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Abstract

In this paper we study the one dimensional mixed problem, with Neu-
mann and Dirichlet type periodic boundary conditions, for the quasi-

linear parabolic equation ∂u
∂t

− a2 ∂2u
∂x2 = f(t, x, u). We construct an

iteration algorithm for the numerical solution of this problem. We an-
alyze computationally convergence of the iteration algorithm, as well
as on test examples. We demonstrate a numerical procedure for this
problem on concrete examples, and also we obtain numerical solution
by using the implicit finite difference algorithm.
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1. Introduction

The heat conduction equation of an isotropic material is given in the following form

(1) c
∂u

∂t
= k∆u + εc

∂

∂t
∆u + q(t, x),

where u = u(t, x) denotes the temperature of the material at the point x and the moment
t. Moreover, the heat source is denoted by q = q(t, x). In addition, the symbols k and ε

denoted heat conduction and a small parameter, respectively [12, 11, 3].

Since the heat source q depends on u = u(t, x), equation (1) turns into the following
quasilinear pseudo-parabolic equation:

(2) c
∂u

∂t
= k∆u + εc

∂

∂t
∆u + q(t, x, u).

where the source function q is any continuous function.
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For ε = 0 and ε 6= 0, these equations with different boundary conditions were inves-
tigated by various researchers by using Fourier or different methods [1, 2, 5, 6, 7, 8]. In
[8], the author proved the existence and uniqueness of the generalized solution of the
quasilinear parabolic equation

∂u

∂t
− a

2 ∂2u

∂x2
= f(t, x, u), (t, x) ∈ D := {0 < x < π, 0 < t < T}(3)

u(t, 0) = u(t, π) = 0, t ∈ [0, T ](4)

u(0, x) = ϕ(x), x ∈ [0, π] .(5)

In technical applications, the following boundary conditions

u(t, 0) = u(t, π), t ∈ [0, T ] , ux(t, 0) = ux(t, π), t ∈ [0, T ]

are encountered very often. Moreover, from a technical point of view, these boundary
conditions are more difficult.

In [4], the authors Ciftci and Halilov investigated quasilinear parabolic equations with
periodic boundary conditions by using Fourier series with variable coefficients. They
proved the existence, uniqueness and convergence of the weak generalized solution of the
following mixed problem for a quasilinear parabolic equation with the given source term
f = f(t, x, u):

∂u

∂t
− a

2 ∂2u

∂x2
= f(t, x, u), (t, x) ∈ D := {0 < x < π, 0 < t < T}(6)

u(t, 0) = u(t, π), t ∈ [0, T ](7)

ux(t, 0) = ux(t, π), t ∈ [0, T ](8)

u(0, x) = ϕ(x), x ∈ [0, π] ,(9)

where ϕ(x) and f(t, x, u) are given functions on [0, π] and D̄ × (−∞,∞), respectively.

In this study, we construct an iteration algorithm for the solution of the problem
(6)-(9). We analyze computationally the convergence of the iteration algorithm, as well
as on test examples. We demonstrate the numerical procedure for the problem (6)-(9)
on concrete examples and finally, obtain a numerical solution by using the implicit finite
difference algorithm.

2. Numerical Algorithm for the nonlinear problem (6)–(9)

There are some competing numerical methods for solving problem of this kind, which
known by the abbreviations IMEX (implicit-explicit), SS (split step), IF (integrating
factor), SL (sliders), and ETD (exponential time-differencing) [10].

We construct an iteration algorithm for the quasilinear parabolic problem (6)-(9),
using an implicit finite difference scheme for the following linearized problem:

∂u(n)

∂t
− a

2 ∂2u(n)

∂x2
= f(t, x, u

(n−1)), (t, x) ∈ D := {0 < x < π, 0 < t < T}(10)

u
(n)(t, 0) = u

(n)(t, π), t ∈ [0, T ](11)

u
(n)
x (t, 0) = u

(n)
x (t, π), t ∈ [0, T ](12)

u
(n)(0, x) = ϕ(x), x ∈ [0, π] .(13)

Let u(n)(t, x) = v(t, x) and f(t, x, u(n−1)) = f̃(t, x). Then the linearized quasilinear
parabolic problem (10)–(13) can be rewritten in the form of an initial-periodic boundary
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value problem for a linear parabolic problem as follows:

∂v

∂t
− a

2 ∂2v

∂x2
= f̃(t, x), (t, x) ∈ D := {0 < x < π, 0 < t < T} ,(14)

v(t, 0) = v(t, π), t ∈ [0, T ] ,(15)

vx(t, 0) = vx(t, π), t ∈ [0, T ] ,(16)

v(0, x) = ϕ(x), x ∈ [0, π] .(17)

To solve the linearized problem (6), we define the uniform space and time grids

w
t
h =

{
xi ∈ [0, π], tj ∈ [0, T ] : xi = ihx, i = 0, Nx,

hx =
π

Nx

, tj = jht, j = 0, Nt, ht =
T

Nt

}
,

and use the standard finite difference approximations

ux,ij :=
ui+1,j − ui,j

hx

, ut,ij :=
ui,j+1 − ui,j

ht

, uij := u(tj , xi),

i = 1, Nx − 1, j = 0, Nt − 1

of the partial derivatives ux, ut, where the constants hx > 0 and ht > 0 are the grid
parameters.

For the numerical solution of the linear parabolic problem (14)–(17), we use the fol-
lowing implicit monotone difference scheme:

(18)

vi,j+1 − vi,j

ht

−
a2

h2
x

(vi−1,j+1 − 2vi,j+1 + vi+1,j+1) = f̃i,j+1,

i = 1, Nx − 1, j = 0, Nt − 1,

vi,0 = ϕi, i = 0, Nx; v0,j = vNx,j , vx,0j = vx,Nxj , j = 0, Nt,

which has accuracy O(h2
x + ht) on the uniform grid wt

h [13].

3. Numerical Test Problems

3.1. Numerical Solution of the Linear Problem. First, we consider the linear case.
That is, the source function f(t, x, u) in equation (6) depends only on variables x and t:

f(t, x, u) = f(t, x), x ∈ [0, π], t ∈ [0, T ].

Then the function

u(t, x) = exp(−t) sin2
x, (t, x) ∈ D,

is the analytical solution of the linear parabolic problem

∂u

∂t
−

∂2u

∂x2
= f(t, x), (t, x) ∈ D,(19)

u(t, 0) = u(t, π) = µ1(t), t ∈ [0, T ],(20)

ux(t, 0) = ux(t, π) = µ2(t), t ∈ [0, T ],(21)

u(0, x) = ϕ(x), x ∈ [0, π],(22)

with the given input data

µ1(t) = 0,

µ2(t) = 0,

ϕ(x) = sin2(x)
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and the source term

f(t, x) = −(sin2
x + 2a

2 cos(2x)) exp(−t).

Table 1 shows the absolute sup-norm errors obtained for different grid parameters Nx,
Nt.

Table l. Numerical results for the linear problem (19)–(22) on different grids

hx (Nx) ht (Nt) R = ht

h2
x

εv := ‖u − uh‖
∞

nt

0.1571 (21) 0.05 (21) 2.0264 0.0109 −

0.1571 (21) 0.025 (41) 1.0132 0.0070 0.6619

0.1571 (21) 0.0125 (81) 0.5066 0.0051 0.4651

0.0785 (51) 0.02 (51) 3.2423 0.0039 −

0.0785 (51) 0.01 (101) 1.6211 0.0024 0.7105

0.0785 (51) 0.005 (201) 0.8106 0.0016 0.5892

The last column gives the approximation error

nt(Nx) = log

(
ε
(1)
t

ε
(2)
t

)/
log

(
N

(2)
t

N
(1)
t

)
,

for the uniform space and time grids wt
h used. The last line of the table shows that the

smallest absolute error εv = 0.0016 is obtained on the grid of size Nx × Nt = 51 × 201,
with R = 0.8106. Figure 1 shows the exact and numerical solutions of the problem
(19)–(22) for T=1.

Figure 1. Exact and Numerical Solutions of the Linear Problem
(19)–(22) for the final time T = 1
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3.2. Numerical Solution of the Nonlinear Problem. In this example, we apply
the linearization scheme (18) to the nonlinear problem

∂u

∂t
−

∂2u

∂x2
= f(t, x, u), (t, x) ∈ D = (0, π) × (0, T )(23)

u(t, 0) = u(t, π) = µ1(t), t ∈ [0, T ](24)

ux(t, 0) = ux(t, π) = µ2(t), t ∈ [0, T ](25)

u(0, x) = ϕ(x), x ∈ [0, π].(26)

The analytical solution

u(t, x) = exp(t − sin 2x), (t, x) ∈ D,

of the problem (23)–(26) corresponds to the source term

f(t, x, u) = (1 − 4 sin 2x − 4 cos2 2x)u

and to appropriately chosen functions ϕ(x) = exp(− sin 2x), µ1(t) = exp(t), and µ2(t) =
−2 exp(t).

The nonlinear problem (23)-(26) was solved by applying the iteration scheme (18).
The condition

εit :=
∥∥∥u

(n+1)
n − u

(n)
n

∥∥∥
∞

,

with εit = 10−8, was used as a stopping criteria for the iteration process. Numerical
results obtained on different grids are shown in Table 2.

Table 2. Numerical results for the Nonlinear Problem (23)–(26)
on different grids

hx (Nx) ht (Nt) R = ht

h2
x

εu :=
∥∥∥u − u

(n)
h

∥∥∥
∞

iteration number nt

0.1571 (21) 0.0500 (21) 2.0264 0.1167 2 −

0.1571 (21) 0.0250 (41) 1.0132 0.0908 2 0.3751

0.1571 (21) 0.0125 (81) 0.5066 0.0778 2 0.2269

0.0785 (51) 0.0200 (51) 3.2423 0.0312 2 −

0.0785 (51) 0.0100 (101) 1.6211 0.0207 2 0.6004

0.0785 (51) 0.0050 (201) 0.8106 0.0154 2 0.4298

The absolute sup-norm errors obtained for different grid parameters Nx × Nt are given
in the fourth column of the table. As seen from these results, the errors in this case are
almost same as in the linear case given in Table 1 for the problem (19)–(23). Further,
by increasing the gird size the approximation error nt tends to 1, which agrees with the
order of approximation of the difference scheme (19)–(23), with respect to the time mesh
parameter ht.

Figure 2 shows the exact and numerical solutions of the nonlinear problem (23)–(26)
for T = 1.

It is clear from these results that accuracy of the above discrete model is sufficiently
high.
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Figure 2. Exact and Numerical Solutions of the Nonlinear Problem
(23)–(26) for the final time T = 1
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4. Conclusion

In this paper, we studied a quasilinear parabolic problem with periodic boundary
condition. We constructed an iteration algorithm to obtain numerical solutions of the
problem by solving the linearized problem (14)–(17) based on the monotone finite differ-
ence scheme (18). The computational results presented are consistent with the theoretical
results.
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