : M)^{n-1}(IM) = I(IM : M)^{n-1}M = I^n M.$

For the converse suppose $IM = I^n M$. Then according to Lemma 2.1(iii), IM is *n*-almost prime.

Recall that a multiplicatively closed subset of a ring R is a subset S such that $0 \notin S$ and $1 \in S$ and $xy \in S$ for each $x, y \in S$.

The following result studies when the localization of an n-almost prime submodule is n-almost prime.

2.10. Proposition. Let N be an n-almost prime submodule of an R-module M, and S a multiplicatively closed subset of R.

- (i) If $S \cap (N:M) = \emptyset$ and for some $x \in M \setminus N$, $S \cap ((N:M)^{n-1}N:x) = \emptyset$, then $S^{-1}N \neq S^{-1}M$.
- (ii) If $S^{-1}N \neq S^{-1}M$, then $S^{-1}N$ is an n-almost prime submodule of $S^{-1}M$.

PROOF. (i) Let $x \in M \setminus N$. If $S^{-1}N = S^{-1}M$, then there exists an element $s \in S$ such that $sx \in N$. Since $S \cap ((N : M)^{n-1}N : x) = \emptyset$, $sx \notin (N : M)^{n-1}N$. As N is an *n*-almost prime submodule and $x \notin N$, $s \in (N : M) \cap S$, which is a contradiction. Hence $S^{-1}N \neq S^{-1}M$.

(ii) Let for $\frac{r}{s} \in S^{-1}R$, $\frac{y}{t} \in S^{-1}M$, $\frac{r}{s}\frac{y}{t} \in S^{-1}N \setminus (S^{-1}N : S^{-1}M)^{n-1}S^{-1}N$. Then there exists an element $u \in S$ such that $ury \in N$. If $ury \in (N : M)^{n-1}N$, then $\frac{ry}{st} = \frac{ury}{ust} \in S^{-1}((N : M)^{n-1}N) \subseteq (S^{-1}N : S^{-1}M)^{n-1}S^{-1}N$, a contraction. Hence $ury \in N \setminus (N : M)^{n-1}N$. As N is almost prime, either $ur \in (N : M)$ or $y \in N$, so either $\frac{r}{s} = \frac{ur}{us} \in S^{-1}(N : M) \subseteq (S^{-1}N : S^{-1}M)$ or $\frac{y}{t} \in S^{-1}N$.

3. Essential multiplicatively closed subsets

Recall that an ideal I of a ring R is said to be *essential* if $I \cap J \neq 0$, for each nonzero ideal J of R (that is $J \not\subseteq 0$). In this section we introduce a similar notion for multiplicatively closed subsets of R, and we find some connections between this notion and n-almost primes.

Definition. Let S be a multiplicatively closed subset of R and P a prime ideal of R with $S \cap P = \emptyset$. Then S will be called P-essential, if $S \cap J \neq \emptyset$, for each ideal J with $J \not\subseteq P$.

Evidently $R \setminus P$ is a P-essential multiplicatively closed subset, for each prime ideal P of R.

Recall that a multiplicatively closed subset S of R is said to be *saturated* if

$$xy \in S \iff x, y \in S.$$

The following lemma is a well known result (see [2, p. 44, Exercise 7 (ii)]).

3.1. Lemma. Let S be a multiplicatively closed subset of R. Then

 $\bar{S} = R \setminus \bigcup \{ P | P \text{ is a prime ideal with } P \cap S = \emptyset \}$

is a saturated multiplicatively closed subset of R containing S and there is no saturated multiplicatively closed subset of R strictly between S and \overline{S} .

It is obvious that for each prime ideal P of R, the ring R_P is a local ring and the ideal P_P is a maximal ideal of R_P . The following result shows that $S^{-1}R$ being a local ring is indeed related to P-essentiality of S.

Let S be a multiplicatively closed subset of R. For any ideal J of $S^{-1}R$, we consider $J^c = \{r \in R \mid r/1 \in J\}.$

3.2. Proposition. Let S be a multiplicatively closed subset of R and P a prime ideal of R with $S \cap P = \emptyset$. Then the following are equivalent:

(i) S is P-essential;

(ii) $S^{-1}R = R_P;$

(iii) $\bar{S} = R \setminus P;$

(iv) $S^{-1}P$ is the only maximal ideal of $S^{-1}R$.

PROOF. (i) \Rightarrow (ii) Clearly $S^{-1}R \subseteq R_P$, since $S \subseteq R \setminus P$. Now suppose that $\frac{y}{t} \in R_P$. Hence as $t \in R \setminus P$, for some $r \in R$, we have $rt \in S \subseteq R \setminus P$, and so $r \in R \setminus P$. Then $\frac{y}{t} = \frac{ry}{rt} \in S^{-1}R$ and hence $S^{-1}R = R_P$.

 $(ii) \Rightarrow (iii)$ Since $P \cap S = \emptyset$, by Lemma 3.1, $\overline{S} \subseteq R \setminus P$. Now let $r \in R \setminus P$. We have $1/r \in R_P = S^{-1}R$, then there exists $s \in S$, $x \in R$ with 1/r = x/s. Thus for some $s' \in S$ we have $s'rx = ss' \in S \subseteq \overline{S}$, and so $r \in \overline{S}$, because \overline{S} is saturated.

 $(iii) \Rightarrow (iv)$ Let m be a maximal ideal of $S^{-1}R$. Then m^c is a prime ideal of R with $m^c \cap S = \emptyset$. Note that $R \setminus (P \cup m^c)$ is a saturated multiplicatively closed subset of R and since $S \subseteq R \setminus (P \cup m^c) \subseteq (R \setminus P) = \overline{S}$, Lemma 3.1 implies that $R \setminus (P \cup m^c) = (R \setminus P) = \overline{S}$. Hence $m^c \subseteq (P \cup m^c) = P$, and thus $m = S^{-1}(m^c) \subseteq S^{-1}P$, and so $m = S^{-1}P$, because of maximality of m.

 $(iv) \Rightarrow (i)$ Let J be an ideal of R such that $J \not\subseteq P$. If $J \cap S = \emptyset$, since $S^{-1}P$ is the only maximal ideal of $S^{-1}R$, we have $S^{-1}J \subseteq S^{-1}P$. So $J \subseteq P$, which is impossible. Consequently S is P-essential.

3.3. Theorem. Let N be an n-almost prime submodule of an R-module M with I = (N : M). Then $S = [(R \setminus I) \cup (I^{n-1}N : M)] \setminus P$ is P-essential, for each prime ideal P of R.

PROOF. First to prove that S is multiplicatively closed, let $r, s \in S$. If $rs \notin S$, then $rs \in I$. Also $rs \notin P$, because if $rs \in P$, then $r \in P$ or $s \in P$, although $S \cap P = \emptyset$. Thus $rs \in I \setminus P$.

If $r \in (I^{n-1}N:M)$ or $s \in (I^{n-1}N:M)$, then $rs \in (I^{n-1}N:M) \setminus P$, and so $rs \in S$. Now on the contrary suppose $r, s, rs \notin (I^{n-1}N:M)$. Hence there exists $m \in M$ such that $rsm \notin I^{n-1}N$, and we know that $rs \in I = (N:M)$, therefore $rsm \in N \setminus I^{n-1}N$.

As $r, s \in S \subseteq [(R \setminus I) \cup (I^{n-1}N : M)]$ and $r, s \notin (I^{n-1}N : M)$, we have $r, s \notin I = (N : M)$. Note that $rsm \in N \setminus I^{n-1}N$ and $r, s \notin (N : M)$ and N is n-almost prime, thus $m \in N$.

Now consider $m' \in M \setminus N$. If $rsm' \notin I^{n-1}N$, the above argument shows that $m' \in N$, which is impossible.

Then we may assume $rsm' \in I^{n-1}N$. Thus for x = m + m', we have $rsx \in N \setminus I^{n-1}N$. Now since $m \in N$ and $m' \notin N$, we have $x \notin N$, consequently $r \in (N : M) = I$ or $s \in (N : M) = I$, which is a contradiction.

Next we will prove that S is P-essential. Let J be an ideal of R such that $J \not\subseteq P$. If $I \subseteq P$, then $S = R \setminus P$, and obviously S is P-essential. So suppose that $I \not\subseteq P$.

If $J \cap S = \emptyset$, it is easy to see $J \cap [(R \setminus I) \cup (I^{n-1}N : M)] \subseteq P$ and so $J \subseteq I \cup P$. Therefore $J \subseteq I$

Note that I = (N : M), so $I^n M = I^{n-1}(N : M)M \subseteq I^{n-1}N$, that is $I^n \subseteq (I^{n-1}N : M)$. Hence $J^n \subseteq J \cap I^n \subseteq J \cap (I^{n-1}N : M) \subseteq P$, which is impossible. Consequently $J \cap S \neq \emptyset$ and so S is P-essential.

3.4. Corollary. Let I be an ideal of R such that $N(R) \subseteq I^n$ and consider $S_P = [(R \setminus I) \cup I^n] \setminus P$. Then the following are equivalent:

- (i) *I* is *n*-almost prime;
- (ii) S_P is multiplicatively closed for any prime ideal P;
- (iii) S_P is multiplicatively closed for any minimal prime ideal P.

PROOF. $(i) \Rightarrow (ii)$ The proof is given by Theorem 3.3.

 $(ii) \Rightarrow (iii)$ The proof is evident.

 $(iii) \Rightarrow (i)$ Let $ab \in I \setminus I^n$. So $ab \notin N(R)$ and there exists a minimal prime ideal P of R such that $ab \notin P$. Then $ab \notin S_P$. Hence $a \notin S_P$ or $b \notin S_P$. Therefore $a \in I$ or $b \in I$.

3.5. Corollary. Let R be an integral domain and M an R-module.

- (i) If N is an n-almost prime submodule of M with (N : M) = I, then $S = [(R \setminus I) \cup (IN : M)] \setminus \{0\}$ is a multiplicatively closed subset of R and $S^{-1}R$ is a field.
- (ii) An ideal I of R is *n*-almost prime if and only if $S = [(R \setminus I) \cup I^n] \setminus \{0\}$ is a multiplicatively closed subset of R. When this is the case, $S^{-1}R$ is a field.

PROOF. (i) The proof is given by Theorem 3.3 and Proposition 3.2.

(ii) The proof of the first part is given by Corollary 3.4. By part (i), $S^{-1}R$ is a field, if I is *n*-almost prime.

The following remark studies the converse of the above corollary.

Remark. Let S be a saturated multiplicatively closed subset of R such that $S^{-1}R$ is a field. Then there exist prime ideals I and P of R such that $S = [(R \setminus P) \cup I^2] \setminus P$.

PROOF. Since S is a multiplicatively closed subset of R, there exists a prime ideal P of R with $P \cap S = \emptyset$. Then $S^{-1}P$ is a proper ideal of $S^{-1}R$ and $S^{-1}R$ is a field, so $S^{-1}P$ is the only maximal ideal of $S^{-1}R$. Hence by Proposition 3.2, $\bar{S} = R \setminus P$. Note that S is a saturated multiplicatively closed subset of R, then by Lemma 3.1, $S = \bar{S} = R \setminus P$. Thus it is enough to consider I = P.

Acknowledgment. The authors would like to thank the referee for his comments on this paper.

References

- Anderson, D.D. and Batainen, Malik Generalizations of primes ideals, Comm. Algebra, 36, 86–696, 2008.
- [2] Atiah, M. F. and Mcdonald, I. G. Introduction to commutative algebra (Addison-Wesley, 1969).
- [3] Azizi, A. Prime submodules and flat modules, Acta Math. Sinica, English Series, 23 (1), 147–152, 2007.
- [4] Azizi, A. Strongly irreducible ideals, J. Aust. Math. Soc., 84, 145–154, 2008.
- [5] Bhatwadekar, S. M. and Sharma, P. K. Uniqe factorization and birth of almost prime, Comm. Algebra, 33, 43–49, 2005.
- [6] Larsen, M. D. and McCarthy, P. J. Multiplicative theory of ideals (Academic press, Inc., 1971).
- [7] Rotman, J. J. An introduction to homological algebra, second edition (Springer, 2009).
- [8] Tiras, Y. and Harmanci, A. and Smith, P. F. A characterization of prime submodules, J. Algebra, 212 (2), 743–752, 1999.