PAPER DETAILS

TITLE: AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN

?-HILBERT SPACE

AUTHORS: Sahin Injamamul ISLAM

PAGES: 1-8

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/1722711

Ikonion Journal of Mathematics

https://dergipark.org.tr/tr/pub/ikjm

Research Article

Open Access

https://doi.org/10.54286/ikjm.923786

ISSN: 2687-6531

An Investigation on The Behaviour of Unbounded Operators in Γ -Hilbert Space

Sahin Injamamul Islam¹, Nirmal Sarkar², Ashoke Das³

Keywords:

Γ-Hilbert space, Closed operator, Densely defined operator, Selfadjoint of densely defined operator, Symmetric of densely defined operator.

Abstract — In this paper, we investigate about the behavior of unbounded operators in Γ -Hilbert Space. Here we discussed about the adjoint, self-adjoint, symmetric and other related properties of densely defined operator. We proof some related theorems and corollaries and will show the characterizations of these operators in Γ -Hilbert space.

Subject Classification (2020): 46CXX, 46C05, 46C07, 46C15, 46C99, 47L06.

1. Introduction

Γ-Hilbert space plays an important role in generalization of general linear quadratic control problems in an abstract space [1] which was motivated from the work of L.Debnath and Pitor Mikusinski [8] but there not enough literature found to study about the unbounded operators in Γ-Hilbert space. The definition of Γ-Hilbert space was introduced by Bhattacharya D.K. and T.E. Aman in their paper "Γ-Hilbert space and linear quadratic control problem" in 2003 [9]. Further development was made in 2017 by A.Ghosh, A.Das and T.E. Aman in their research paper [1]. In [6] S.Islam and A.Das discussed about the properties of bounded operators in Γ-Hilbert Space. Boundedness of an operator is a great tool to elaborate Γ-Hilbert Space. We often deal with operators which are not bounded. In this paper, we will briefly discuss the concept, methods and theory of unbounded operators in Γ-Hilbert Space. In this paper, after consulting the main author, we have made some changes in the main definition of Γ-Hilbert space [9].

First, we recall the definitions of Γ -Hilbert Space.

Definition 1.1. Let E be the linear space over the field F and Γ be a semi group with respect to addition. A mapping $\langle .,.,. \rangle$: $E \times \Gamma \times E \to F(\mathbb{R} \text{ or } \mathbb{C})$ is called a Γ-Inner product on (E, Γ) if

- (i) $\langle .,.,. \rangle$ is linear in first variable and additive in second variable.
- (ii) $\langle u, \gamma, v \rangle = \langle v, \gamma, u \rangle \ \forall \ u, v \in E \ and \ \gamma \in \Gamma.$
- (iii) $\langle \mathbf{u}, \mathbf{\gamma}, \mathbf{u} \rangle > 0 \ \forall \ \mathbf{u} \neq \mathbf{0}.$
- (iv) $\langle u, \gamma, u \rangle = 0$ if at least one of u, γ is zero.

¹ sahincool92@gmail.com (Corresponding Author); ² nrmlsrkr@gmail.com; ³ ashoke.avik@gmail.com

^{1,2,3} Department of Mathematics, Raiganj University, West Bengal,India

 $[(E,\Gamma),\langle.,.,.\rangle]$ is called a Γ -inner product space over F.

A complete Γ -inner product space is called Γ -Hilbert space.

Using the Γ -inner product, we may define three types of norm in a Γ -Hilbert space, namely (i) γ -norm (ii) Γ_{inf} - norm and (iii) Γ -norm.

Definition 1.2. Now if we write $||u||_{\gamma}^2 = \langle u, \gamma, u \rangle$, for $u \in H$ and $\gamma \in \Gamma$ then $||u||_{\gamma}^2$ satisfy all the conditions of norm.

Definition 1.3. If we define $\|\mathbf{u}\|_{\Gamma_{\inf}} = \inf\{\|u\|_{\gamma} : \gamma \in \Gamma\}$. Clearly Γ_{\inf} -norm satisfy all the conditions of the norm for $u \in H$.

Definition 1.4. If we write $||u||_{\Gamma} = {||u||_{\gamma} : \gamma \in \Gamma}$ then this norm is called the Γ-norm of the Γ-Hilbert space.

Definition 1.5. Let L be a non-empty subset of a Γ -Hilbert space H_{Γ} . Two elements x and y are said to be γ -orthogonal if their inner product $\langle x, \gamma, y \rangle = 0$. In symbol, we write $x \perp_{\gamma} y$.

2. Basic Concepts

In this section, we briefly discuss about the definition of densely defined operator and the adjoint, self-adjoint, symmetric etc of that operator. Also, related examples and theorem are mentioned in this part.

2.1. Extension of operators

Let S and T be two operators in a vector space E. D_S and D_T are the domains of S and T respectively. If

$$D_S \subset D_T$$
 and $Sx = Tx$ for every $x \in D_S$

then T is called an extension of S and we write $S \subset T$.

2.2. Densely defined operator

An operator T defined a linear map T from a subspace of H_{Γ} to H_{Γ} is called an operator in H_{Γ} and the subspace denoted by D_T , is called the domain of T. Now an operator T is defined in a normed space E is called densely defined if its domain D_T is a dense subset of E, that is $Cl\ D_T = E$.

Example 2.2.1. The differential operator $\frac{d}{dx}$ is densely defined in $L^2(\mathbb{R})$, because the subspace of differentiable functions is dense in $L(\mathbb{R})^2$.

Theorem 2.2.2. Let T be a densely defined operator in a Γ -Hilbert space H_{Γ} and let E be the set of all $y \in H_{\Gamma}$ for which $\langle Tx, \gamma, x \rangle$ where $\gamma \in \Gamma$ is a continuous functional on D_T . There exists a unique operator S defined on E such that

$$\langle Tx, \gamma, x \rangle = \langle x, \gamma, Sy \rangle$$
 for all $x \in D_T$ and $y \in E$.

Proof: For any $y \in E$, consider the functional $f_y(x) = \langle Tx, \gamma, x \rangle$ where $\gamma \in \Gamma$. Being continuous on a dense subspace of H_{Γ} , has a unique extension to a continuous functional \tilde{f}_y on H_{Γ} .

By Riesz representation theorem, there exists a unique $Z_y \in H_\Gamma$ such that $\tilde{f}_y(x) = \langle x, \gamma, Z_y \rangle \ \forall \ x \in H_\Gamma$. Now if we define $S(y) = Z_y$, then we will have

$$\begin{split} \langle Tx, \gamma, x \rangle &= f_y(x) = \tilde{f}_y(x) \\ &= \langle x, \gamma, Z_y \rangle \\ &= \langle x, \gamma, Sy \rangle \text{ for all } x \in D_T \text{ , } y \in E \text{ and } \gamma \in \Gamma \,. \end{split}$$

Also the linearity of S is obvious.

2.3. Adjoint of densely defined operator

Let T be an operator which is densely defined in a Γ -Hilbert space H_{Γ} . The adjoint T^* of T is the operator defined on the set of all $y \in H_{\Gamma}$ for which $\langle Tx, \gamma, x \rangle$ where $\gamma \in \Gamma$ is a continuous function on D_T and such that

$$\langle Tx, \gamma, x \rangle = \langle x, \gamma, T^*y \rangle$$
 for all $x \in D_T$ and $y \in D_{T^*}$

Example 2.3.1. Let $C^1_0(\mathbb{R})$ denote the space of all continuously differentiable functions on \mathbb{R} . This is also a dense subspace of $L^2(\mathbb{R})$. Now consider the differentiable operator D which defined on $C^1_0(\mathbb{R})$. Since

$$\begin{split} \langle Dx, \gamma, y \rangle &= \int_{-\infty}^{\infty} \left(\frac{d}{dt} x(t) \right) \gamma \, \overline{y(t)} \, dt \\ &= -\int_{-\infty}^{\infty} x(t) \left(\frac{d}{dt} \, \overline{y(t)} \right) \gamma \, dt \qquad \text{for all} \quad \gamma \in \Gamma \, . \end{split}$$

 $\therefore \langle Dx, \gamma, y \rangle$ is a continuous functional on $C^1_0(\mathbb{R})$.

Moreover,

$$\langle Dx, \gamma, y \rangle = -\int_{-\infty}^{\infty} x(t) (\frac{d}{dt} \overline{y(t)}) \gamma dt .$$

$$= \int_{-\infty}^{\infty} x(t) \overline{(-\frac{d}{dt}(y(t)))} \gamma dt .$$

Here it is not correct to write $D^* = -D$, since the domain of D^* is not $C^1_0(\mathbb{R})$.

2.4. Self –adjoint of densely defined operator

Let T be a densely defined operator in a Γ -Hilbert space H_{Γ} . Then T is called self-adjoint if $T = T^*$.

Note. $T=T^*$ implies that $D_{T^*}=D_T$ and $T(x)=T^*(x)$ for all $x\in D_T$. If T is a densely defined operator in H_Γ which is bounded then T has a unique extension to a bounded operator in H_Γ . Then the domain of T as well as its adjoint T^* , is the whole space H_Γ . If T is unbounded operators ,then T has an adjoint T^* such that $T(x)=T^*(x)$ whenever $x\in D_T\cap D_{T^*}$, but $D_{T^*}\neq D_T$ and thus T is not self-adjoint.

2.5. Symmetric Operator

We now consider a special kind of operator in Γ -Hilbert space . An operator T which is densely defined in Γ -Hilbert space H_{Γ} is called symmetric if for all $x,y\in D_T$, we have

$$\langle Tx, \gamma, y \rangle = \langle x, \gamma, Ty \rangle$$
 for all $\gamma \in \Gamma$.

It is clear that if T is symmetric, then $\langle T(x), \gamma, x \rangle \in \mathbb{R}$ for every $x \in D_T$ and $\gamma \in \Gamma$. Also, it follows that a densely defined operator T is symmetric if and only if T^* extends T. If T is symmetric and $D_T = H_\Gamma$, then T is in fact a bounded operator on H_Γ . This leads as follows,

Let
$$E = \{T(x) : x \in H_{\Gamma}, \|x\|_{\gamma} \le 1\}$$
. Then for a fixed $y \in H_{\Gamma}$ and $\gamma \in \Gamma$, we have
$$\begin{aligned} |\langle T(x), \gamma, y \rangle| &= |\langle x, \gamma, T(y) \rangle| \\ &\leq \|x\| \ \|\gamma\| \|T(y)\| \\ &\leq \|T(y)\| \text{ for all } x \in H_{\Gamma} \text{ with } \|x\|, \|\gamma\| \le 1 \ . \end{aligned}$$

Also clearly every self-adjoint operator is symmetric.

Example 2.5.1. Suppose we consider an operator $A = \frac{id}{dt}$ with the domain $D_A = \{ f \in L^2([a,b]) : f' \text{ is continuous and } f(a) = f(b) = 0 \}$.

Now, since for all $\gamma \in \Gamma$, we have

$$\langle Af, \gamma, g \rangle = \int_{a}^{b} if'(t) \gamma \overline{g(t)} dt$$
$$= \int_{a}^{b} f(t) \gamma i \overline{g'(t)} dt$$
$$= \langle f, \gamma, Ag \rangle$$

 $\therefore \ \langle Af, \gamma, g \rangle = \langle f, \gamma, Ag \rangle$

for all $f, g \in D_A$, A is symmetric.

 $\langle Af, \gamma, g \rangle$ is a continuous functional on D_A for any function g continuously differentiable, no need to satisfying g(a) = g(b).

Consequently, $D_{A^*} \neq D_A$ and A is not self-adjoint.

2.6. Closed Operator

A linear operator $T: E_1 \to E_2$ is said to be closed when the graph $G(T) = \{(x, \gamma, Tx) : x \in D_T \text{ and } \gamma \in \Gamma\}$ is a closed subspace of $E_1 \times E_2$ that is

$$x_n \in D_T$$
, $x_n \to x$ and $Tx_n \to y$

implies $x \in D_T$ and Tx = y.

3. Main Results

Theorem 3.1. Let A and B be densely defined operators in a Γ -Hilbert space H_{Γ} .

- (a) If $A \subset B$, then $B^* \subset A^*$.
- (b) If D_{B^*} is dense in H_{Γ} , then $B \subset B^{**}$.

Proof. (a) Let us consider $y \in D_{B^*}$ and $\gamma \in \Gamma$. Then as a function of x, $\langle Bx, \gamma, y \rangle$ is a continuous functional on D_B . Also $\langle Bx, \gamma, y \rangle$ is a continuous functional on D_A since $D_A \subset D_B$.

Now, Bx = Ax for $x \in D_A$, so $\langle Ax, \gamma, y \rangle$ is a continuous functional on D_A . This proves that $y \in D_{A^*}$. Then the equality $A^*y = B^*y$ for $y \in D_{B^*}$ follows from the uniqueness of the adjoint operator.

(b) Let $x \in D_B$. Then for every $y \in D_{B^*}$ and $\gamma \in \Gamma$, we have

$$\langle Bx, \gamma, y \rangle = \langle x, \gamma, B^*y \rangle$$

It can be rewrite as

$$\langle B^* y, \gamma, x \rangle = \langle y, \gamma, Bx \rangle$$
.

Since D_{B^*} is dense in H_{Γ} , B^{**} exists and we have

$$\langle B^*y, \gamma, x \rangle = \langle y, \gamma, B^{**}x \rangle$$
 for all $y \in D_{B^*}$, $x \in D_{B^{**}}$ and $\gamma \in \Gamma$.

Now, by the proof of (a), we can show that $D_B \subset D_{B^{**}}$ and $B(x) = B^{**}(x)$ for any $x \in D_B$. Thus $B \subset B^{**}$.

Theorem 3.2. If T is a one-to-one operator in a Γ -Hilbert space and both T and its inverse T^{-1} are densely defined , then T^* is also one- to-one and $(T^*)^{-1} = (T^{-1})^*$.

Proof. Let $y \in D_{T^*}$. Then for every $x \in D_{T^{-1}}$ and $\gamma \in \Gamma$, we have $T^{-1}x \in D_T$ and hence

This follows that $T^*y \in D_{(T^{-1})^*}$.

And also,

$$(T^{-1})^* T^* y = (T T^{-1})^* y = y$$
(3.1)

Now we take an arbitrary $y \in D_{(T^{-1})^*}$. Then for each $x \in D_T$ and $\gamma \in \Gamma$, we have

$$Tx \in D_{T^{-1}}$$
.

Hence

$$\langle Tx, \gamma, (T^{-1})^* y \rangle = \langle T^{-1}Tx, \gamma, y \rangle = \langle x, y \rangle \tag{3.2}$$

This shows that $(T^{-1})^*y \in D_{T^*}$. And $T^*(T^{-1})^*y = (T^{-1}T)^*y = y$. Now, from (3.1) and (3.2) it follows that $(T^*)^{-1} = (T^{-1})^*$.

Theorem 3.3. If A, B and AB are densely defined operators in H_{Γ} , then $B^*A^*=(AB)^*$.

Proof. Let $x \in D_{AB}$ and $y \in D_{B^*A^*}$. Since $x \in D_B$ and $A^*y \in D_{B^*}$, it follows that

$$\langle Bx, \gamma, A^*y \rangle = \langle x, \gamma, B^*A^*y \rangle$$
 for all $\gamma \in \Gamma$.

On the other side, since $Bx \in D_A$ and $y \in D_{A^*}$, we have

$$\langle ABx, \gamma, y \rangle = \langle Bx, \gamma, A^*y \rangle$$
 for all $\gamma \in \Gamma$.

Hence

$$\langle ABx, \gamma, y \rangle = \langle x, \gamma, B^*A^*y \rangle$$
.

Since this holds for all $x \in D_{AB}$, we have $y \in D_{(AB)^*}$ and $(B^* A^*)y = (AB)^*y$. This implies, $B^* A^* = (AB)^*$.

Theorem 3.4. A densely defined operator T in a Γ -Hilbert space H_{Γ} is symmetric if and only if $T = T^*$.

Proof: Let us suppose $T = T^*$. Since for all $x \in D_T$ and $y \in D_{T^*}$ we have

$$\langle Tx, \gamma, y \rangle = \langle x, \gamma, T^*y \rangle \text{ where } \gamma \in \Gamma$$
 (3.3)

Again we have

$$\langle Tx, \gamma, y \rangle = \langle x, \gamma, Ty \rangle \text{ for all } x, y \in D_T$$
 (3.4)

Thus, T is symmetric. If T is symmetric then combining (3.3) and (3.4) we can conclude $T = T^*$.

Corollary 3.5. If T is a densely defined symmetric operator, then T^* is the maximal symmetric extension of T.

Proof. Let S be a symmetric operator in a Γ -Hilbert space H_{Γ} such that $T \subset S$. Then by the Theorem 3.3, we have

$$S^* \subset T^*$$
.

Hence, $T \subset S \subset S^* \subset T^*$.

Theorem 3.6. If T is closed and invertible, then T^{-1} is closed.

Proof. Let us suppose that graph of T that is G(T) is closed and $G(T) = \{(x, \gamma, Tx) : x \in D_T \text{ and } \gamma \in \Gamma\}$. Then obviously

$$G(T^{-1}) = \{(Tx, \gamma, x) : x \in D_T \text{ and } \gamma \in \Gamma\} \text{ is closed.}$$

Theorem 3.7. If T is densely defined operator, then T* is closed.

Proof: If $y_n \in D_{A^*}$, $y_n \to y$ and $A^*y_n \to z$, then for any $x \in D_A$ & $\gamma \in \Gamma$ we have

$$\langle Ax, \gamma, y \rangle = \lim_{n \to \infty} \langle Ax, \gamma, y_n \rangle$$

$$= \lim_{n \to \infty} \langle x, \gamma, A^* y_n \rangle$$

$$= \langle x, \gamma, z \rangle$$

Hence, $y \in D_{A^*}$ and $A^*y = z$.

Note. If the given operator A is not closed then is it possible to extend A to a closed operator? Answer to that problem is to use the closure of G(A) in $H_{\Gamma} \times H_{\Gamma}$ to define an operator. If closure of G(A) defines an operator, then extension of A is closed.

Theorem 3.8. Every symmetric and densely defined operator in Γ -Hilbert space has a closed symmetric extension.

Proof. Let A be a densely defined, symmetric operator in a Γ -Hilbert space H_{Γ} . At first, we will show that condition $x_n \in D_A$, $x_n \to 0$, as $Ax_n \to y$ which implies that y = 0, is satisfied.

Let $x_n \to 0$ and $Ax_n \to y$. Since A is symmetric then for all $\gamma \in \Gamma$ we have

$$\langle y, \gamma, z \rangle = \lim_{n \to 0} \langle Ax_n, \gamma, z \rangle$$

$$= \lim_{n \to 0} \langle x_n, \gamma, Az \rangle$$

$$= 0, \text{ for any } z \in D_A.$$

This implies y = 0, as D_A is dense in H_{Γ} .

Now we have that there exists a closed operator B such that $G(B)=\operatorname{Cl} G(A)$ and hence $A\subset B$. We have to prove that B is symmetric. If $x,y\in D_B$, then there exists $x_n,y_n\in D_A$ such that

$$x_n \to x$$
 , $Ax_n \to Ax$

and

$$y_n \to y$$
 , $Bx_n \to Bx$.

Since A is a symmetric operator, we have

$$\langle Ax_n, \gamma, y_n \rangle = \langle x_n, \gamma, Ay_n \rangle$$
 for all $\gamma \in \Gamma$.

Then by letting $n \to \infty$, we have

$$\langle Bx, \gamma, y \rangle = \langle x, \gamma, By \rangle.$$

Hence B is symmetric.

Theorem 3.9. Let T be a closed densely defined operator in a Γ -Hilbert space H_{Γ} . Then

- (a) For any $v, w \in H_{\Gamma}$, there exist unique $x \in D_T$ and $y \in D_{T^*}$ such that T(x) + y = v and $x T^*(y) = w$.
- (b) For any $w \in H_{\Gamma}$, there exist unique $x \in D_{T^*T}$ such that $x + T^*T(x) = w$.

Proof. (a) Consider the Γ -Hilbert space $H_{\Gamma_1} = H_{\Gamma} \times H_{\Gamma}$. Since T is closed, $G(T) = \{(x, \gamma, T(x)) : x \in D_T \text{ and } \gamma \in \Gamma\}$ is a closed subspace of H_{Γ_1} . Then by the projection theorem we have

$$H_{\Gamma_1} = G(T) + G(T)^{\perp_{\gamma}}$$
,

with

$$G(T) \cap G(T)^{\perp_{\gamma}} = \{0\}.$$

Now, $(u,y) \in G(T)^{\perp \gamma}$ if and only if $\langle (x,Tx),\gamma,(u,y)\rangle = 0$ for all $x \in D_T$ and $\gamma \in \Gamma$. This implies, $\langle x,\gamma,u\rangle + \langle T(x),\gamma,y\rangle = 0$. That is $(u,y) \in G(T)^{\perp \gamma}$ if and only if $\langle T(x),\gamma,y\rangle = \langle x,\gamma,-u\rangle$ for all $x \in D_T$. In other way,

$$(u, y) \in G(T)^{\perp \gamma}$$
 if and only if $y \in D_{T^*}$ and $u = -T^*(y)$.

Since $(w, v) \in H_{\Gamma} \times H_{\Gamma}$, then there exist unique $x \in D_T$ and $y \in D_{T^*}$ such that

$$(w, \gamma, v) = (x, \gamma, T(x)) + (-T^*(y), \gamma, y)$$
 for all $\gamma \in \Gamma$.

That is, $w = x - T^*(y)$ and v = T(x) + y.

(b) Letting v = 0 in (a), then there exist unique $x \in D_T$ and $y \in D_{T^*}$ such that T(x) + y = 0 and $x - T^*(y) = w$. Thus $x - T^*(-T(x)) = 0$ implies, $x + T^*T(x) = w$, as desired.

References

- [1] A. Ghosh, A. Das, T.E. Aman, *Representation theorem on Γ-Hilbert space*, International J. of Math Trends and Tech.,52(9), (2017) 608-615.
- [2] B.K. Lahiri, *Elements of functional analysis*, The World Press Private Limited, (1982), Kolkata.
- [3] B. V. Limaye, *Functional Analysis*, New age International (p) Limited, Publishers, Delhi, (2013), India.
- [4] E. Kreyszig, *Introductory functional analysis with applications*, (1978), New York: Wiley.
- [5] M.T. Garayev, M. Gürdal, S. Saltan, *Hardy type inequaltiy for reproducing kernel Hilbert space operators and related problems*, Positivity, 21(4), (2017), 1615-1623.
- [6] S. I. Islam, On Some bounded Operators and their characterizations in Γ -Hilbert Space, Cumhuriyet Science Journal, 41(4), (2020), 854-861.
- [7] J. B. Conway, *A course in functional analysis* (Vol. 96), (2019), Springer.

- [8] L. Debnath, P. Mikusinski, *Introduction to Hilbert spaces with applications*, (2005), Academic press.
- [9] T.E. Aman, D. K. Bhattacharya, *T-Hilbert space and linear quadratic control problem,* Revista de la Academia Canaria de Ciencias:= Folia Canariensis Academiae Scientiarum, 15(1), (2003), 107-114.