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Abstract

Four aspects of the theory of topological spaces are presented, and
an important example which illustrates all four of these aspects is de-
scribed.
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1. Introduction

Throughout this paper (X, τ) will denote an arbitrary topological space. No (sepa-
ration) properties are assumed unless explicitly stated. This paper surveys some of the
work of the author and his co-authors over more than two decades. It is an expanded
version of his lecture at the Çoker memorial meeting.

2. Spaces in which the only compact subspaces are finite

Such spaces were introduced under the names pseudo finite spaces by Wilansky [30]
and cf spaces by Levine [14]. In 1976 Hutton and Reilly [11] attempted to obtain a local
characterization of such spaces, with the following definition.

2.1. Definition. A topological space (X, τ) is called icn (infinite complement neigh-
bourhood) if for each point p in X and for each infinite subset A of X there is an open
set G containing p and such that A−G is infinite.
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They showed that the cf property implied icn, and that for first countable spaces
the converse was true. The general converse was left as an open question. Reilly and
Vamanamurthy [24] used β N to show that icn does not imply cf in general. They also
proved that the icn property is equivalent to scf, where X is scf if every sequentially
compact subspace of X is finite. Furthermore, they showed that cf is equivalent to icn*,
where icn* is defined by changing the condition “A − G is finite” in Definition 1 to
“A−G is non-compact”. The class of Lc spaces - those in which every Lindelof subspace
is countable – was considered by Reilly and Vamanamurthy [24].

Bankston [1] developed a general theory which had the cf spaces as a particular exam-
ple. Consider a topological property P. An operation “anti” is defined on classes of spaces
as follows. A space X is called anti-P if the only subspaces of X having property P are
those whose cardinalities require them to have property P. For example, anti-compact
≡ cf, anti-connected ≡ totally disconnected, and anti-Lindelof ≡ Lc.

Reilly and Vamanamurthy [25] continued the general study, especially for covering
and separation properties. They showed that the anti(·) operation does not discriminate
well between classes of spaces defined by different separation properties. In fact, the
anti(·) operation distinguishes only the T0 spaces from spaces with any higher separation
property. It maps the class of T0 spaces onto the class of indiscrete spaces, and the class
of Ti spaces (i ≥ 1) onto the class of spaces with totally ordered topologies. Here T3

means regular and T1, T4 means normal and T1 and so on.

If K is a topological class the spectrum of K, denoted spec(K), is the class of cardinal
numbers κ such that any topology on a set of power κ lies in K. Then anti-K is defined
to be the class of spaces X such that whenever Y ⊂ X then Y ∈ K if and only if
|Y | ∈ spec(K).

Bankston [1, Proposition 1.2] showed the following

2.2. Proposition. If K and M are classes of spaces, with K ⊂ M and spec(K) =
spec(M), then anti-K ⊃ anti-M.

Since any set containing at least two distinct points can have a non-Hausdorff topology
defined on it, we have that spec({Hausdorff spaces }) = {0, 1} = 2. Thus X is anti-
Hausdorff if and only if no two-point subspace of X is Hausdorff. For example, the set
of real numbers R with the left hand topology L, which has as a base the family of sets
{(−∞, a) : a ∈ R} is anti-Hausdorff. Observe that (R,L) is T0. This is a best possible
example in the sense that T1 anti-Hausdorff spaces do not exist.

Let Ki be the class of topological spaces having the separation property

Ti, i = 0, 1, 2, 3, 3 1
2
, 4, 5, α, β, m, t,

where Tα = discrete, Tβ = indiscrete, Tm = metrizable, and Tt = totally ordered.
Then

K0 ⊃ K1 ⊃ K3 ⊃ K
3

1
2
⊃ K5 ⊃ Km ⊃ Kα,

while spec(K) = {0, 1} for all these classes. Hence Proposition 1 implies that the opposite
inclusions hold for the anti (K) classes.

2.3. Theorem.

(a) anti-K0 = Kβ.

(b) anti-Ki = Kt for i ∈ {1, 2, 3, 3
1

2
, 4, 5,m, α}.

(c) anti-Kβ = K0.

(d) anti-Kt = K1.
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2.4. Corollary.

(a) anti-(anti-Ki) = Ki for i ∈ {0, β, t}.
(b) anti-(anti-Ki) = K1 for i ∈ {1, 2, 3, 3 1

2
, 4, 5,m, α}

If P is any of the properties, finiteness, compactness, countable compactness, sequen-
tial compactness or pseudocompactness then spec(K) = ω.

If P is ω-compactness or Lindelofness then spec(K) = Ω.

Reilly and Vamanamurthy [25, Theorem 3] proved the following result.

2.5. Theorem. The following inclusions are all proper.

(a) anti-pseudocompact ⊂ anti-countably compact ⊂ anti-compact ⊂ anti-finite.

(b) anti-compact ⊂ anti-sequentially compact.

(c) anti-countably compact ⊂ anti-sequentially compact.

(d) anti-Lindelof ⊂ anti-σ-compact.

(e) anti-compact ⊂ anti-σ-compact.

They also established [25, Theorem 8] that a space is anti-(anti-compact) if and only
if it is hereditarily compact, and that a similar result holds when “compact” is replaced
by “Lindelof”.

The question of repeated iteration of the anti-( · ) operation has been considered by
Matier and McMaster [16, 18]. Indeed, McMaster and his students have studied several
aspects of this topic [16, 17, 18, 19, 20, 21].

3. Spaces in which every countably infinite subset is discrete

Such spaces were considered by Potoczny [23]. They are called cid spaces, and are
closely related to the cf spaces. Indeed, Potozny [23] showed that any Hausdorff cid space
is anti-compact. Reilly and Vamanamurthy [26] showed that the Hausdorff condition is
superfluous, that is every cid space is anti-compact. The Arens-Fort space shows that
the converse is false.

Reilly and Vamanamurthy [26] showed that every infinite cid space is T1. Recall that
a space is a P space if each Gδ set is open. They proved [26, Theorem 10] that every T1

P space is cid, so there are plenty of cid spaces.

Another analogue between T1 spaces and cid spaces relates to their position in the
lattice of topologies. Reilly and Vamanamurthy [26, Theorem 11] showed that the co-
countable topology on an infinite set X is minimal cid in the lattice of topologies on
X.

Ganster, Reilly and Vamanamurthy [6] were able to characterize the cid property as
a separation-like property, as follows. A space X is cid if and only if for each countably
infinite subset C of X and for each point p /∈ C there are open sets U and V such that
p ∈ U , C ⊂ V , p /∈ V , and C ∩ U = φ.

Similar results for more general cardinalities have been obtained by Grant and Reilly
[10].

4. Bitopological spaces

If X is a set and τ1 and τ2 are topologies on X, then the triple (X, τ1, τ2) is defined
to be a bitopological space. It seems that this term was first used by Kelly [12] in his
classical paper on the topic.

Bitopological spaces arise naturally whenever one considers a non-symmetrical topo-
logical structure. This is because the original structure and its conjugate each generate
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(usually different) topologies on the underlying set. Examples are quasi-metrics, quasi-

proximities, quasi-topological groups and quasi-uniformities.

There is a well-developed theory of separation properties for bitopological spaces. Some
authors distinguish between weak and strong versions of most of these properties. For
example, the bitopological Hausdorff property may be defined as follows: (X, τ1, τ2) is
strong (weak) pairwise Hausdorff if for each pair of distinct points x and y in X there
are disjoint open sets U ∈ τ1 and V ∈ τ2 such that x ∈ U, y ∈ V (U contains one point
and V contains the other point). Weston [29] first defined this notion in its strong form
and used the term “consistent.” Kelly [12] first used the term pairwise Hausdorff.

Fletcher Hoyle and Patty [5] defined (X, τ1, τ2) to be strong pairwise T0 if for each pair
of distinct points x, y in X there is either a τ1 open set U such that x ∈ U and y /∈ U or
a τ2 open set V such that y ∈ V and x /∈ V . The weak version of this property is defined
as follows: (X, τ1, τ2) is weak pairwise T0 if for each pair of distinct points of X there is
a set which is either τ1 open or τ2 open containing one of the points but not the other.
Similarly, (X, τ1, τ2) is defined to be strong (weak) pairwise T1 if for each pair of distinct
points x and y in X there are open sets U ∈ τ1 and V ∈ τ2 such that x ∈ U, y /∈ U and
y ∈ V, x /∈ V (either [x ∈ U, y /∈ U, y ∈ V and x /∈ V ] or [y ∈ U, x /∈ U, x ∈ V and
y /∈ V ]).

In the bitopological space (X, τ1, τ2), Kelly [12] defined τ1 to be regular with respect
to τ2 if for each point x in X and each τ1 closed set P such that x /∈ P there is a τ1 open
set U and a τ2 open set V disjoint from U such that x ∈ U and P ⊂ V . Then (X, τ1, τ2)
is strong (weak) pairwise regular if τ1 is regular with respect to τ2 and (or) τ2 is regular
with respect to τ1. In (X, τ1, τ2), τ1 is defined to be completely regular with respect to τ2
if for each τ1 closed set C and each point x /∈ C there is a real valued function f on X
into [0, 1] such that f(x) = 0, f(C) = 1, and f is τ1 upper semi-continuous and τ2 lower
semi-continuous. Furthermore, (X, τ1, τ2) is strong (weak) pairwise completely regular if
τ1 is completely regular with respect to τ2 and (or) τ2 is completely regular with respect
to τ1.

Bitopological normality was defined by Kelly [6] as follows: (X, τ1, τ2) is pairwise

normal if for each τ1 closed set A and τ2 closed set B disjoint from A there is a τ1
open set V containing B and a τ2 open set U disjoint from V containing A. Consider
the bitopological space (R,U,L), where R is the set of real numbers and U and L are
the upper and lower topologies on R, namely U = {∅, R, (a,∞) : a ∈ R} and L =
{∅, R, (−∞, a) : a ∈ R}. Then (R,U,L) is pairwise normal, and satisfies the weak
version of each of the other separation properties, but does not satisfy the strong form.

By adding the appropriate form of the pairwise T1 property to the higher separation
properties, one obtains two hierarchies of bitopological separation properties - a weak one
and a strong one. Section 2 of Kopperman [13] is a thorough discussion of bitopological
separation properties.

Bitopological covering properties have proved to be much more intractable than the
separation properties. Fletcher, Hoyle and Patty [5] provided an early definition of
bitopological compactness. A cover U of the bitopological space (X, τ1, τ2) is defined to
be pairwise open if U ⊂ τ1 ∪ τ2 and U contains at least one non-empty member of τ1
and at least one non-empty member of τ2. If each pairwise open cover of (X, τ1, τ2) has
a finite subcover then the space (X, τ1, τ2) is defined to be pairwise compact. Note that
(R,U,L) is pairwise compact. Cooke and Reilly [4] considered alternative definitions and
characterizations of bitopological compactness. Salbany [27] has provided the most com-
prehensive early discussion of this topic, based on the stronger definition that (X, τ1, τ2)
is pairwise compact if the topological space (X, τ1 ∨ τ2) is compact. Salbany [27] has
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introduced the bitopological analogue of the Stone-Čech compactification. A more recent
development of these ideas is given in Sections 3 and 6 of Kopperman [13].

Bitopological spaces can be given a categorical treatment. The category Bitop has
objects which are bitopological spaces and morphisms which are pairwise continuous
functions. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is defined to be pairwise continuous if
each of the functions between topological spaces f : (X, τ1)→ (Y, σ1) and f : (X, τ2)→
(Y, σ2) is continuous. Brummer [2] and Salbany [27] are two of the major contributors
to such a treatment. If the topological space (X, τ) is identified with the bitopological
space (X, τ, τ), then it is clear that the category Top is a subcategory of Bitop.

Recently there has been some work relating bitopological spaces to topics in theoretical
computer science. For example, we cite the paper of Ciesielski, Flagg and Kopperman
[3].

5. Continuity properties of functions

There are many examples in the literature of properties closely related to the notion
of continuity of a function. In many cases the property coincides with continuity if we
change the topology on either the domain or the range or both.

5.1. Definition. A property P of functions between topological spaces is called a con-

tinuity property if to each pair (X,σ) and (Y, τ) of topological spaces there correspond
new topologies σ′ on X and τ∗ on Y such that f : (X,σ) → (Y, τ) has property P if
and only if f : (X,σ′) → (Y, τ∗) is continuous. Otherwise, P is called a non-continuity

property.

So a non-continuity property is something new, outside the category of topological
spaces and continuous functions. However, a continuity property arises because the
wrong source and/or target is taken for the morphism in the category Top, see Gauld,
Mršević, Reilly and Vamanamurthy [9].

Studying such variations of continuity, and especially questions such as composition,
restriction, preservation of appropriate classes of subsets, relationships between such
properties, and equivalence to continuity under suitable conditions, from this perspec-
tive yields much insight and enhances understanding. Proofs are often made elegant,
sometimes trivial.

Gauld, Greenwood and Reilly [8] have classified about 100 such properties from this
point of view.

To show that a property P is a continuity property we need to exhibit the topology on
the domain and/or range which reduces P to continuity. The following result of Gauld
[7, Proposition 2] is the most effective tool to date for showing that P is a non-continuity
property.

5.2. Proposition. Let P be a property of functions between topological spaces, X and

Y sets, F a family of functions from X to Y , and g : X → Y a function. Furthermore,

suppose that

(i) whatever topologies are imposed on X and Y , if each member of F is continuous

then g is also continuous, and

(ii) there are topologies on X and Y with respect to which each member of F satisfies

P but g does not satisfy P.

Then P is not a continuity property.

One example which illustrates this situation is the case of semi-regularization, see
Mršević, Reilly and Vamanamurthy [22]. If A is a subset of (X, τ), then A is called
regular open if A = int(clA).
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Let RO(X, τ) denote the collection of all regular open subsets of (X, τ).

ThenRO(X, τ) forms the base of another topology onX, called the semi-regularization

of τ , and it is denoted by τs.

We note the following properties;

(1) τs ⊂ τ
(2) If (X, τ) has the property that τs = τ , then (X, τ) is called a semi-regular space.
(3) If A and B are disjoint open sets in (X, τ), then τ int(τ clA) and τ int(τ clB) are

disjoint open sets in (X, τs) containing A and B respectively.
(4) Semi-regularization topologies are preserved by products.
(5) Let (Y, σ) be regular. If f : (X, τ) → (Y, σ) is continuous, then f : (X, τs) →

(Y, σ) is continuous.
(6) (τs)s = τs.

5.3. Definition. A function f : (X, τ)→ (Y, σ) is

(i) almost continuous (AC),
(ii) δ-continuous (δC),
(iii) super continuous (SC),

if for each x ∈ X and each σ open set V containing f(x) there is a τ open set U containing
x such that

(i) f(U) ⊂ σ int(σ clV ),
(ii) f(τ int(τ clU)) ⊂ σ int(σ clV ),
(iii) f(τ int(τ clU)) ⊂ V , respectively.

5.4. Proposition. Let f : (X, τ)→ (Y, σ) be a function. Then:

(i) f is AC iff f : (X, τ)→ (Y, σs) is continuous

(ii) f is δC if f : (X, τs)→ (Y, σs) is continuous

(iii) f is SC iff f : (X, τs)→ (Y, σ) is continuous.

6. An example

6.1. Definition.

(1) A point z ∈ R is a point of density of a measurable set M ⊂ R if

lim
h→0+

1

2h
λ{M ∩ (z − h, z + h)} = 1,

where λ is Lebesgue measure.
(2) A measurable set M ⊂ R is called d-open if each point of M is a point of density

of M . The collection of all d-open sets forms a topology on R, called the density
topology on R.

(3) A function f defined on a neighbourhood of a point z ∈ R is approximately

continuous at z if there is a measurable set M ⊂ R such that z is a point of
density of M and

lim
x→z
x∈M

f(x) = f(z).

Tall [28] and Lukeš, Maly and Zajiček [15] have studied the density topology in some
detail.

We wish to highlight the following properties of the density topology on R.

(1) It is finer than the usual topology [15, Remark p. 148].
(2) It is cf (or anti-compact) - the only compact subspaces are the finite ones [15,

Theorem 6.9].
(3) It is cid - every countably infinite subset is discrete [15, Theorem 6.9].
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(4) It is completely regular and Hausdorff [15, Theorem 6.9].
(5) It is not normal. [15, Theorem 6.9]
(6) It satisfies the Lusin-Menchoff property, which is the pairwise normality property

of an associated bitopological space, namely (R, usual topology, density topology)
[15, Theorem 6.9].

(7) A function f is approximately continuous at a point z if and only if it is
density-continuous at z, or f : (R,usual) → R is approximately continuous
iff f : (R, density)→ R is continuous [15, Theorem 6.6].

The authors of the monograph [15] claim that the use of the Lusin-Menchoff property is
“the main topic of this work”.
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