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Abstract

This work studies the fourth-kind integral equation as a mixed system of first and second-
kind Volterra integral equations (VIEs) with constant delay. Regularity, smoothing prop-
erties and uniqueness of the solution of this mixed system are obtained by using theorems
which give the relevant conditions related to first and second-kind VIEs with delays. A
numerical collocation algorithm making use of piecewise polynomials is designed and the
global convergence of the proposed numerical method is established. Some typical numer-
ical experiments are also performed which confirm our theoretical result.
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1. Introduction

In this paper, we analyze the numerical solution of mixed system of first and second-kind
Volterra integral equations with (constant) delay 7 > 0, given by

{ y(t) = f(t) + (vny)(t) + (n122)(8) + (vrn1y) (t) + (vr122)(8),  te,
(1.1)
0=yg() + (v21y) (1) + (v222) (1) + (vr21y)(t) + (vr222)(t), €,
where I := [0,7] and the Volterra integral operators vy, and the delay integral operator
v,k are given by

I/klw / Kkl t 8 d

t—1

A

(Vrgw)(t) = Ky (t,s)w(s)ds, k,l=1,2, tel,
0

y(t) = o(t), =2(t) =), tel[-T,0).
Also, y,f : I — RU, zg: 1 = R2 ¢ :[-7,00 = R o : [-71,0] — R Kp(.,.),
Ki(.,.) € L(R%), Ki5(.,.), Ki2(.,.) € L(R%, Rdl) Kn(.,.), Kai(.,.) € L(R™ R%) are

with
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continuous functions and L(.,.) is the linear transformation space.

The Volterra equations with delays are encountered in physical and biological modeling
processes [2,12]. A historical survey of mathematical models in biology, which can be
described by Volterra integral equations with constant delays has been presented in the
monograph [6].

The numerical solutions of delay integral equations have been investigated by many
authors (see, for example, [1,3-7,10,11,16,17,19]). To the lest of our knowledge, numerical
analysis of mixed system (1.1) is new in the literature and there are a few available results
which investigate these systems numerically. Bulatov et al. [8,9] considered the integral
equation

A(t)a(t) = /t;K(t, s)z(s)ds = f(t), tel,

with initial value
x(t) =2(t), te[-70).

Here, A(t) and K (t,s) are sufficiently smooth n x n-matrices, 7 > 0 is a known constant
and detA(t) = 0. Sufficient conditions for the existence and uniqueness of a continuous
solution of this system were given. For more details see [8,9] and reference therein.

Here we propose the numerical solution of the mixed system (1.1) based on piecewise
polynomial collocation methods that construct collocation solutions in a certain polyno-
mial spline space S;1 | (Qx), where Qy represent a uniform partition of I. This is a linear
space of discontlnuous polynomial spline functions of degree m — 1 whose dimension is
Nm [6]. The succeeding sections of this paper are organized as follows. In section 2,
we investigate regularity, smoothing properties and uniqueness of the solution of system
(1.1). In section 3, the collocation method based on piecewise polynomials is applied for
solving system (1.1) numerically and the global convergence of this method is established
in section 4. The paper concludes in section 5 by illustrating the efficiency of the method
on some numerical examples.

2. Regularity and smoothing properties of solution

Consider the semi-explicit system (1.1) and let |det(Kaa(t,t))| > ko > 0, Vt € I. By
differentiating the second equation of (1.1) with respect to ¢, substituting for y in the
resulting equation using the first equation and applying some elementary manipulations,
we get

26) = 50 + (Fay)(O) + (7222) (1) + (raxp)(®) + (7r222) 1) o
F Ko (tt —T)y(t — 7) + Koo(t,t — 7)z(t — 7), '

where
3(t) = Ka'(t:0)(9' () + Kai (8,6) (1)),
(ZEnS) | g (1K (8 y(s)ds),

( Kot
(2)(1) = Ko (1, ) /0 (Zéi’s)+Kgl(t,t)Klg(t,s))z(s)ds),
e = ([ (2B ke ), FP
)= K 0 [ (P 5 Kar(t,0R1a(t,9))()d5),

Kor(t,t—7) = Ky (t,0) Ko (1, —7),
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Equation (2.1) together with the first equation of (1.1) are the same as the second kind
Volterra integral equations with constant delay given by

y(t) = f(t) + (rny) () + (1122) () + (wrny)(t) + (17122) (1),

2(t) = () + (Paay) (£) + (222)(8) + (o) (£) + (Fr22)(2) (2:3)

+ Kot t — )yt —7) + Kaop(t, t — 7)2(t — 7).
The solution of system (2.3) is continuous at ¢ = 0 only if the initial functions are such
that

60)= 70 ~ [ Rin(0.9)6()ds — [ Kin(0,5)(s)ds,
0 _ 0 _ (2.4)
o0 =5(0) ~ [ En(0.5)0()ds — [ Kn(0.9)p(s)ds

-7 -7

+K21(0, —7)¢(—7) + Ko2(0, —7)ip(—T)
where K51(0,5) = Ky, (0,0)K21(0,0)K11(0,5) + 2521(0,5) and K2 (0,s) = K55'(0,0)

K21(0,0)K15(0, s) + agt” (0,8). The conditions of existence and uniqueness of solutions
related to the mixed system (1.1) can be investigated by considering the system (2.3) and
theorems about existence and uniqueness of the solution of second-kind Volterra integral
equations with non-vanishing delay (see [6, Theorem 4.1.1]). Note that using differentia-
tion, we reduce system (1.1) to a regular system of integral equations of the second-kind.
However, this reduction to a second-kind Volterra system is not practical from a numerical
point of view.

3. Numerical method

Let 0 = tg < t; < --- < ty = T be a uniform partition of I := [0,7], such that
tn = TLh,TL = O,...,N and QN = {to,tl, te ,tN = T}, g «— [to,tl], Onp = (tnatn—i-l] (1 S
n < N —1). The mesh Qy is assumed to be constrained( i.e, h = T for some r € N ).
Consider the set of collocation parameters {cj};?“zl, where 0 < ¢ < --- < ¢ < 1, and
define the set Xy = {t, ; = t, + ¢;jh} of the collocation points.

Definition 3.1. For a given mesh 2y the piecewise polynomial space Sﬁd) (Qn), with

pw>0, =1 <d< pis given by
SO(Qy) == {w € CUI) s wly, €, 0<n < N — 1}

Here, 7, denotes the space of (real) polynomials of degree not exceeding p and C4(I) as
the set of all the functions on I, which together with their derivatives of orders up to d.

It is readily verified that S,Sd)(Q N) is a (real) linear vector space whose dimension is given
by dim SY(Qn) = N(u — d) + d + 1.

The collocation solution u,v € Sf{_lg(QN), (b =m—1,d = —1) to equation (1.1) is then
given by

u(t) = f(t)+ /Ot Kq1(t, s)u(s)ds + /Ot Kia(t, s)v(s)ds

t—1 t—1

A

+ ; Ki1(t, s)u(s)ds + A Klg(t,s)v(s)ds,
(3.1)
0= g(t)+ /0 Ko (¢, s)u(s)ds + / Kan(t, s)o(s)ds

+ Koy (t, s)u(s)ds + Koo (t,s)v(s)ds, t € Xn,
0 0
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with

If t = t,; is such that ¢, ; — 7 = t,,—,; <0, the values of u,v are determined by the given
initial functions. On each subinterval o,,, the approximations u, v are the polynomials of
degree m — 1 and can be expressed in the form

u(tn + ph) = i (3.2)
ot + 90) = 3" Vs L5(0), (33)
j=1

where U, j = u(ty, + ¢jh),V, j = v(t, + ¢;h) and L;(p) represents the Lagrange canonical
polynomials for the collocation parameters {c;}. Let us apply the change of variable
p=I(s—ti)/h, (i=0,..,n),and insert (3.2), (3.3) into system (3.1). There are two cases
that we deal with separately.

Case I: If n —r < 0, then

n—1 m

Un,j = f(tn,j)+hzz / K1 (tn,j, ti + ph) Ui Li(p )dp)
—0 k=1
n—1 m 1
=3 / K12(tn,j7tz'+Ph)Vi,kLk(/0)dp>

i=0 k=1 0

m Cj
0 Y ([ Kusltugstu + o) Uni Li(p)dp)
k=1

—+

h Z (/cj K12(tn7j, tn + ph)Vn’kLk(p)dp)

k=

S / R11(tn gt + ph)o(t; + ph)dp)

'Lnr+1

._\
—~
«
.
N~—

_h Z /Ku bugoti + ph)p(t: + ph)dp)

1= n r+1
—h Kll(tn,ja tnfr + ph)¢(tnfr + ph)d

Cj

]
_h/ K12 le7 n 7‘+ph) (n r‘FPh)dPa
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n—1 m

0= tn,J +hzz / K21 tnjat1+ph)Uszk( )dp)

=0 k=1
n—1 m

+h Z Z (/1 Koo(tn,j, ti + Ph)Vi,kLk(P)dP)

=0 k=1 0

3

Q

N tn + ph)Un,kLk (p)dp)

+h
k=1

3

+

h (/ K22 tn,jatn+ph)v kLk:( )dp)
k=

n Z /Km (tujiti + ph)O(t: + ph)dp)

znr+1

i

—
o«
(@)

~~

oy /K (bn gs i + P)@(t: + ph)dp)
= n r—+1

—h K21(tn,ja tn—r + ph)¢(tn—r + ph)dp
¢j

1
_h/ K22(tn7ja tp—r + ph)@(tn—r + ph)dp.
cj
Case II: If n — r > 0, then

n—1 m

Ung = Fltag) +h 3> /Ku tnjsti + ph)Ui i L (p)dp)
=0 k=1
1

n

m 1
#0303 ([ Kuatagoti + o) VinLa(p)dp)

1 0

0 k

+h ( 11(tnj tn + pR)Up ik Li(p )dp)
k

(

-1

[Msi MSWM

K
0 KlQ(tn,ja tn + ph)Vn,kLk(p)dp)

\\

h

—+

3 >
|l
=S =

(3.6)

3

L
(]

i1 (tn,j, ti + Ph)Ui,kLk(p)dp)

@
Il

=)

e

i
I
L
SN

/ K
1 A
(/0 Ki2(tn,j, ti +Ph)Vi,kLk(P)dﬂ)

L
(]

e
Sl

1
J A
Kll(tn,ja tn—r + Ph)Un—r,kLk:(P)dP)

Cj

Jj
K12(tn]7 tp—r + Ph)anr,kLk(P)dP)a

_l_
>
NGER
o

£
Il
—

+
>
[
Y

c\oQ

e
Il
—
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0= ,] ZZ / K21 n]at +ph)U kLk( )dp)

=0 k=1
n—1 m

+h Z Z (/01 Koo (tnj,ti + Ph)Vz‘,kLk(P)dP)

=0 k=1

+h

WE

Cj
/0 KQl(tmj;tn + Ph)Un,kLk(p)dp)

i

1

+
>
NE
/N

Cj
/O K22(tn,ja tn + ph)Vn,kLk(p)dp)

3 >
|l
e
L

~—~
@
BN |
N—

L
]
Ms

/K21 tn]ytz+l)h szk dp)

@
Il
| ©
>
Il
—_

+
>
Ms

i
1

/K22 (tnj>ti + ph)VikLi(p dﬂ)

<)
b
> |

1
Cj

3

+h K21( n,j» tn— r+ph) n— Tk’Lk: dp)
k

1 0
m

—|—hz / K22 tnjatn T+Ph)vn rkLk( )dp)
k=1

Approximating the integrals in the obtained system by using appropriate quadrature
rules

ci m 1 m 1 m 3
/O w(s)m;aijw(q), /OW(S)%;bjw(Cj)v /c w(S)%;az’jw(Cj)

1 Cyq 1
where a;; = / Li(p)dp, a;j = /0 Li(p)dp, bj = /0 Lj(p)dp. For n such that n —r < 0,

we get

n—1
U,= £, +KiuU, +KppV, + Z (Klliﬁi + KlQiVi)
B i=0
- Y (Kud + Kii®) — Kud,, — Koy
i=n—r+1 . (3.8)
0= g,+KxU,+KnV,+ Z (K21:U; + Koo, V)
B i=0
— Y (Koud; + Koai®i) — Kar¢,, — Kooy
i=n—r+1
and for n such that n —r > 0, we have
N — - —_ n—l — —
U,= f,+K U, +K;2V, + (K11:U; + K12, Vy)
nor1 ::0 R
+ (K11,U; + K12, Vi) + K11Upy + K12V,
=0 1 (3.9)
0= g,+KnU,+KxnV,+ Z (K21,U; + Koo, V)
n—r—lAiA:OAi o
+ (K21, U; + Koo Vi) + Ko1 Uy + Koo Vo,
i=0
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where

G = (0ti+ cih),.. 0t + cuh)) 7= (p(ti+e1h)s . plti +ch))

U, = (Uiﬁl,...,Ul-,m)T,Vz- - (V1 N .,v;,m)T,

and
_ T T
£, = (f(tn,l)a S f(tn,m)> ) gy = (g(tn,l)a e ag(tn,m)) )
Ky, = {thq(tn,iv tn,j)aij}%:h Kpgi = {hbleq@n,kv ti,l)}ﬁzlv
prq = {thq(tn,ivtn—m)aij}%‘:lv Kpgi = {hbleq(tn,kvti,l)}Elzlv
qu = {thq(tn,iy tn—nj)aij}??j:lv p,g =12,

The collocation approximations (3.2) and (3.3) are obtained by solving the linear sys-
tems (3.8) and (3.9) on each subinterval o,, n=0,--- ,N — 1.

4. Convergence

In this section, based on the interpolation error, we analyze the collocation error, and
deduce the global convergence result below.

Theorem 4.1. Assume that the given functions in (1.1) for D = {(t,s) : 0 < s <
t < T}, and D = I x [-1,T — 7| satisfy f € C"(I),¢,p € C’m([ ,0)), K11, K12 €
Cm(D),KH,Klg S Cm<D7—), g € Cm+1( ) KQl,KQQ S Cm+1(D) KQl,KQQ S Cm+1(D )
and | Koo (t,t)| > ko > 0, Vt € I. Let (u,v) € S;.' | (Qn) be the collocation approzimation of
the solution (y, z) in equation (1.1) which is deﬁned by (3.2) and (3.3). If (0 < ¢y, < 1), the
collocation approximation u converges to the solution y for —1 < X <1 and the following
order of convergence holds:
|y — ulloc = O(R™).

If ¢,, = 1, the collocation approximation v converges to the solution z, and if ¢, < 1,

the collocation approximation v converges to the solution z for any m > 1 if and only if

—1<A=(-D"]]

Furthermore, the following order of convergence holds:

o _ O(hm)v Zf A€ [*171)3
HZ UHOO - { O(hm_l), if A=1, (4'1)
as h — 0 with Nh < const.
Proof. The exact solutions y and z satisfy
(m) m
y(tn + ph) = ZL Yo +1(p), malp) = hmyTn!n(p) -Hl(p - ci),
(4.2)

m

U Z(‘"L) n
Z(tn +ph) = Y Lij(p)Zn; + sn(p), snlp) =hm=—2 H( —¢i),
j=1

where Y, ; = y(t, + ¢jh) and Z, j = z(t, + c¢;jh). It follows that the errors e = y — u and
€ = z — v have the representation

n(tn +ph) =Y Li(p)en(tn;) + O(R™), (4.3)
7j=1
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m

n(tn +ph) = Li(p)en(tn;) + O(R™). (4.4)
j=1

where e, = ¢e|,, and €, = €|5,. The errors also satisfy

tn,j tn,j
en(tnj) = ; Ki1(tn,j, s)en(s)ds + ; Kia(tn,j, s)en(s)ds
tn,]’ T . tn,j_T A~
—1—/0 Kii1(tnj, s)en(s)ds + /0 Kia(tnj, s)en(s)ds,
(4.5)
tn,j tn,j
0= 0 KQl(tn,j, s)en(s)ds + 0 K22 (tn,ja S)En(S)dS,

tn,j—T . tni—T L
4 / " Ror(tn g, 8)en(s)ds + / " Ran(tn g, 8)en(s)ds.
0 0

Ift,; —7 <0, then

n—1 r1
en(tn,j) = h lzo ; (Kll(tn,j7 t; + sh)el(tl + Sh) + Klg(tnyj, t; + Sh)el(tl + Sh))ds

+h/ ’ (K11(tn,j, tn + sh)en(tn + sh) + Kia(tn,j, tn + sh)en(ty, + sh))ds,
0

n—1 rl1
0= h > (KQl(tn,jy t; + sh)el(tl + Sh) + Kgg(tnyj, t; + Sh)el(tl + Sh))ds
=040

+h / " (Ka1(tng, tn + $h)en(tn + sh) + Koa(tnj, t + sh)en(tn + sh))ds.
0

(4.6)

Considering (4.6) and using a similar procedure as outlined in [18] (see section 3 of

[18]), we can obtain the estimates of the error stated in the theorem. Now let ¢, ; —7 > 0.
Then from (4.5), we have

n—1 r1
en(tmj) =h ) / (Kll(tn’j,tl + sh)e;(t; + sh) + Klg(tn’j, t + sh)e(t; + Sh))ds
_ I=0 J0
+h/ " (K11 (tn g, tn + sh)en(tn + sh) + K1a(tn s, b + sh)en(tn + sh))ds
+h Z / tnj, t; + sh)el(tl + Sh) + Ku(tnj,tl + Sh)ﬁl(tl + sh))ds

+h/ (Kll( ", tn—r + Sh)en—r(tn—r + Sh) + KIQ(tn,jv tn—r + Sh)fn—’r(tn—r + sh))ds,
0
(4.7)

0=nh Z (Kgl(tnj,tl + sh)e(t; + sh) + KQQ(tnj,tl + Sh)el(tl + Sh))ds

+h/ (K21( wivtn A+ sh)en(tn + sh) + Koa(tn s tn + sh)en(tn + sh))ds,
0

+h Z / (Kgl(tmj, t; + sh)ey(t; + sh) + Rgg(tmj, t+ sh)e(t; + Sh))ds
=0 0

+h / " (Rot(tnjs tacr + sh)en—r(tnr + sh) + Koa(tn i tnr + sh)en_y(tn_r + sh))ds.
0
(4.8)



82 S. Pishbin, P. Darania

We now rewrite (4.8) with n replaced by n — 1 and j = m, subtract this equation from
(4.8) and divide by h, to obtain

/ " (Kot (tus tn + sh)en(tn + sh) + Kon(tnj, tn + sh)en(tn + sh))ds =
" <K21(tn—1,ma tn—1+ Sh)en—l(tn—l + Sh) + K22(tn—1,m; tp—1+ Sh)en—l(tn—l + Sh))ds
0
n—1 r1

_ z;) A (K21 (tn,j, ti + sh)ei(t; + sh) + Koo (tn j, t1 + sh)e(t; + sh))ds
+7:§/01 (K1 (tne1m ty + sh)ey(t + sh) + Koo (ta—1.m, t1 + sh)e(t, + sh))ds
_nlf%)l /01 (Koi(tn g, t1 + sh)ey(t; + sh) + Koa(tnj, ty + sh)e(t; + sh))ds
+nl—z7’;2 /01 (Ko1(tn—1.m,t1 + sh)ei(t; + sh) + Kaa(tn_1.m, t; + sh)e(t; + sh))ds

(K21(nj7 n— r+5h)€n 7’( n— r+5h)+K22( n,j9 tp— r+5h)€n r(n r+5h))d

|
\@..

+/ K21(tn lmytn 1— r+8h)€n 1— r(tn 1— r+5h)

+K22( n— lma n—1— r+3h)€n 1— r( n—1— r+5h))d
(4.9)
Now, without loss of generality, we consider the following two cases:
Case I. If ¢;, = 1, then for j =1, ---

qu( n],tl +Sh) pq(tn 1m7tl —I—Sh)

— ¢ hK gy (tns ty -+ 5h) + (1 — o)A gt (b t1 + sh) + O(h),

R R (4.10)
qu(tnij’ t; + Sh) — qu(tn—l,my t —i—ASh)

= cjhKpqi(tn, t1 + sh) + (1 — em) WK pg i (tn, tr + sh) + O(h), p,q=1,2,

0
where Kpg:(,) = —P% and the unspecified first arguments in the partial derivatives

of K,q,p,q = 1,2, are those arising in the Taylor’s remainder terms. Using (4.10) and
inserting (4.3), (4.4) into equations (4.7), (4.9), the following linear system can be derived

n—r—1
=0 =0

€n

where E,, = ( En ) ,en = (e(tn1), ... eltnm))T, and e, = (e(tn1), ..., e(tam))” , and

A(n’n) _ ( I — h(K{;llvn) _h[({gb;n) )
K21’ I(ZQ7

n,l n,l n,l n,l
w_(%; @m o= (0 )
‘B217 ‘8227 C'2 022’

TLTLT

(n n—r) hkfg,n—r)
K(n n—r) _Ké;z,n—r) ’

such that for p,q=1,2

K(n”)_ (/ Pq ’I’L]yt +ph)L ( )dp )7

jk=1---,m
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SN
frnn—r) _ ( / Kpq(tng, tn—r +Ph)Lk(P)dP )
rq - 0 . )

B — (/ Kot 14 >dp)

pq
5, k=1,-
1 9K,
= (n ¢ tusts + ph) Li(p)d
BinD = /0]875( 1+ ph)Li(p)dp )
]7k:17"'7m

rq .
]7k:1>"'7m

1 A
o) _ ( /0 Kpq(tnj, ti + ph)Li(p)dp ) ’

1 8Kqu
~(n i——(tn,t; + ph)L d
J,k=1---'m

Since |(Ka(t,t))| > ko > 0, the inverse of the matrix A(™™) exists and is bounded if A
is sufficiently small. It then follows from (4.3), (4.4) and Gronwall’s inequality that
lenlloo = O(R™),  llen]loo = O(R™).

CaseIl. ¢, <1
In order to describe the key ideas without having to resort to complex notation, we can
assume that Kss(t,s) = 1 or we can employ the Taylor series expansion Koo as:

Kgg(tnﬁ',tl—l-sh) _KQQ(tn,tl)+O(h) (ZZO )
Using (4.10) and inserting (4.3), (4.4) into the equations (4.7), ( 9), we have
n—r—2
A(n,n)En — ]g(n,n 1) o1+ h Z B n, Z)El +h Z C nl
1=0 1=0 (4.12)

_‘_é(n,n—r—l)Eniril + D(n,n—r)EniT +O(h™),

where (i) ()
n,n n,n
A _ (1 hE —hEG
gt P
B(n,n—l) _ hK(n n—1) hK(n n—1)
KQl(tn latn I)S + O(h) Q ’

n,l n,l n,l n,l
o (5 252 - (1) 0 )
BQl’ BQQ’ 0217 022’

n,n—r—1 n,n—r—1
Gn—r=1) _ [ 0{1 : R C£2 :
Koi(tn—1,tn—1)S + O(h) Kaa(tn—1,tn—1)S + O(h)
with $ =T,,YT P —T,,b,
Im (11 T Tm_(oaoa"'vl)Tab:(b1>b27"'7bm)T

:(/ i ) QZ(—/;Lxs)ds),
i, 1, ij=1,--,m

5 e+ (1 O (1 11+ ph) Lu(p)d
B — /<cj+< — ) 252 bty + ) Li(p)dp

0 .
]7k:17"'7m

Y
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Prq

1 K,
gty — ([ e+ (1= ) G st + o) Ealp)dp
j7 k = 17 e ,m
It can be verified that the inverse of the matrix A (™™ has the form
~ B I+ 0(h) O(h)
A(n,n) 1_ !
( ) ( Kglnn) p-1 s

provided h is sufficiently small in which case we also have

A (nn)\—1H(nn—1) _ O(h) O(h)
(A8 D—(P45+mm P4Q+mm>'

According to Lemma 2.4.3 of Brunner [6], we know that P~(Q has a nontrivial eigen-
value as

(4.13)

Multiplying (4.12) by (A(”’"))_l, using the elementary theory of the difference equations
[13] and considering the nontrivial eigenvalue of P~1Q by (4.13), we can conclude with
the assertion (4.1) following the steps in [14, 18] with the help of Lemma 6 of [15]. O

5. Numerical Results

In this section, we illustrate the theoretical results obtained in the previous section

by the following two examples with 7 = % All computations are performed with the

Mathematica® software.

Example 5.1. Consider the mixed system of first and second-kind Volterra integral equa-
tions with constant delay given by

y(t) = f(t)+ /Ot sty (s)ds + /Ot(t + s)z(s)ds
+ /0t2 tsin sy(s)ds + /0t2 tsz(s)ds,

0= g(t)+ /Ot STy (s)ds + /Ot(s +t2 +1)z(s)ds (5.1)

P 1
+/ * sin sy(s)ds +/ ’ (ts+3)z(s)ds, te]0,1],
0 0

y(t) = sint+1,  z(t) = cost, te[-1,0),
where f(t) and g(t) such that the exact solution is:
y(t) =sint+1, =z(t) = cost.

Let (u,v) € S;,'1(Qn) be the collocation approximation of the solution (y,z) for the
equation in (5.1) which is defined by (3.2) and (3.3). Gauss points (i.e., the zeros of
P, (2s — 1) in which P,, denotes the Legendre polynomial of degree m) are chosen as
collocation parameters. Orders of convergence from the maximum errors at the grid points
have been reported in Table 1 which confirm the theoretical results of Theorem 4.1. The
error behaviors related to the spline collocation method for the different values of m and
N in Examples 1 are shown in Figures 1 and 2.
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Remark 5.2. Note that for the Gauss points as collocation parameters, we have ¢,;, < 1
and A =1 (if m is even), A = —1 (if m is odd). Also, the order of convergence p defined

as follows

||6NHOO
=1 — ).
b= ok (Hezszoo)

Example 5.3. Consider the mixed system with constant delay given by

t—1

AX(t)= F(t)+ /Ot K(t,s)X(s)ds + ’ K(t,s)X(s)ds, tel0,1],

0
X(t)= (e ' t+1),cos(t+1),eHT, te[—%,()),
where
1 00 s—t t4+s+2 s+t
A= 01 0], K(,s)=| s+t sint+1) s+t |,
000 1+4t2 cost estt
st 341 1+t
K(t,s)=| 25 (t+1) s+t+1 |, X(t)=(x(t),yt), () )",
te® coss esStit2

F(t) = (f(t),9(t), h(t))T such that the exact solution is:
z(t) =ef(t+1), y(t)=cos(t+1), z(t)=e"

(5.2)

Let u1,u2, v be the approximation of the exact solutions x, y, z, respectively. The spline
collocation method has been implemented for system (5.2)and the orders of convergence

have been reported in Table 2.

5.1. Figures and Tables

100 [-u]

Figure 1. Point-wise absolute errors of y with m = 2 in Example 1 (left). Point-

wise absolute errors of z with m = 2 in Example 1 (right).
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Figure 2. Point-wise absolute errors of y with m = 3 in Example 1 (left). Point-
wise absolute errors of z with m = 3 in Example 1 (right).

U v
m N=16 N=32 N=64 N=16 N=32 N=64
2 1.91 1.95 1.97 0.94 0.97 0.98
3 2.97 2.98 2.99 2.94 2.97 2.98
Table 1. Orders of convergence of v and v in Example 1.
Uy U2 v
m N=16 N=32 N=64 N=16 N=32 N=64 N=16 N=32 N =064
2 2.68 2.53 2.03 1.95 1.98 1.99 0.86 0.93 0.97
3  3.76 3.46 3.03 3.15 3.09 3.04 2.97 2.98 2.99

Table 2. Order of convergence of u1,u2 and v in Example 2.
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