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Abstract

Let ψ be the psi function, that is the logarithmic derivative of the Euler
gamma function. The aim of this paper is to establish an asymptotic
formula for the function ψ(x)+log

(

e1/x−1
)

and to improve some results
of Batir (Some new inequalities for gamma and polygamma functions,
J. Ineq. Pure Appl. Math. 6 (4), Art 103, 2005) and Alzer (Sharp
inequalities for the harmonic numbers, Expo. Math. 24, 385–388,
2006). Finally we give a short proof of, respectively, the monotonicity

and concavity of the function ψ(x) + log
(

e1/x − 1
)

, previously stated
by Alzer above, and by Guo and Qi (Some properties of the psi and

polygamma functions, Hacet. J. Math. Stat. 39 (2), 219–231, 2010).

Keywords: Gamma function, Psi function, Approximations, Bernoulli numbers, Com-
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1. Introduction

Let Hn =
∑n

k=1
1
k
be the nth harmonic number. Alzer [3] proved

(1.1) a− log
(

e1/(n+1) − 1
)

≤ Hn < b− log
(

e1/(n+1) − 1
)

, (n ≥ 1) ,

with the best possible constants a = 1 + log (
√
e− 1) and b = γ, where γ = 0.577215 . . .

is the Euler-Mascheroni constant. One year earlier, Batir [4, Cor. 2.2] established an
inequality of type (1.1) with a = log

(

π2/6
)

and b = γ.

The harmonic numbers are related to the psi function ψ, which is the logarithmic
derivative of the Euler gamma function:

ψ (x) =
d

dx
log Γ (x) .
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Indeed, Hn = ψ (n+ 1) + γ, for n = 1, 2, 3, . . .. See, e.g., [1, p. 258]. As a direct
consequence, the proof of inequality (1.1) is reduced by Alzer and Batir to the study of
the variation of the function

(1.2) φ (x) = ψ (x) + log
(

e1/x − 1
)

.

More precisely, Batir [4, Theorem 2.1] established some inequalities involving φ, while
Alzer [3, Theorem 1] proved that φ is strictly increasing on (0,∞). Using the monotonicity
of φ, it follows for all integers n ≥ 1: φ (2) ≤ φ (n+ 1) < 0 = φ (∞), which is (1.1).

The function φ has attracted also the attention of other researchers and we refer to Guo
and Qi [5] who proved moreover that φ is strictly concave in (0,∞), with φ (+0) = −γ
and φ (∞) = 0.

We concentrate in this paper on establishing accurate estimates of φ. Having in mind
the proof of inequality (1.1) using monotonicity arguments, we can easily realize that for
large values of n, the best approximations of the form

(1.3) Hn ≈ k − log
(

e1/(n+1) − 1
)

, (k ∈ R)

are obtained for k = γ.

We improve the approximations (1.3) and the inequalities (1.1) as follows:

1.1. Theorem. For all integers n ≥ 1, it holds that

(1.4) γ − log
(

e1/(n+1) − 1
)

+ a (n) < Hn < γ − log
(

e1/(n+1) − 1
)

+ b (n) ,

where

a (n) = − 1

24n2
+

1

12n3
− 337

2880n4
, b (n) = a (n) +

97

720n5
.

In terms of the psi function, (1.4) can be written as

− 1

24x2
+

1

12x3
− 337

2880x4
< ψ (x+ 1) + log

(

e1/(x+1) − 1
)

< − 1

24x2
+

1

12x3
− 337

2880x4
+

97

720x5
.

Theorem 1.1 entitles us to introduce the asymptotic formula as n→ ∞,

(1.5) γ ∼ Hn + log
(

e1/(n+1) − 1
)

+
1

24n2
− 1

12n3
+

337

2880n4
− 97

720n5
,

but the construction of the complete asymptotic expansion, eventually in terms of Bernoulli
numbers, is proposed here as an open problem.

Truncations of (1.5) provide much better estimates than (1.3). Moreover, numerical
computations show the superiority of (1.5) over the class of approximations

(1.6) γ ≈ Hn + log
(

eα/(n+β) − 1
)

− logα, (α, β ∈ R, α > 0) ,

recently introduced in [6] The (α = β = 1 case is (1.1), while it is proven in [6] that the

best approximation (1.6) is obtained for α =
√
2/2 and β =

(

2 +
√
2
)

/4).

2. Proofs and further remarks

Recall that a function z is completely monotonic on an interval I if z has derivatives
of all orders on I and (−1)n z(n) (x) ≥ 0, for every x ∈ I . For more detailed information,
see [8].
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We use a result of Alzer [2, Theorem 8], who proved that for every integer n ≥ 0, the
functions

Fn (x) = log Γ (x)−
(

x− 1

2

)

log x+ x− 1

2
log 2π −

2n
∑

i=1

B2i

2i (2i− 1) x2i−1

and

Hn (x) = − log Γ (x) +

(

x− 1

2

)

log x− x+
1

2
log 2π +

2n+1
∑

i=1

B2i

2i (2i− 1) x2i−1

are completely monotonic on (0,∞). Here Bj denotes the jth Bernoulli number, see e.g.
[1, p. 804]. In particular, F ′

n < 0 and H ′

n < 0 and these inequalities can be equivalently
written as

(2.1) u2m+1 (x) < ψ (x)− log x < u2n (x) , (x > 0, m, n = 1, 2, 3, . . .) ,

where

uk (x) = − 1

2x
−

k
∑

j=1

B2j

2jx2j
.

We also use the inequalities [7, Part. I, Chap. 4, Probl. 154],

2n
∑

j=1

B2j

(2j)!
x2j <

x

ex − 1
− 1 +

x

2
<

2m+1
∑

j=1

B2j

(2j)!
x2j , (x > 0)

under the form

(2.2) v2m+1 (x) < log
ex − 1

x
< v2n (x) , (x > 0, m, n = 1, 2, 3, . . .) ,

where

vk (x) = − log

(

1−
x

2
+

k
∑

j=1

B2j

(2j)!
x2j

)

.

Now we are in a position to give

Proof of Theorem 1. We have

ψ (x+ 1) + log
(

e
1

x+1 − 1
)

= ψ (x+ 1)− log (x+ 1) + log
e

1
x+1 − 1

1
x+1

< u2 (x+ 1) + v2

(

1

x+ 1

)

< − 1

24x2
+

1

12x3
− 337

2880x4
+

97

720x5
.

To prove the last inequality it suffices to show g < 0, where

g (x) = u2 (x+ 1) + v2

(

1

x+ 1

)

−
(

− 1

24x2
+

1

12x3
− 337

2880x4
+

97

720x5

)

.

But g is strictly increasing, since

g′ (x) =
[

1806 072x + 7011 015x2 + 15 507 080x3 + 21 336 405x4

+18 654 360x5 + 10 086 181x6 + 3068 760x7 + 399 480x8 + 203 215
]

×
[

720x6 (x+ 1)5
(

419 + 1920x + 3300x2 + 2520x3 + 720x4)]−1

> 0,

with g (∞) = 0, so g (x) < 0, for all x ∈ (0,∞).
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Further,

ψ (x+ 1) + log
(

e
1

x+1 − 1
)

= ψ (x+ 1)− log (x+ 1) + log
e

1
x+1 − 1

1
x+1

> u3 (x+ 1) + v3

(

1

x+ 1

)

> −
1

24x2
+

1

12x3
−

337

2880x4
.

To prove the last inequality it suffices to show h > 0, where

h (x) = u3 (x+ 1) + v3

(

1

x+ 1

)

−
(

− 1

24x2
+

1

12x3
− 337

2880x4

)

.

But h is strictly decreasing, since

h′ (x) = −
(

41 516 041 + 541 694 671x + 3239 782 371x2 + 11 740 823 213x3

+ 28 702 590 497x4 + 49 842 303 783x5 + 63 001 042 993x6

+ 58 363 076 023x7 + 39 297 523 314x8 + 18 743 293 086x9

+6008 274 720x10 + 1162 203 840x11 + 102 664 800x12
)

×
[

5040x5 (x+ 1)7
(

17 599 + 115 836x + 317 478x2 + 463 680x3

+380 520x4 + 166 320x5 + 30 240x6
)]−1

< 0,

with h (∞) = 0, so h (x) > 0, for all x ∈ (0,∞). �

Our method using the completely monotonicity of functions Fn and Hn is suitable for
establishing other new results. As additional examples, we give new simpler proofs of
the monotonicity and concavity of the function φ given by (1.2). Although our results
can be stated on [1,∞), we consider that the following proofs are useful because of their
simplicity and applicability.

2.1. Theorem. (Alzer [3]) The function φ is strictly increasing on [1,∞).

Proof. Inequality ψ′ > 0 is equivalent to

1

x
+ log

(

1−
1

x2ψ′ (x)

)

> 0,

while from F ′′

2 > 0 we get

ψ′ (x) >
1

x
+

1

2x2
+

1

6x3
− 1

30x5
, (x > 0) .

Now it suffices to show t > 0, where

t (x) =
1

x
+ log

(

1−
1

x2
(

1
x
+ 1

2x2 + 1
6x3 − 1

30x5

)

)

.

We have t′ (x) = −P (x)
[

x2Q (x)R (x)
]

−1
, where

P (x) = 91 + 830 (x− 1) + 2615 (x− 1)2 + 4000 (x− 1)3

+ 3250 (x− 1)4 + 1350 (x− 1)5 + 225 (x− 1)6 ,

Q (x) = 19 + 85 (x− 1) + 140 (x− 1)2 + 105 (x− 1)3 + 30 (x− 1)4 ,

R (x) = 49 + 175 (x− 1) + 230 (x− 1)2 + 135 (x− 1)3 + 30 (x− 1)4 .
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Finally, t is strictly decreasing on [1,∞), with t (∞) = 0, so t (x) > 0, for all x ∈ [1,∞),
and the theorem is proved. �

The concavity of φ, first established in [5] using a quite complicated method, can be
also proved in the following way.

2.2. Theorem. (Guo and Qi [5]) The function φ is strictly concave on [1,∞).

Proof. We have

φ′′ (x) = ψ′′ (x) +

(

2

x3
+

1

x4

)

g (x)− 1

x4
g2 (x) < 0,

where g (x) =
(

1− e−1/x
)

−1

. By using the following inequalities arising from the ex-

pansion of e−t,

a (x) <
1

1− e−
1
x

< b (x) ,

where

a (x) =
1

1−
(

1− 1
x
+ 1

2x2 − 1
6x3 + 1

24x4 − 1
120x5 + 1

720x6 − 1
5040x7

) ,

b (x) =
1

1−
(

1− 1
x
+ 1

2x2 − 1
6x3 + 1

24x4 − 1
120x5 + 1

720x6

) ,

and the inequality

ψ′′ (x) < − 1

x2
− 1

x3
− 1

2x4
,

arising from F ′′′

1 < 0, we get

φ′′ (x) <

(

−
1

x2
−

1

x3
−

1

2x4

)

+

(

2

x3
+

1

x4

)

b (x)−
1

x4
a2 (x)

= − P (x)

2x4Q (x)R2 (x)
< 0,

where

R (x) = 1− 7x+ 42x2 − 210x3 + 840x4 − 2520x5 + 5040x6,

Q (x) = 455 + 2466 (x− 1) + 5370 (x− 1)2 + 5880 (x− 1)3 + 3240 (x− 1)4

+ 720 (x− 1)5 ,

P (x) = 2357 487 180 + 42 988 345 380 (x− 1) + 369 160 818 451 (x− 1)2

+ 1983 061 528 596 (x− 1)3 + 7464 108 845 416 (x− 1)4

+ 20 892 515 249 544 (x− 1)5 + 45 036 465 002 040 (x− 1)6

+ 76 373 345 608 128 (x− 1)7 + 103 158 858 030 480 (x− 1)8

+ 111 625 536 718 080 (x− 1)9 + 96 770 286 007 920 (x− 1)10

+ 66 833 707 469 760 (x− 1)11 + 36 324 643 320 000 (x− 1)12

+ 15 211 763 280 000 (x− 1)13 + 4740 319 584 000 (x− 1)14

+ 1035 877 248 000 (x− 1)15 + 141 740 928 000 (x− 1)16

+ 9144 576 000 (x− 1)17 .
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Now φ′′ < 0, and consequently, φ is strictly concave. �

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific
Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

The computations in this paper were made using Maple software.

References

[1] Abramowitz, M. and Stegun, I. A. (Eds.) Handbook of Mathematical Functions with Formu-

las, Graphs and Mathematical Tables (Dover, New York, 1965).
[2] Alzer, H. On some inequalities for the gamma and psi functions, Math. Comp. 66 (217),

373–389, 1997.
[3] Alzer, H. Sharp inequalities for the harmonic numbers, Expo. Math. 24, 385–388, 2006.
[4] Batir, N. Some new inequalities for gamma and polygamma functions, J Inequal. Pure Appl.

Math. 6 (4), Art. 103 (electronic), 2005.
[5] Guo, B. -N. and Qi, F. Some properties of the psi and polygamma functions, Hacet. J. Math.

Stat. 39 (2), 219–231, 2010.
[6] Mortici, C. A quicker convergence toward the gamma constant with the logarithm term in-

volving the constant e, Carpathian J. Math. 26 (1), 86–91, 2010.
[7] Pólya, G. and Szegö, C. Problems and Theorems in Analysis, vol. I-II (Springer Verlag,

Berlin, Heidelberg, 1972).
[8] Widder, D.V. The Laplace Transform (Princeton Univ. Press, Princeton, 1981).


