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Abstract

The aim of this paper is to continue the study of sg-compact spaces.
The class of sg-compact spaces is a proper subclass of the class of hered-
itarily compact spaces. In our paper we shall consider sg-compactness
in product spaces. Our main result says that if a product space is sg-
compact, then either all factor spaces are finite, or exactly one factor
space is infinite and sg-compact and the remaining ones are finite and
locally indiscrete.
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1. Introduction

If a topological space (X, τ) is hereditarily compact, then under some additional as-
sumptions either X or τ might become finite (or countable). For example, if (X, τ) is
a second countable hereditarily compact space, then τ is finite. Hence, if (X, τ) is a
second countable hereditarily compact T0-space, then X must be countable. Moreover,
it is well-known that every maximally hereditarily compact space and every hereditarily
compact Hausdorff (even kc-) space is finite. For more information about hereditarily
compact spaces we refer the reader to A.H. Stone’s paper [15].

In 1995 and in 1996, a stronger form of hereditary compactness was introduced in-
dependently in three different papers. Caldas [3], Devi, Balachandran and Maki [6] and
Tapi, Thakur and Sonwalkar [17] considered topological spaces in which every cover by
sg-open sets has a finite subcover. These spaces have been called sg-compact and were
further studied by the present authors in [7].
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As the property sg-compactness is much stronger than hereditary compactness (for
even spaces with finite topologies need not be sg-compact), the general behavior of sg-
compactness becomes more ‘unusual’ than the one of hereditarily compact spaces. This
will be especially the case in product spaces.

It is well-known that the finite product of hereditarily compact spaces is hereditarily
compact, and that if a product space is hereditarily compact, then every factor space is
hereditarily compact. What we want to show here is the following: If the product space of
an arbitrary family of spaces is sg-compact, then all but one factor spaces must be finite
and the remaining one must be (at most) sg-compact. Maki, Balachandran and Devi [14,
Theorem 3,7] showed (under the additional assumption that the product space satisfies
the weak separation axiom Tgs) that if the product of two spaces is sg-compact, then
every factor space is sg-compact. Tapi, Thakur and Sonwalkar [17, Theorem 2.7] stated
the result for two spaces but their proof is wrong as they claimed that the projection
mapping is sg-irresolute. They [17] used a wrong lemma from [16] saying that the product
of sg-closed sets is sg-closed (we will show that this is not true even for two sets).

We recall some definitions. A set A is called semi-open if A ⊆ cl(int(A)) and semi-
closed if int(cl(A)) ⊆ A. The semi-interior (resp. semi-kernel) of A, denoted by sint(A)
(resp. sker(A), is the union (resp. intersection) of all semi-open subsets (resp. supersets)
of A. The semi-closure of A, denoted by scl(A), is the intersection of all semi-closed
supersets of A. It is well known that sint(A) = A ∩ cl(int(A)) and that scl(A) = A ∪
int(cl(A)). Observe that sint(A) is semi-open and that scl(A) is semi-closed. A subset
A of a topological space (X, τ) is called sg-open [2] (resp. g-open [12]) if every semi-
closed (resp. closed) subset of A is included in the semi-interior (resp. interior) of A. A
topological space (X, τ) is called sg-compact [3, 6, 17] (resp. go-compact [1]) if every cover
of X by sg-open (resp. g-open) sets has a finite subcover.

Complements of sg-open sets are called sg-closed. Alternatively, a subset A of a
topological space (X, τ) is called sg-closed if scl(A) ⊆ sker(A). If every subset of A is
also sg-closed in (X, τ), then A is called hereditarily sg-closed (= hsg-closed) [7]. Every
nowhere dense subset is hsg-closed but not conversely.

Janković and Reilly [11, Lemma 2] pointed out that in an arbitrary topological space
every singleton is either nowhere dense or locally dense. Recall that a set A is said to be
locally dense [5] (= preopen) if A ⊆ int(cl(A)) and that a topological space X is called
locally indiscrete if every open subset of X is closed. We will make significant use of their
result throughout this paper.

The next two results are already known in the literature. For the convenience of the
reader we shall include the proofs.

1.1. Lemma. For a topological space (X, τ) the following conditions are equivalent:

(i) X is locally indiscrete.
(ii) Every singleton is locally dense.
(iii) Every subset is sg-open.

Proof. (i)⇒ (ii): Let x ∈ X. Then cl{x} is closed and thus, by assumption, open. Hence
{x} ⊆ int(cl({x})), i.e. {x} is locally dense.

(ii) ⇒ (iii): Let A ⊆ X and F be semi-closed such that F ⊆ A. If x ∈ F then,
by assumption, we have that x ∈ int(cl(F )) and so F = int(cl(F )) ⊆ int(A). Thus
F ⊆ sint(A).

(iii) ⇒ (i): Let F be closed and suppose that A = F ∩ (X \ int(F )) 6= ∅. Then
A is closed and nowhere dense and, by assumption, sg-open. Since A ⊆ A we have
A ⊆ cl(int(A)) = ∅, a contradiction. Thus F is open. ¤
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1.2. Lemma.

(i) Every open continuous surjective function preserves both semi-open sets and pre-
open sets.

(ii) Let (Xi)i∈I be a family of spaces and ∅ 6= Ai ⊆ Xi for each i ∈ I. Then,
∏

i∈I Ai
is preopen (resp. semi-open) in

∏

i∈I Xi if and only if Ai is preopen (resp. semi-
open) in Xi for each i ∈ I and Ai is non-dense (resp. Ai 6= Xi) for only finitely
many i ∈ I.

(iii) If f : (X, τ)→ (Y, σ) is open and continuous, then the preimage of every nowhere
dense subset of Y is nowhere dense in X, i.e., f is δ-open.

Proof. (i) Suppose that f : (X, τ)→ (Y, σ) is open, continuous and surjective. If S ⊆ X

is semi-open, then there is an open set U ⊆ X such that U ⊆ S ⊆ cl(U). Hence
f(U) ⊆ f(S) ⊆ f(cl(U)) ⊆ cl(f(U)). Since f(U) is open, f(S) is semi-open. If S ⊆ X is
preopen then f(S) ⊆ f(int(cl(S))) ⊆ int(f(cl(S)) ⊆ int(cl(f(S))), i.e. f(S) is preopen.

(ii) Let A =
∏

i∈I Ai. Suppose that A is preopen (resp. semi-open). Since the projec-
tions are open, continuous and surjective, it follows from (i) that each Ai is preopen (resp.
semi-open). If A is preopen, pick any x ∈ A. Then there is a basic open set U =

∏

i∈I Ui
such that x ∈ U ⊆ cl(

∏

i∈I Ai) = (
∏

i∈I cl(Ai)). For only finitely many i ∈ I we have
Ui 6= Xi and therefore only finitely many Ai can be non-dense. If A is semi-open, then
int(A) 6= ∅ since A 6= ∅. So there is a basic open set U =

∏

i∈I Ui ⊆
∏

i∈I Ai. Thus
Ai 6= Xi for only finitely many i ∈ I. The converse follows easily from the definition of
the product topology.

(iii) Let N ⊆ Y be nowhere dense and let A = f−1(N). If int(cl(A)) 6= ∅, then
∅ 6= f(int(cl(A))) ⊆ int(f(cl(A))) ⊆ int(cl(f(A))) ⊆ int(cl(N)), a contradiction. ¤

1.3. Lemma. [7, Theorem 2.6] For a topological space (X, τ) the following conditions
are equivalent:

(1) X is sg-compact.
(2) X is a C3-space, i.e., every hsg-closed set is finite.

1.4. Lemma. [7, Proposition 2.1] For a subset A of a topological space (X, τ) the fol-
lowing conditions are equivalent:

(1) A is hsg-closed.
(2) N(X)∩ int(cl(A)) = ∅, where N(X) denotes the set of nowhere dense singletons

in X.

2. Sg-compactness in product spaces

We will start with an example showing that Theorem 2.1 of [17] is not true. There,
the authors stated (without proof) that every sg-compact space is go-compact (it is our
guess that they assumed that g-open sets are sg-open).

2.1. Example. Let N be set of all positive integers. We consider the following topology
τ on N given by τ = {∅,N} ∪ {Un = {n, n+ 1, n+ 2, . . .} : n ≥ 3}.

We first show that (N, τ) is sg-compact. Observe that every singleton of (N, τ) is
nowhere dense. Since every nonempty semi-open set has finite complement, (N, τ) is
semi-compact. By [7, Remark 2.7 (i)], (N, τ) is sg-compact.

However, every singleton of (N, τ) is g-open, and so (N, τ) fails to be go-compact.

At this point, we note that from now on, all topological spaces in this paper are
assumed to be non-empty.
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2.2. Lemma. Let X =
∏

i∈I Xi be a product space. If infinitely many Xi are not
indiscrete, then X contains an infinite nowhere dense subset.

Proof. Let J = {i ∈ I : Xi is not indiscrete}. Then |J | ≥ ω. For each i ∈ J , since
Xi is indiscrete, |Xi| > 1. Decompose J into a disjoint union of J1 and J2 such that
|J1| = |J2| = |J |. For each i ∈ J1, there is a closed set Ai ⊆ Xi distinct from the empty
set and from Xi. Now, let A =

∏

i∈J1
Ai ×

∏

i∈I\J1
Xi. Then A is closed and nowhere

dense in X. Since |Xi| > 1 for all i ∈ J2, A is also infinite. ¤

As a consequence of Lemma 1.3 we therefore have:

2.3. Corollary. If a product space X =
∏

i∈I Xi is sg-compact, then only finitely many
Xi are not indiscrete. 2

2.4. Theorem. Let (Xi, τi)i∈I be a family of topological spaces. If the product space
X =

∏

i∈I Xi is sg-compact, then either all factor spaces are finite or exactly one of them
is infinite and sg-compact and the rest are finite and locally indiscrete.

Proof. Suppose that two factor spaces, say Xi and Xj , are infinite. Let pi denote the
projection from X onto Xi for any i ∈ I. Let k ∈ I. If xk ∈ Xk, then p−1k ({xk})
is infinite, hence cannot be nowhere dense since X is sg-compact. Thus {xk} is not
nowhere dense in Xk. Consequently, each factor space Xk must be locally indiscrete. By
Corollary 2.3 and Lemma 1.2, each singleton in X is locally dense and so every subset of
X is sg-open. Since X is sg-compact, X must be finite, a contradiction. Hence, at most
one factor space can be infinite.

Now suppose that Xj is infinite and that Xi is finite for i 6= j. For each xi ∈ Xi,
where i 6= j, p−1i ({xi}) is infinite, therefore {xi} cannot be nowhere dense in Xi. So Xi

is locally indiscrete for i 6= j. By Corollary 2.3 and Lemma 1.2 it follows that for each
x ∈ X, {x} is nowhere dense in X if and only if {xj} is nowhere dense in Xj .

Assume now that Xj is not sg-compact. Then Xj contains an infinite hsg-closed
subset, say Aj . Let A = p−1j (Aj). We want to show that N(X) ∩ int(cl(A)) = ∅,
where N(X) denotes the set of nowhere dense singletons in X. If there exists a point
x ∈ N(X) ∩ int(cl(A)), then x has an open neighbourhood W contained in cl(A). Also,
{xj} is nowhere dense in Xj and xj ∈ pj(W ) ⊆ pj(cl(A)) ⊆ cl(Aj). So xj ∈ int(cl(Aj)),
a contradiction to the hsg-closedness of Aj . Hence, by Lemma 1.4, A is hsg-closed and
infinite, a contradiction. Therefore, Xj is sg-compact. ¤

Tapi, Thakur and Sonwalkar [17, Theorem 2.7] stated our result for two topological
spaces but their proof is wrong as they claimed the projection mapping to be sg-irresolute.
They used the erroneous lemma from [16] that the product of sg-closed sets is sg-closed.
The following example will correct their claims.

2.5. Example. Let X = {a, b, c} and let τ = {∅, {a, b}, X}. Set A = {b, c}.

(i) First observe that A is sg-closed in (X, τ) but A × A is not sg-closed in X × X,
since A×A ⊆ X ×X \ {(a, c)} and scl(A×A) = X ×X.

(ii) If p is the projection mapping from X ×X onto X, then p−1(A) is not sg-closed
in X ×X, i.e., the projection map need not be always sg-irresolute.

(iii) We already noted that if f : (X, τ) → (Y, σ) is open and continuous, then the
preimage of every nowhere dense subset of Y is nowhere dense in X. There is no similar
result for hsg-closed sets. If σ denotes the indiscrete topology on X, then S = {a, b} is
hsg-closed in (X,σ) but q−1(S) is not hsg-closed in (X,σ)× (X, τ), where q denotes the
projection mapping from (X,σ)× (X, τ) onto (X,σ).
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The following result shows when the inverse image of a hsg-closed set is also hsg-
closed. Recall that a function f : (X, τ) → (Y, σ) is called almost open if the image of
every regular open set is open. We say that f : (X, τ)→ (Y, σ) is anti-δ-open if the image
of every nowhere dense singleton is nowhere dense. Observe that if Y is dense-in-itself
and TD (= singletons are locally closed, i.e. the intersection of an open and a closed
set), then any function f : (X, τ) → (Y, σ) is always anti-δ-open; in particular every
real-valued function is anti-δ-open.

2.6. Proposition. If f : (X, τ) → (Y, σ) is an almost open, continuous, anti-δ-open
surjection, then the inverse image of every hsg-closed set is hsg-closed.

Proof. Let B be hsg-closed in Y and set A = f−1(B). If for some nowhere dense
singleton {x} of X we have x ∈ int(cl(A)), then f(x) ∈ f(int(cl(A))) ⊆ int(f(cl(A))) ⊆
int(cl(f(A))) = int(cl(B)). Since {f(x)} is nowhere dense in Y , B is not hsg-closed. By
contradiction, A is hsg-closed. ¤

2.7. Remark. (i) Let A be an infinite set with p 6∈ A. LetX = A∪{p} and τ = {∅, A,X}.
We observed in [7] that X × X contains an infinite nowhere dense subset, so even the
finite product of sg-compact spaces need not be sg-compact.

(ii) It is rather unexpected that the projection map fails to be sg-irresolute in general,
since it is always irresolute and gs-irresolute.

The two examples of infinite sg-compact spaces in [7] and the infinite sg-compact
space from Example 2.1 are not even weakly Hausdorff (however one of them is T1). As
every hereditarily compact kc-space must be finite, it is natural to ask whether there
are any infinite sg-compact semi-Hausdorff spaces (there do exist infinite hereditarily
compact semi-Hausdorff spaces). Recall here that a topological space (X, τ) is called
semi-Hausdorff [13] if every two distinct points of X can be separated by disjoint semi-
open sets.

Recall additionally that a space (X, τ) is called hyperconnected if every open subset of
X is dense, or equivalently, every pair of nonempty open sets has nonempty intersection.
In the opposite case X is called hyperdisconnected. If every infinite open subspace of X
is hyperdisconnected, then we will say that X is quasi-hyperdisconnected. Note that not
only Hausdorff spaces but also semi-Hausdorff spaces are quasi-hyperdisconnected (but
not vice versa).

2.8. Proposition. Every quasi-hyperdisconnected sg-compact space (X, τ) is finite.

Proof. Assume that X is infinite. Let U and V be disjoint non-empty open subsets of
X. Note that either X \ U or X \ V is infinite. Assume that X \ U is infinite. Since
cl(U)\U is hsg-closed (in fact even nowhere dense), by Lemma 1.3, cl(U)\U is finite and
hence X \ cl(U) is infinite and open. Set A1 = U . Since X is quasi-hyperdisconnected,
proceeding as above, we can construct an open subset of X\cl(U) and hence of X, say U2,
such that the complement of the closure of U2 in X \ cl(A1) is infinite. Using the method
above, we can construct an infinite pairwise disjoint family A1, A2, . . . of non-empty open
subsets of (X, τ). Since sg-compact spaces are semi-compact and thus satisfy the finite
chain condition, X must be finite. ¤

2.9. Corollary. Every sg-compact, semi-Hausdorff space is finite.

We have just seen that under some very low separation axioms, sg-compact spaces
very easily become finite. If we replace the weak separation axiom with a weaker form
of strong irresolvability, we again have finiteness. By definition, a nonempty topological
space (X, τ) is called resolvable [10] if X is the disjoint union of two dense (or equivalently
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codense) subsets. In the opposite case X is called irresolvable. A topological space (X, τ)
is strongly irresolvable [8] if no nonempty open set is resolvable.

2.10. Proposition. Every sg-compact space (X, τ) which is the topological sum of a
locally indiscrete space and a strongly irresolvable space is finite.

Proof. We will use a result in [9] which states that a space is finite if and only if every
cover by β-open sets (i.e., sets which are dense in some regular closed subspace) has a
finite subcover. If U is a cover of X by β-open sets, then by [4, Theorem 2.1] every
element of U is sg-open. Since X is sg-compact, U has a finite subcover. This shows that
X is finite. ¤

We already mentioned in Remark 2.7 that the product of two sg-compact spaces need
not be sg-compact. Thus we have the natural question: When is the product of two
sg-compact spaces also sg-compact? What turns out is that only in one very special case
the product of an sg-compact space with another sg-compact space is also sg-compact.
First we note a result whose proof is easy and hence omitted.

2.11. Proposition. Let (Xα, τα)α∈Ω be a family of pairwise disjoint topological spaces.
For the topological sum X =

∑

α∈ΩXα the following conditions are equivalent:

(1) X is an sg-compact space.
(2) Each Xα is an sg-compact space and |Ω| < ℵ0.

2.12. Lemma. Let (X, τ) be any space and let (Y, σ) be indiscrete. Let A ⊆ X × Y and
let p : X × Y → X denote the projection. Then int(cl(A)) = int(cl(p(A)))× Y .

Proof. If (x, y) ∈ int(cl(A)), there exists an open neighbourhood Ux of x such that
Ux × Y ⊆ cl(A). Then x ∈ Ux ⊆ cl(p(A)) and so (x, y) ∈ int(cl(p(A)))× Y .

Now, let x ∈ int(cl(p(A))) and y ∈ Y . Choose an open set Ux ⊆ X containing x

such that Ux ⊆ cl(p(A)). We claim that Ux × Y ⊆ cl(A). Suppose there is a point
(x′, y′) ∈ Ux × Y not in cl(A). Then there exists an open set Wx′ ⊆ Ux containing x′

such that (Wx′ × Y ) ∩ A = ∅. Consequently, Wx′ ∩ p(A) = ∅, a contradiction. Hence,
(x, y) ∈ int(cl(A)). ¤

2.13. Theorem. If (X, τ) is sg-compact and (Y, σ) is finite and locally indiscrete, then
X × Y is sg-compact.

Proof. Since Y is a finite topological sum of indiscrete spaces, by Proposition 2.11 it
suffices to assume that Y is indiscrete. Suppose that A ⊆ X × Y is hsg-closed. If A

is infinite, then p(A) is infinite. We claim that p(A) is hsg-closed in X. Otherwise,
N(X)∩ int(cl(p(A))) 6= ∅. If one picks any x ∈ N(X)∩ int(cl(p(A))) and any y ∈ Y , then
{(x, y)} is nowhere dense in X × Y . By Lemma 2.12, (x, y) ∈ N(X × Y ) ∩ int(cl(A)), a
contradiction to the hsg-closedness of A. Thus p(A) is hsg-closed in X. Again, this is
a contradiction, since X is sg-compact. This implies that A must be finite. Therefore,
X × Y is sg-compact. ¤
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