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1. Introduction

['-Hilbert space plays an important role in generalization of general linear quadratic control problems
in an abstract space [1] which was motivated from the work of L.Debnath and Pitor Mikusinski [8] but
there not enough literature found to study about the unbounded operators in I'-Hilbert space. The
definition of I'-Hilbert space was introduced by Bhattacharya D.K. and T.E. Aman in their paper “T'-
Hilbert space and linear quadratic control problem” in 2003 [9]. Further development was made in 2017
by A.Ghosh, A.Das and T.E. Aman in their research paper [1]. In [6] S.Islam and A.Das discussed about
the properties of bounded operators in I'-Hilbert Space. Boundedness of an operator is a great tool to
elaborate I'-Hilbert Space. We often deal with operators which are not bounded. In this paper, we will
briefly discuss the concept, methods and theory of unbounded operators in I'-Hilbert Space. In this
paper, after consulting the main author, we have made some changes in the main definition of I'-Hilbert
space [9].

First, we recall the definitions of I'-Hilbert Space.

Definition 1.1. Let E be the linear space over the field F and I be a semi group with respect to addition.
A mapping(.,.,.>E XI'XE - F(Ror C) is called a I'-Inner product on (E, ') if

(i) (.,.,.)is linear in first variable and additive in second variable.

(ii) (w,y,v)=(v,y,u)Vu,ve Eandy €T.

(i) (wyu>0vu=0.

(iv) (u,v,u) = 0 if at least one of u, y is zero.
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[(E,1),{.,.,.)] is called a T-inner product space over F.
A complete I'-inner product space is called I'-Hilbert space.

Using the I'-inner product, we may define three types of norm in a I'-Hilbert space, namely (i) y-norm
(ii) Tjpe- norm and (iii) I'-norm.

Definition 1.2. Now if we write ||u||y2 =(u,y,u), for u€ Hand y € T then IIuIIV2 satisfy all the
conditions of norm.

Definition 1.3. If we define ||ully, . = inf {|[u|l, : ¥ € T}. Clearly I'j s-norm satisfy all the conditions of
the norm foru € H.

Definition 1.4. If we write ||u|lp ={|[ull, : ¥ € T’} then this norm is called the I'-norm of the T'-Hilbert
space.

Definition 1.5. Let L be a non-empty subset of a I'-Hilbert space Hy . Two elements x and y are said to
be y-orthogonal if their inner product (x,y,y) = 0.In symbol, we write x L, y.

2. Basic Concepts

In this section, we briefly discuss about the definition of densely defined operator and the adjoint, self-
adjoint, symmetric etc of that operator. Also, related examples and theorem are mentioned in this part.

2.1. Extension of operators
Let S and T be two operators in a vector space E. Dg and Dt are the domains of S and T respectively. If

Dgc Dt and Sx =Tx for every x € Dg

then T is called an extension of S and we write Sc T.

2.2. Densely defined operator

An operator T defined a linear map T from a subspace of Hy to Hy is called an operator in Hr- and the
subspace denoted by D, is called the domain of T. Now an operator T is defined in a normed space E is
called densely defined if its domain D is a dense subset of E , that is cI Dy =E.

Example 2.2.1. The differential operator %is densely defined in L?(R), because the subspace of

differentiable functions is dense in L(R)? .

Theorem 2.2.2. Let T be a densely defined operator in a I'-Hilbert space Hr- and let E be the set of all y €
Hr for which (Tx, y, x) where y € T is a continuous functional on Dy . There exists a unique operator S
defined on E such that

(Tx,y,x) =(x,y,Sy) forallx € Drandy € E.

Proof: For any y € E , consider the functional f,,(x) = (Tx,y,x) where y € I'. Being continuous on a

dense subspace of Hr, has a unique extension to a continuous functional fy on Hr.
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By Riesz representation theorem, there exists a unique Z, € Hr such that fy(x) =(x,y,Zy) V x € H.
Now if we define S(y) = Z,,, then we will have
(Tx,y,%) = f,(x) = £,(x)
=(x,7, Zy)
=(x,y,Sy)forallx e Dy,y€Eandy €T.
Also the linearity of S is obvious.

2.3. Adjoint of densely defined operator
Let T be an operator which is densely defined in a I'-Hilbert space Hy. The adjoint T* of T is the operator
defined on the set of all y € Hf- for which (Tx, y, x) where y € I is a continuous function on Dt and such
that

(Tx,y,x) =(x,y,T*y)forallx € Drand y € D~

Example 2.3.1. Let C!,(R) denote the space of all continuously differentiable functions on R. This is also
a dense subspace of L?(R). Now consider the differentiable operator D which defined on C*,(R). Since

(Dx,y,y) = [, (%X(t)) yy(@© dt

== fjooox(f)(% y())ydt forall yerl.
~ (Dx,y,y) is a continuous functional on C1,(R).
Moreover,

(Dx,y,) = — [0 x(®)(5 y(©O) v dt .

© d
= [_ox(®) (- v(®) v dt.
Here it is not correct to write D* = —D , since the domain of D* is not C1;(R) .

2.4. Self —adjoint of densely defined operator
Let T be a densely defined operator in a I'-Hilbert space Hr. Then T is called self-adjointif T = T*.

Note.T = T" implies that Dy+ = Dy and T(x) = T*(x) forall x € D;.If T is a densely defined operator in
Hr which is bounded then T has a unique extension to a bounded operator in Hy. Then the domain of T
as well as its adjoint T*, is the whole space Hr-. If T is unbounded operators ,then T has an adjoint T*
such that T(x) = T*(x) whenever x € Dy N Dy« , but Dy« # Dy and thus T is not self-adjoint.

2.5. Symmetric Operator
We now consider a special kind of operator in I'-Hilbert space . An operator T which is densely defined
in I"-Hilbert space Hy is called symmetric if for all x,y € Dy, we have

(Tx,y,y) = (x,y,Ty) forally €T.

Itis clear that if T is symmetric, then (T (x),y,x) € R for every x € D; andy € I". Also, it follows that
a densely defined operator T is symmetric if and only if T* extends T. If T is symmetric and Dt = Hf-,
then T is in fact a bounded operator on Hy. This leads as follows,

LetE = {T(x) : x € Hr, I, < 1}. Then forafixed y € Hrandy € T', we have

KT (), v, ) = Kx, v, T
< x| Iy INT OO
< [IT)|| for all x € Hp with ||x||, llyll < 1.



S.I Islam et al. / IKIM/ 3(2) (2021) 1-8 4

Also clearly every self-adjoint operator is symmetric.

Example 2.5.1. Suppose we consider an operator A = % with the domain D, = { f € L?([a, b]) :

f'is continuous and f(a) = f(b) =0}.
Now, since for all y € I, we have

Af,v.9) = [Lif Oy g dt
= [P f@©y ig(® dt
= (f! Y, Ag)

(Af.v.9) = {f.v.Ag)
forall f,g € Dy, Ais symmetric.

(Af,v,g) is a continuous functional on D, for any function g continuously differentiable , no need to
satisfying g(a) = g(b).

Consequently, D4« # D, and A is not self-adjoint.

2.6. Closed Operator
Alinear operator T : E; — E, is said to be closed when the graph G(T) = {{x,y,Tx): x € Dy andy € '}
is a closed subspace of E; X E, thatis

X, €Dy, x, > xandTx, =y

implies x € Dy and Tx = y.

3. Main Results

Theorem 3.1. Let A and B be densely defined operators in a I'-Hilbert space Hr.
(@) IfAcB,then B*c A*.
(b) If Dg~is dense in Hy-, then B B** .

Proof. (a) Letus consider y € Dg+ and y € I'. Then as a function of x, (Bx, y, y) is a continuous functional
on Dg . Also (Bx,y,y) is a continuous functional on D, since DycDg .

Now, Bx = Ax for x € D, , so (Ax,y,y) is a continuous functional on D, . This proves thaty € D,- . Then
the equality A*y = B*y for y € Dp~ follows from the uniqueness of the adjoint operator.

(b) Letx € Dg.Thenforeveryy € Dg« andy € I' ,we have
(Bx,v,y) = (x,v,B"y)
It can be rewrite as
(B*y,v,x) =(y,7,Bx).
Since Dy is dense in Hf, B** exists and we have
(B*y,y,x) =(y,y,B™x)forally € Dg,x € Dg=andy €T.

Now, by the proof of (a), we can show that Dy D+ and B(x) = B**(x) for any x € Dg. Thus B B*™*.
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Theorem 3.2.If T is a one-to-one operator in a I'-Hilbert space and both T and its inverse T~ are densely
defined, then T* is also one- to-one and (T*)™! = (T~1)*.

Proof. Let y € D+ Then for every x € Dy-1 andy € I', we have T1x € D; and hence

(T™1x,y,T*x) =(TT 1x,y,y)
=(x,7,Y)-

This follows that T"y € D(g-1y-.
And also,
T Ty=TT ) y=y (3.1)
Now we take an arbitrary y € D r-1)- .Then for eachx € Dy andy € I', we have
Tx € Dp-1.
Hence
(Tx,y, (T™1)'y) =(T7'Tx,7,y) = (x,y) (3.2)

This shows that (T™1)*y € Dy«.And T*(T™1)*y = (T™T)*y = y.Now, from (3.1) and (3.2) it follows
that (T*)™1 = (T™1)*.

Theorem 3.3.If A, B and AB are densely defined operators in Hy, then B* A* = (AB)*.
Proof. Letx € Dyg and y € Dy« 4+ . Since x € Dy and A*y € Dp-, it follows that
(Bx,y,A*y) = {(x,y,B*A*y) forally €T.

On the other side, since Bx € Dy and y € D+, we have

(ABx,y,y) = (Bx,y,A"y) forally eT.
Hence

(ABx,y,y) = (x,v,B*A"y).

Since this holds forall x € Dyg ,wehavey € D(4p)-and (B* A")y = (AB)"y.Thisimplies, B* A" = (AB)".
Theorem 3.4. A densely defined operator T in a I'-Hilbert space Hr is symmetric if and only if T = T*.
Proof: Let us suppose T = T*. Since for all x € Dyand y € D+ we have

(Tx,v,y) =(x,y, T*"y)wherey €T’ (3.3)
Again we have

(Tx,y,y) =(x,y,Ty)forall x,y € Dy (3.4)
Thus, T is symmetric. If T is symmetric then combining (3.3) and (3.4) we can conclude T =T"*.

Corollary 3.5. If T is a densely defined symmetric operator, then T* is the maximal symmetric extension
of T.
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Proof. Let S be a symmetric operator in a I'-Hilbert space Hy such that T — S. Then by the Theorem 3.3,
we have

S*cT*.
Hence, Tc ScS*cT".
Theorem 3.6. If T is closed and invertible, then T~! is closed.

Proof. Let us suppose that graph of T that is G(T) is closed and G(T) = {(x,y,Tx):x € Dy andy € I'}.
Then obviously

G(T™Y) ={(Tx,y,x):x € Dy and y € I'}is closed.
Theorem 3.7. If T is densely defined operator, then T* is closed.

Proof: Ify,, € Dy+,y,, = yand A*y, —» z,thenforany x € D, & y € I' we have

(Ax,y,y) = lim(Ax,y,y,)
= lim (x,y, A"yp)
n—-oo
=(x,v,2)
Hence,y € Dy and Ay = z.
Note. If the given operator A is not closed then is it possible to extend A to a closed operator? Answer to
that problem is to use the closure of G(A4) in Hy X Hf- to define an operator. If closure of G(A4) defines

an operator, then extension of A is closed.

Theorem 3.8. Every symmetric and densely defined operator in I'-Hilbert space has a closed symmetric
extension.

Proof. Let A be a densely defined, symmetric operator in a I'-Hilbert space Hr . At first, we will show
that condition x,, € D, , x,, = 0, as Ax,, = y which implies that y = 0, is satisfied.

Let x, = 0 and Ax,, = y . Since A is symmetric then for all y € ' we have

v,v,2) = lim(Axn,y,2)
= lim(x,,y,Az)
n-0

=0, foranyz€D,.
This implies y = 0, as D, is dense in Hf.

Now we have that there exists a closed operator B such that G(B) = CIG(A) and hence A — B. We have
to prove that B is symmetric. If x, y € Dg , then there exists x,,, y, € D4 such that

X, = x , Ax, - Ax

and
Yo~y , Bx, - Bx.

Since A is a symmetric operator, we have

<Axn) Y, Yn) = (xn;y; Ayn> for all Yy € I.
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Then by letting n — oo, we have

(Bx,v,y) = {x,y,By).

Hence B is symmetric.
Theorem 3.9. Let T be a closed densely defined operator in a I'-Hilbert space Hy. Then

(a) For any v,w € Hr, there exist unique x € Dy and y € Dy suchthat T(x) + y =vand x —T*(y) =
w.
(b) For any w € Hr, there exist unique x € Dp+p such thatx + T*T(x) = w.

Proof. (a) Consider the I'-Hilbert space Hy, = Hr X Hr. Since T is closed, G(T) = {(x, y,T(x)):x €
Drandy € F} is a closed subspace of Hr . Then by the projection theorem we have

Hr, = G(T) + G(T)"'v,
with
G(T) N G(T)ty = {0}.

Now, (u,y) € G(T)Yv if and only if ((x,Tx),y,(u,y)) =0 for all x € Dy andy € I'. This implies,
(x,v,u) + (T (x),y,y) = 0.Thatis (u,y) € G(T)!vifand only if (T(x),y,y) = (x,y, —u) forall x € Dy .
In other way,

(w,y) € G(T)*v ifand only ify € Dy+ andu = —T*(y).
Since (w,v) € Hr X Hr, then there exist unique x € Dy and y € D¢+ such that

(w,y,v) = (x, Y, T(x)) + (—-T*(y),y,y) forally €T.
Thatiss w= x—T*(y)andv=T(x)+y.

(b) Letting v = 0 in (a), then there exist unique x € D and y € D+ such that T(x) + y =0and x —
T*(y) = w.Thus x — T*(—T(x)) = 0 implies, x + T*T(x) = w , as desired.
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