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Abstract

In this study, we introduce a g-analogue of the Phillips operators and
investigate approximation properties. We establish direct and local
approximation theorems. We give a weighted approximation theorem.
We estimate the rate of convergence of these operators for functions of
polynomial growth on the interval [0, co).
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1. Introduction

Phillips firstly introduced the g-analogue of Bernstein polynomials based on g-integer
and ¢g-binomial coefficients in [12]. Gupta and Finta obtain some direct results on certain
g-Durrmeyer type operators in [6]. Recently, Aral and Gupta introduced Durrmeyer type
modification of the ¢-Baskakov type operators in [1]. We aim to introduce a g-analogue
of Phillips operators and to study approximation properties. Before this, we mention
the following notations and formulas, which can be founded in [2, 8, 9] and [10]: For
neN, 0<g<1anda,beR,

(1.1) g =1+q+¢ +---+¢""", ne N\{0}; [0], =0,

(1.2) [n]qg! = [1q[2]q -~ [n]q, m € N\{0}; [0]! =1,
(1.3)  (a+b)7 H (a+ ¢’ 'b),
and )

(14) (1+a) Hl—&—qj 'a).
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The g-binomial coefficients are given by

n nlq!
(1.5) [k]q:mwﬂgn.

The g- derivative Dy f of the function f is given by

@t
1) D@ = LI oy
and (Dgqf)(0) = f'(0) provided f’(0) exists.

The two g-analogues of the exponential function are defined by

AN q=3 G~ T A goF
and
18 E- i qn(nfl)/2[:/_]7;! = (14 (1—q)z).

The g-Jackson integrals and the g-improper integrals are defined as
(19) [ f@)di=al=0)3 flag")", a>0
0 n=0

and
oo /A

110 [ s@de=a-aX 1% A0
0 nez
respectively. The g-Gamma function is given by
00/A(1—-q)
(111) Tu(s) = K(A,s) / et dgt,

q

where

_ A® 1 s 1—s

In particular, for s € Z, K(A,s) = ¢**~"/? and K(A,0) = 1.

2. Construction of the operators

Let f be a real valued continuous function on the interval [0, c0). Using the formulas
and notations in (1.1)—(1.12), we now define the ¢-Phillips operators as

o oo /A(1-q)
21)  PL(fix) = [nle Y pur(z3q) / ¢ ()i (£ q) dgt + e "7 £(0),
k=1 0

where

Njqgx k —[nlqz
(2.2)  pax(z;q) = ([[,l]q!) eq M.

In the case ¢ = 1, these operators are reduced to the Phillips operators studied in [11]
and [13].

Now we give an auxiliary lemma for the Korovkin monomial functions.
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2.1. Lemma. Let e (t) =t™, m=0,1,2,3,4. We have

(1) ‘(Pgl(e(); IZ?) = 17

(i) Ph(er;2) =,

(i) 94(eim) = L+ Lo,

() 9 (exia) = L+ (a2

) Ph(esse) = S + PR B,

+

([2]q[3]qq2 + [2]q[5]qq + [4]11[5]111:2 [2]q[3]q[4]qx
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Proof. (i) Using the formulas (1.10), (1.11), (1.12) and (2.2), we can calculate the fol-

lowing integral:

oo /A(1-q) oo /A(1-q)

",k (t; q)dgt =

1

[l R

o0/ (A/[nlq)(1—q)

k+m —u
U eq dqu

Ly(k+m+1)

T R K (A Inlg, K+ m+ 1)

(2.3) =

Using (1.7), (1.8) and (2.3) we obtain

k(k—1)/2

N

Phleosx) =

ES
Il

1

k=1
[nlqgz —[n]q=
q €q

Il
& —

Il
—_

which completes the proof of (i).

(ii) From (2.3), we have the equality

o [Klo 2
Phler;a) = Lqt 32

=) Pk (@5 q).

=1 [n]q
Thus, we obtain
I o= k2-any2 ([n]gz)”
Pher;z) = —— > q e

[n]q kzzl [k —1]q! !
x

= =P (ep; ),
7 (eo; @)

as required.

[n]gmﬂ [k]q!q(k+m+1)(k+m)/2 ’

q pn,k(x; q) + e;[n]qz

oo
> TV P w(wsg) + 1) eq M
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(iii) From (2.3), we have the equality
. [K]g[k + 1 2 g
Phlessz) = Flalk + 1o jot—si-2y/2), |, ().

Using the equality [k]q[k + 1]q = [k]q[k — 1]q + [2]q¢"*[K]q, We obtain

1 i g5k ([n)g)" g
[k —2],! 7

2]q 2_3k—4)/2 —[nlqz
[]qu1 N [(]£]1])q!eq[1

2
_ T pay, . [2la% e, .
= q4 Tn(60,$)+ qg[n]qﬂ)n(607m)7

which is the required result.

(iv) From (2.3), we have the equality

i qlk + 1qlk + 2] R TR0 /2, ok (33).

CPq 63, [n]3

=1

Using the equality
(Klq[k + 1]q[k + 2]q = [K]q[k — 1]q[k — 2] + ([2]qq + [4111)‘11672[743]t1[]C —1]q
+ [204[3ag” " [Kla,

we obtain

1 > 2_7p_ Nn|qT k —[n]qx
CPZ(E:;;:Z?) _ [_ Zq(k Tk—6)/2 [(]£ lqg])q!eq[ lq

((2laq + [4]0) iqM sk—10)/2 ([n]gm)* ool

+ [n]3 [k—2],0?
Q]q[3]q — (12-3k—10)/2 ([MaT)* —n]ge
g Zq( B e
_ z* q . ([Q]QQ+[4]Q)J32 q . [2] [3]q q
- ?CP”(EO,IE)‘FWyn((EO, ) [n]q —7 (607 )7

which is the required result.
(v) From (2.3), we have the equality
- Elqlk + 1)qlk + 2]q[k + 3]q (k2 ok— 12)/2 (T3 ).

wlea; @) = Z 3

=1

Using the equality
[k]qlk + gk + 2)q[k + 3]q = [K]q[k — 1]q[k — 2]q[k — 3]q
+ ([21aa” + [4laq + [6la)a" " [Klalk — Lalk — 2],
+ ([2a[3lad” + [21a[5]aq + [4]a[5a)a™* ~* [Klalk — 1]
+ [214[3]a[4laa™ ~* [Kla,
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so we can write,

?31(64337): (2-or-12)/2 ([nlo)* eqg M
B e
[Q]qq + [4]qq + [6]g (k2 —7k—18)/2 ([n]qx)* —[n]g=
3 2.1 e — 3],

[2)43]a0> + [24[5]aq + [4a[5lg o= (k2 —5k—20),2 ([n]qz)* o [nla®
[n]g Z [k —2]!

+ 2]q[3]q [‘qu (k2 —3k—18)/2 ([ lq ) ef[n]qz'

[n]3 [k —1],!
Thus,
Phlessw) = gPhleo;a) + (Bt +q[ff,3j 90) 4 e
+ (124[3]a® + [(2]]1113[[5;1]11211 + [4]4[5]4)2? P9 (e0; 2)
([2]4[3]4[4]q)x Lo
+ qlo[n]g :Pn( 0, )7
as required. (]

2.2. Remark. Take a fixed number ¢ € (0,1). Since
. 1
i [nla = 3=
in Lemma 2.1, PL(t™,z), m € N, does not tend to z™ as n — oo. From this result,

we have to consider the condition g := (gn) as a sequence with limp—oo gn = 1 for
approximation properties of the operators P (f,z) defined by (2.1)

For shortness, ¢ denotes the n'" term of the sequence (gn) C (0,1) with limyp—oo gn =1
after this section.

2.3. Lemma. For the operators PL(f, x) defined by (2.1), we have the inequality

Tt —2)% 2 PR T T
wit—arin < 2 (1o + ) et o)

Proof. From the linearity of the Py operators, and Lemma 2.1, we have the second
moment

2 2]
P t—:c2;:c:x—+ [ 1 p— 2z + 2?
((t=a)5o) = G 7*[nlq
1 2 2 [2]q
(L2, 1) 24
(q‘* q 7*[nlq
2 3 1 )
<—=(1l—-¢ +—|z(1+=x
= ( o, ) )
Therefore, The proof is completed. O

2.4. Lemma. If we make a slight modification to the operators PL(f;x) defined in (2.1)
as follows:

(24)  T(fra) = PL(fra) — f (2) i),
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then we have

Pr(t —x;2) = 0.

Proof. From Lemma 2.1,
Pu(la) = Ph(Ls2)
and

Phltie) = Ph(se) — T +a =2

Therefore, we obtain the result stated in the Lemma. O

3. Local approximation
In this section, let Cg[0, 00) be the space of all real valued continuous bounded func-

tions on [0,00) and let f € Cg[0,00) be equipped with the norm ||f|| = sup |f(¢)].
z€|

0,00)

We denote the first modulus of continuity on the finite interval [0, a], a > 0, by
(1) wpa(f;0)=  sup  [f(z+h)— f(z)].

0<h<8,z€(0,a]
Peetre’s K-functional is defined by
Ks(f;6) =inf {||f — gl —|—5Hg”“ ig € Wfo}7 0>0

where W2 = {g € Cg[0,00) : ¢’,g" € Cg[0,00)}. By [3, Theorem 2.4, p. 177] there
exists a positive constant M such that

(3.2)  Ka(f;0) < Muws(f; V),
where

wa2(f;V8) = sup  sup |f(x+2h) = 2f(z +h) - f(z)|.

0<h<8 €[0,00)

3.1. Theorem. For every z € [0,00) and f € Cp[0,00) we have the inequality

[P4(f:2) — (@) < Mas (£ v/Fra @) + wi0.0 (f; - %) ,

q

where
2 5 1)
Ongx)==(1-¢ +— | z(1+x).
@)= 2 (1-d"+ e+

Proof. Let g € W2 and z € [0,00). Using Taylor’s expansion
t
9(6) = (@) + (¢~ 0)g (@) + [ (¢~ 0" () du,
and from Lemma 2.4, we have
t

Thlgia) = g(a) + 7 | / (t — w)g" () dus

x
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Then, we get
t z/q
Thtgie) — (o) = o1 | [ - g awe |~ [ (£ )"
z/q

‘g"(u)’ du.

t
<71 || [ -y ) du] sz +/\f—u
q
Using the inequality

t
t —x)?

Ja-wa <5 52

x

and from Lemma 2.3, we write

5 gi) — 9(@)| < llg” 174 (Mx) + ||g~||@

IA

(3.3) 2 2

2 3 1 ) ”
< —|1-¢ +—)z(1+z)|g |.
2 (1= o ) s+ ole')

The operators ?i(ﬁ x) are bounded, that is

(34)  [PhL(fim)| = < 7194 (152) + 2011 < 31711

Pl (frx) — f (g) + f(2)
From (2.4), (3.3) and (3.4), we get

[PL(f;2) = f(@)] = [PR(f — g52) — (f — g)(2) + Ph(g;2) — g(2)]
< [Pas = gi2) = (F = 9)@)| + [Phigio) — g(a)

+ ‘f(%) - f(=@)

2 3 1 "
<4|lf-gll+=(1-4q +—)x1+:c
1f =gl + ( oP (1+2)llg"l

+‘f(x+1;qx)—f(x) .

Now taking the infimum over g € W2 on the right hand side of the above inequality,
and using the inequalities (3.1) and (3.2), we get the desired result. a

4. Weighted approximation

Weighted Korovkin-type theorems were proved by Gadzhiev [4] and [5]. Now, we give
Gadzhiev’s results in weighted spaces. Let p(z) = 1 + ?(z), where ¢(z) is a monotone
increasing continuous function on the real axis and B, is the set of all functions f defined
on the real axis satisfying the growth condition | f(z)| < Myp(x), where My is a constant
depending only on f. Then B, is a normed space with norm

1fll, = sup{lf ()| /p(z) : © € R}

for any f € B,. Let C, denote the subspace of all continuous functions in B,, and C}
the subspace of all functions f € C, for which lim|,_o (f(x)/p(x)) exists finitely.
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4.1. Theorem. (See [4] and [5])

(a) There exists a sequence of linear positive operators An(C, — Bp) such that

(41) lim HA”(SOU) - SOD”P = 07 v= 07 17 27

and a function f* € C,\Cp with lim ||An(f*) — f*|, > 1.
(b) If a sequence of linear positive operators An(C, — B)) satisfies conditions (4.1),

then
Tim ([ A4u(f) ~ fll, = 0.
for every f € Cj. O

Throughout this paper we take the growth condition as p(x) =1+ x>,
4.2. Theorem. For every f € Cg[0,00) we have the following limit
T ([P4(/) ~ [, = 0.
Proof. Since P%(eo;x) = 1, it is obvious that
175 (e0) — eollp = 0.
Considering Lemma 2.1 (ii), we get

Pi(er; ) — x|
P _ — | n )
H n(el) e1||P zes[l(;,lio) 1+ 22

x
- —z

< sup
z€[0,00) 1 +2172

1 x
<[--1 sup
(q )ze[o,oo) 1+ 2

=o0(1).

Similarly, from Lemma 2.1 (iii) we get
“(‘PgL(SZ; :E) - xz‘

P (e2) — ea], =
H n(e2) 62”P zes[ggo) 14 22
2
2
55_4+ :E]q  — 2
< q a3[n]q
= Sup )
z€[0,00) 1+x

(L ) gy 2
q* @nlg ) zcio,00) 1+ 2
=o0(1).

Thus, from Theorem 4.1, we obtain the desired result. O

5. Rate of convergence

In this section, we want to estimate the rate of convergence for the sequence of the
P2 operators. As is known, if f is not uniformly continuous on the interval [0, c0), then
the usual first modulus of continuity w(f;d) does not tend to zero, as § — 0. For every
f € C30,00), we would like to take a weighted modulus of continuity Q(f;d) which tends
to zero as & — 0.
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Let

1) Qe = sup LEFN @)

, for each every f € C}[0,00).
0<h<s 520 (1 +h2)(1—|—x2) v f p[ )

The weighed modulus of continuity Q(f; ) was defined by Ispir in [7]. It is known that
Q(f;9) has the following properties.

5.1. Lemma. [7] Let f € C;[0,00). Then:

(1) Q(f;9) is a monotone increasing function of 0,
(i) For each f € C}0,00), lim+ Q(f;0) =0,
§—0

)
(iif) For each m € N\ {0}, Q(f;md) < mQ(f;0),
(iv) For each A € R, Q(f; A6) < (1 + N)Q(f;9). O

Now we obtain a rate of convergence for the operators P3.

5.2. Theorem. Let f € C,[0,00). Then we have the inequality

IP2(f) = fllz < M(9)Q2 (fq/l -+ ﬁ) ;

where p(x) = 1+ z° and M(q) is a positive real number dependent on q.

Proof. From the definition of Q(f;J), and Lemma 5.1 (iv), we can write

|t — |

FO) = F@)] < (L4 (- 21 +27) (1 T ) a(f; o).

Then, we have the inequality
i) - @)1 < 4o (a4 -0 (14 52 o)
6:2) < (L4 2)F:0) {28 ((L+ (¢~ 2)°)52)

491 ((1 + - - “”';x)} .

Applying the Cauchy-Schwarz inequality to the second term, we get

< @ra+e-arriay o (52Ea))

From Lemma 2.1 and Lemma 2.3, we get the following estimates

(5.3)

q —z)%z 2 PN T T
(PL (14 (t— )% ))g1+q4L (1 q +[n]q) (1+=x)

2 3 1 2
§—4(2—q +m)(1+$)
(5.4) < Mi(g)(1+z)?,
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(5.5)  PL((A4(t— x)?)?; )
=1+ 2P%((t — 2)%;2) + PL((tY 2) — 42Ph((t%; )
+ 622 PL(t%; ) — 4P (t; ) + 2" PL(1; 2)

41 4 6 4
“r\g et Tt

x3<([2]qq2+[41qq+[61q) (g + ) o 2, )

q*°[n]q a®[n]q ¢3[n]q

e (([Q]q[3]qq2 + [21a[5lag + 4alle _ 42lalBle | 2 4 2)
q

q*3[n]2 ¢eMF ¢t
o (([2lal3la[4)g [2]4
i ( PEE “qS[nlq)“
1—¢"®\ 4 48 4 68 o 28
SB( q*e )x +q15[n]qx +q13[n13x +q1°[n]2x+1
(5.6) < Ms(q)(1+2°)?
and
(=2 NP1 21
{on () ) <5\/q4(1 © ) # )
(5.7) <Ms@ sy g,

4 [n]q

Choosing M (q) = (M1(q) ++/M2(q) M3(q)) Ma, where My = sup, (1 +2)?(1+2)/(1+

z%) and § = /1 — ¢+ ﬁ7 and combining the estimates between (5.2) and (5.7), we
a
end up with
5 1
1P5(fi2) = f(@)| < (L+2")M(@)Q | fiy[1 -+ 75— |,
a*[n]q
as required. O

5.3. Remark. The weighted approximation theorem, Theorem 4.2, is obtained for the
norm || - || , where p(z) =1+ x2. In Theorem 5.2, we estimated the rate of convergence

for the operators Pj for the norm |- ||, where p(z) =1 + x°. Tt is an open problem to
obtain the rate of convergence for the operators P7 in the norm || - || ,, where p(z) = 1+,
without adding an extra condition to the function f € Cj}.
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