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Abstract

The studies developed within this article will be focused on achiev-
ing results related to the existence and qualitative properties of en-
tire radially symmetric solutions for a Schrodinger problem of type
∆pui + hi (r) |∇ui|

p−1 = ai (r) fi (ui+1) for i = 1, d− 1 and ∆pud +

hd (r) |∇ud|
p−1 = ad (r) fd (u1) on R

N , where p > 1, d ≥ 2, hi and
ai are nonnegative radial continuous functions and fi are nonnegative
increasing continuous functions on [0,∞).
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1. Introduction

In this article we generalize existence results for systems such as

(1.1)































∆pu1 + h1 (r) |∇u1|
p−1 = a1 (r) f1 (u2) in R

N ,

· · · · · ·

∆pui + hi (r) |∇ui|
p−1 = ai (r) fi (ui+1) in R

N ,

· · · · · ·

∆pud + hd (r) |∇ud|
p−1 = ad (r) fd (u1) in R

N ,

where r := |x| ≥ 0, N ≥ 3, d ≥ 2 is an integer, i = 1, d− 1, ∆p is the p-Laplacian
operator defined by

∆pu := div(|∇u|p−2 ∇u), 1 < p < ∞,

hj
j=1,d

, aj
j=1,d

: [0,∞) → [0,∞) are radial continuous functions and fj
j=1,d

satisfy the

following hypotheses
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(C1) fj
j=1,d

: [0,∞) → [0,∞) are continuous;

(C2) fj
j=1,d

are increasing on [0,∞).

Answers to questions related to the existence of radially symmetric solutions for problem
like (1.1) have been gradually achieved by several authors over many years (see [1]-[13]
and references therein).

Before we start describing our results let us mention that the problem of the existence
of solutions to (1.1) has received an increased interest with Alan Lair’s recent paper [6].
In [6] the author considered problem (1.1) under hypotheses p = d = 2, hi

i=1,2
= 0,

a1 (x) f1 (u2 (x)) := a1 (|x|)u
α
2 (|x|) (α ∈ (0, 1]) and a2 (x) f2 (u1 (x)) := a2 (|x|)u

β
1 (|x|)

(β ∈ (0, 1]).

The main result achieved by Alan Lair may be summarized as follows:

1.1. Proposition. Problem (1.1) has an explosive radial symmetric solution on R
N if

and only if the continuous radially symmetric functions ai
i=1,2

: [0,∞) → [0,∞) simul-

taneously meet the following conditions
∫ ∞

0

ta1 (t)

(

t
2−N

∫ t

0

s
N−3

∫ s

0

τa2 (τ ) dτ ds

)α

dt = ∞

∫ ∞

0

ta2 (t)

(

t
2−N

∫ t

0

s
N−3

∫ s

0

τa1 (τ ) dτ ds

)β

dt = ∞.

Moreover, the author proposes the following problem:
”It remains unknown whether an analogous result holds for the system

{

∆u1 (|x|) = a1 (|x|) f1 (u2 (|x|)) for x ∈ R
N ,

∆u2 (|x|) = a2 (|x|) f2 (u1 (|x|)) for x ∈ R
N ,

where f1 and f2 meet, for example

(1.2)

∫ ∞

1

[

∫ s

0

fi (t) dt]
−1/2

ds = ∞, i = 1, 2,

or satisfy the stronger condition

(1.3)

∫ ∞

1

[fi (t)]
−1

dt = ∞, i = 1, 2.”

When hj
j=1,d

= 0 and p = 2 we mention that in the paper [3] the author established the

existence results for the problems (1.1) under conditions of type (1.2).

The starting point for the analysis and research of the more general problems (1.1) in
order to discover the novelty which is in fact the scientific task of the article, is generated
by the proposed problem in [6]. In this sense, we establish results related to the existence
and various qualitative properties of solutions for problems (1.1) under conditions of the
(1.3) type.

The principal difficulty in the treatment of (1.1) is due to the nonlinear gradient term
combined with multiple equations of the system. The solving methods that we will use
for the problem are based on results of nonlinear analysis, the above cited articles as well
as other techniques that will be discovered during the research.

Throughout this paper we use the notations

j = 1, d Hj (r) := r
N−1

e
∫
r
0

hj(t) dt

Aj (∞) := lim
r→∞

Aj (r) , Aj (r) =

∫ r

0

(

1

Hj (t)

∫ t

0

Hj (s) aj (s) ds

)1/(p−1)

dt
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and

F (∞) := lim
r→∞

F (r) , F (r) =

∫ r

a

(
d
∑

j=1

fj (s))
−1/(p−1)

ds; r ≥ a > 0.

We see that

F
′ (r) =

(

d
∑

j=1

fj (r)

)−1/(p−1)

> 0 for all r > a

and F has the inverse function F−1 on [a,∞).

Our main results will be stated in what follows.

1.2. Theorem. Assume that (C1)–(C2) hold and that

(C3) F (∞) = ∞.

Then the system (1.1) possesses at least one positive radial solution (u1, . . . , ud). If, in

addition, Aj
j=1,d

(∞) < ∞, the positive radial solution (u1, . . . , ud) is bounded. Moreover,

when Aj
j=1,d

(∞) = ∞, the positive solution (u1, . . . , ud) is an entire large solution, i.e.

lim
r→∞

u1 (r) = · · · = lim
r→∞

ud (r) = ∞.

1.3. Theorem. Assume that (C1)–(C2) hold and that

(C4) F (∞) < ∞;

(C5) Aj
j=1,d

(∞) < ∞;

(C6) there exists β > a
d
such that

d
∑

j=1

Aj (∞) < F (∞)− F (dβ) .

Then, the system (1.1) possesses at least one positive bounded radial solution (u1, . . . , ud)
satisfying

β + f
1/(p−1)
j (β)Aj (r) ≤ uj (r) ≤ F

−1

(

F (dβ) +
d
∑

j=1

Aj (r)

)

, j = 1, d.

2. Proof of the theorems

2.1. Proof of Theorem 1.2. We note that radial solutions of (1.1) are positive solu-
tions (u1, . . . , ud) of the integral equations











































u1 (r) = β +
∫ r

0

(

1
H1(t)

∫ t

0
H1 (s)a1 (s) f1 (u2 (s)) ds

)1/(p−1)

dt,

· · · · · ·

ui (r) = β +
∫ r

0

(

1
Hi(t)

∫ t

0
Hi (s) ai (s) fi (ui+1 (s)) ds

)1/(p−1)

dt,

· · · · · ·

ud (r) = β +
∫ r

0

(

1
Hd(t)

∫ t

0
Hd (s)ad (s) fd (u1 (s)) ds

)1/(p−1)

dt,

where β may be any non-negative number.
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Define sequences
{

uk
j

}k≥1

j=1,d
on [0,∞) by



















































u0
1 = · · · = u0

d = β, r ≥ 0,

uk
1 (r) = β +

∫ r

0

(

1
H1(t)

∫ t

0
H1 (s) a1 (s) f1

(

uk−1
2 (s)

)

ds
)1/(p−1)

dt,

· · · · · ·

uk
i (r) = β +

∫ r

0

(

1
Hi(t)

∫ t

0
Hi (s) ai (s) fi

(

uk−1
i+1 (s)

)

ds
)1/(p−1)

dt, i = 1, d− 1

· · · · · ·

uk
d (r) = β +

∫ r

0

(

1
Hd(t)

∫ t

0
Hd (s) ad (s) fd

(

uk
1 (s)

)

ds
)1/(p−1)

dt, d ≥ 2

We remark that, for all r ≥ 0, j = 1, d and k ∈ N ,

u
k
j (r) ≥ β.

We claim that
{

uk
j

}k≥1

j=1,d
are increasing sequences on [0,∞). Since

u
0
j = β ≤ u

1
j , j = 1, d,

it follows that

fj
(

u
0
j+1

)

≤ fj
(

u
1
j+1

)

, j = 1, d− 1,

and so

u
1
j (r) = β +

∫ r

0

(

1

Hj (t)

∫ t

0

Hj (s)aj (s) fj
(

u
0
j+1 (s)

)

ds

)1/(p−1)

dt

≤ β +

∫ r

0

(

1

Hj (t)

∫ t

0

Hj (s)aj (s) fj
(

u
1
j+1 (s)

)

ds

)1/(p−1)

dt

= u
2
j (r) , j = 1, d− 1.

From the above relation we obtain

u
1
d (r) = β +

∫ r

0

(

1

Hd (t)

∫ t

0

Hd (s)ad (s) fd
(

u
1
1 (s)

)

ds

)1/(p−1)

dt

≤ β +

∫ r

0

(

1

Hd (t)

∫ t

0

Hd (s)ad (s) fd
(

u
2
1 (s)

)

ds

)1/(p−1)

dt

= u
2
d (r) .

Consequently,

u
2
j ≤ u

3
j , j = 1, d− 1,

which yield

u
2
d ≤ u

3
d.

Continuing this line of reasoning, we obtain that
{

uk
j

}k≥1

j=1,d
are increasing sequences.
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By conditions (C1) and (C2) we obtain

(2.1)

(

u
k
1 (r)

)′

=

(

1

H1 (r)

∫ r

0

H1 (s)a1 (s) f1
(

u
k−1
2 (s)

)

ds

)1/(p−1)

≤ f
1/(p−1)
1

(

u
k
2 (r)

)

A
′
1 (r)

≤

(

d
∑

j=1

fj

(

d
∑

j=1

u
k
j (r)

))1/(p−1)

A
′
1 (r) ,

· · · · · · · · · · · ·

(

u
k
i (r)

)′

=

(

1

Hi (r)

∫ r

0

Hi (s) ai (s) fi
(

u
k−1
i+1 (s)

)

ds

)1/(p−1)

≤ f
1/(p−1)
i

(

u
k
i+1 (r)

)

A
′
i (r)

≤

(

d
∑

j=1

fj

(

d
∑

j=1

u
k
j (r)

))1/(p−1)

A
′
i (r) , i = 1, d− 1

· · · · · · · · · · · ·

(

u
k
d (r)

)′

=

(

1

Hd (r)

∫ r

0

Hd (s) ad (s) fd
(

u
k
1 (s)

)

ds

)1/(p−1)

≤ f
1/(p−1)
d

(

u
k
1 (r)

)

A
′
d (r)

≤

(

d
∑

j=1

fj

(

d
∑

j=1

u
k
j (r)

))1/(p−1)

A
′
d (r) , d ≥ 2.

Summing up gives
(

d
∑

j=1

fj

(

d
∑

j=1

u
k
j (t)

))−1/(p−1)

·

(

d
∑

j=1

u
k
j (t)

)′

≤
d
∑

j=1

A
′
j (r) .

Integrating the above equation between 0 and r, we have

∫ r

0

(

d
∑

j=1

fj

(

d
∑

j=1

u
k
j (t)

))−1/(p−1)

·

(

d
∑

j=1

u
k
j (t)

)′

dt ≤

d
∑

j=1

Aj (r) for each r > 0,

which is equivalent to

∫ r

0

F
′

(

d
∑

j=1

u
k
j (t)

)

dt ≤
d
∑

j=1

Aj (r) for each r > 0.

Consequently,

(2.2) F

(

d
∑

j=1

u
k
j (r)

)

− F (dβ) ≤
d
∑

j=1

Aj (r)

for all r ≥ 0.

Since F−1 is increasing on [0,∞), it follows that

(2.3)
d
∑

j=1

u
k
j (r) ≤ F

−1

(

F (dβ) +
d
∑

j=1

Aj (r)

)

for all r ≥ 0.
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Since (C3) holds, we can see that

(2.4) F
−1 (∞) = ∞.

It follows that the sequences
{

uk
j

}k≥1

j=1,d
are bounded and increaing on [0, c] for c > 0.

Thus,
(

u
k
1 , . . . , u

k
d

)

converges to (u1, . . . , ud) on [0, c]d .

Consequently, (u1, . . . , ud) is the positive entire radial solution of system (1.1). Moreover,
when

Aj
j=1,d

(∞) < ∞,

we see by (2.3) that

d
∑

j=1

uj (r) ≤ F
−1

(

F (dβ) +
d
∑

j=1

Aj (∞)

)

for all r ≥ 0.

When

Aj (∞) = ∞ for j = 1, d

then by (C2) and the monotonicity of
{

uk
j

}k≥1

j=1,d
it follows that

uj (r) ≥ β + f
1/(p−1)
j (β)Aj (r) , for all r ≥ 0 and j = 1, d.

Thus

lim
r→∞

u1 (r) = · · · = lim
r→∞

ud (r) = ∞,

ending the proof of the Theorem. �

2.2. Proof of Theorem 1.3. We proceed as in the proof of the Theorem 1.2. Then,
by (2.2) we see that

(2.5) F

(

d
∑

j=1

u
k
j (r)

)

≤ F (dβ) +

d
∑

j=1

Aj (∞) < F (∞) < ∞.

Since F−1 is strictly increasing on [0,∞), we have

(2.6)

d
∑

j=1

u
k
j (r) ≤ F

−1

(

F (dβ) +

d
∑

j=1

Aj (∞)

)

< ∞ for all r ≥ 0.

Therefore, since the sequence
{

uk
j (r)

}

is monotone it converges to some function {uj (r)}j=1,d

on R
N that in fact is a solution to (1.1). This concludes the proof. �

2.1. Remark. If (C1), (C2), (C3) are satisfied then
∫ ∞

a

ds

f
1/(p−1)
j (s)

= ∞ for all j = 1, d.
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