PAPER DETAILS

TITLE: ABSORBING ELEMENTS IN LATTICE MODULES

AUTHORS: C S Manjarekar, A V Bingi

PAGES: 58-76

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/232717

ABSORBING ELEMENTS IN LATTICE MODULES

C. S. Manjarekar and A. V. Bingi

Received: 21 April 2015; Revised: 8 December 2015 Communicated by Abdullah Harmancı

ABSTRACT. In this paper we introduce and investigate 2-absorbing, *n*-absorbing, (n, k)-absorbing, weakly 2-absorbing, weakly *n*-absorbing and weakly (n, k)absorbing elements in a lattice module M. Some characterizations of 2absorbing and weakly 2-absorbing elements of M are obtained. By counter example it is shown that a weakly 2-absorbing element of M need not be 2absorbing. Finally we show that if $N \in M$ is a 2-absorbing element, then rad(N) is a 2-absorbing element of M.

Mathematics Subject Classification (2010): 06D10, 06E10, 06E99, 06F99 Keywords: 2-absorbing element, *n*-absorbing element, (n, k)-absorbing element, weakly 2-absorbing element, rad(N)

1. Introduction

The concept of 2-absorbing and weakly 2-absorbing ideals in commutative rings was introduced by A. Badawi in [4] and A. Badawi et. al. in [5] respectively as a generalization of prime and weakly prime ideals. D. F. Anderson et. al. in [3] generalized the concept of 2-absorbing ideals to *n*-absorbing ideals. A. Y. Darani et. al. in [8] generalized the concept of 2-absorbing and weakly 2-absorbing ideals to submodules of a module over a commutative ring. Further this concept was extended to *n*-absorbing submodules by A. Y. Darani et. al. in [9]. In multiplicative lattices, the study of 2-absorbing elements and weakly 2-absorbing elements was done by C. Jayaram et. al. in [11] while the study of *n*-absorbing elements and weakly *n*-absorbing elements was done by S. Ballal et. al. in [6]. Our aim is to extend the notion of absorbing elements in a multiplicative lattice to a notion of absorbing elements in lattice modules and study its properties.

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $e \in L$ is called *meet principal* if $a \wedge be =$ $((a : e) \wedge b)e$ for all $a, b \in L$. An element $e \in L$ is called *join principal* if $(ae \vee b) : e = (b : e) \vee a$ for all $a, b \in L$. An element $e \in L$ is called *principal* if if e is both meet principal and join principal. An element $a \in L$ is called *compact* if for $X \subseteq L$, $a \leq \forall X$ implies the existence of a finite number of elements a_1, a_2, \dots, a_n in X such that $a \leq a_1 \lor a_2 \lor \dots \lor a_n$. The set of compact elements of L will be denoted by L_* . If each element of L is a join of compact elements of L, then L is called a *compactly generated lattice* or simply a CG-lattice. L is said to be a principally generated lattice or simply a PG-lattice if each element of L is the join of principal elements of L. Throughout this paper L denotes a compactly generated nultiplicative lattice with 1 compact in which every finite product of compact elements is compact.

An element $a \in L$ is said to be proper if a < 1. A proper element $p \in L$ is called a prime element if $ab \leq p$ implies $a \leq p$ or $b \leq p$ where $a, b \in L$ and is called a primary element if $ab \leq p$ implies $a \leq p$ or $b^n \leq p$ for some $n \in \mathbb{Z}_+$ where $a, b \in L_*$. A proper element $p \in L$ is called a weakly prime element if $0 \neq ab \leq p$ implies $a \leq p$ or $b \leq p$ where $a, b \in L$ and is called a weakly primary element if $0 \neq ab \leq p$ implies $a \leq p$ or $b^n \leq p$ for some $n \in \mathbb{Z}_+$ where $a, b \in L_*$. A proper element $q \in L$ is called p-primary if q is primary and $p = \sqrt{q}$ is prime. A proper element $q \in L$ is called p-weakly primary if q is weakly primary and $p = \sqrt{q}$ is weakly prime. For $a, b \in L$, $(a : b) = \lor \{x \in L \mid xb \leq a\}$. The radical of $a \in L$ is denoted by \sqrt{a} and is defined as $\lor \{x \in L_* \mid x^n \leq a, for some n \in \mathbb{Z}_+\}$. An element $a \in L$ is said to be nilpotent if $a^n = 0$ for some $n \in \mathbb{Z}_+$. A multiplicative lattice L is said to be a reduced lattice if $0 \in L$ is the only nilpotent element of L. The reader is referred to [2] for general background and terminology in multiplicative lattices.

Let M be a complete lattice and L be a multiplicative lattice. Then M is called L-module or module over L if there is a multiplication between elements of L and M written as aB where $a \in L$ and $B \in M$ which satisfies the following properties: (1) $(\bigvee_{\alpha} a)A = \bigvee_{\alpha} a_{\alpha} A$, (2) $a(\bigvee_{\alpha} A_{\alpha}) = \bigvee_{\alpha} a_{\alpha} A$, (3) (ab)A = a(bA), (4) 1A = A, (5) $0A = O_M$, for all $a, a_{\alpha}, b \in L$ and $A, A_{\alpha} \in M$ where 1 is the supremum of L and 0 is the infimum of L. We denote by O_M and I_M for the least element and the greatest element of M, respectively. Elements of L will generally be denoted by a, b, c, \cdots and elements of M will generally be denoted by A, B, C, \cdots .

Let M be an L-module. For $N \in M$ and $a \in L$, $(N : a) = \bigvee \{X \in M \mid aX \leq N\}$. For $A, B \in M$, $(A : B) = \bigvee \{x \in L \mid xB \leq A\}$. An L-module M is called a multiplication lattice module if for every element $N \in M$ there exists an element $a \in L$ such that $N = aI_M$. An element $N \in M$ is said to be proper if $N < I_M$. A proper element $N \in M$ is said to be prime if for $a \in L$ and $X \in M$; $aX \leq N$ implies $X \leq N$ or $a \leq (N : I_M)$. A proper element $N \in M$ is said to be weakly prime if for $a \in L$ and $X \in M$; $O_M \neq aX \leq N$ implies $X \leq N$ or $a \leq (N : I_M)$. If $N \in M$ is a prime element, then $(N : I_M)$ is a prime element in L. An element $N < I_M$ in M is said to be *primary* if for $a \in L$ and $X \in M$; $aX \leq N$ implies $X \leq N$ or $a^n \leq (N : I_M)$ for some $n \in \mathbb{Z}_+$. An element $N < I_M$ in M is said to be weakly primary if for $a \in L$ and $X \in M$; $O_M \neq aX \leq N$ implies $X \leq N$ or $a^n \leq (N:I_M)$ for some $n \in \mathbb{Z}_+$. A proper element $N \in M$ is said to be *p*-primary if N is primary and $p = \sqrt{N : I_M}$ is prime. A proper element $N \in M$ is said to be *p*-weakly primary if N is weakly primary and $p = \sqrt{N : I_M}$ is weakly prime. An element $N \in M$ is called a radical element if $(N : I_M) = \sqrt{(N : I_M)}$ where $\sqrt{(N:I_M)} = \forall \{x \in L_* \mid x^n \leq (N:I_M), \text{ for some } n \in \mathbb{Z}_+\} = \forall \{x \in L_* \mid x^n \leq N\}$ $x^n I_M \leq N$, for some $n \in \mathbb{Z}_+$. An element $N \in M$ is called meet principal if $(b \land (B:N))N = bN \land B$ for all $b \in L, B \in M$. An element $N \in M$ is called *join* principal if $b \lor (B:N) = ((bN \lor B):N)$ for all $b \in L, B \in M$. An element $N \in M$ is said to be *principal* if N is both meet principal and join principal. An element $N \in M$ is called *compact* if $N \leq \forall A_{\alpha}$ implies $N \leq A_{\alpha_1} \lor A_{\alpha_2} \lor \cdots \lor A_{\alpha_n}$ for some finite subset $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. The set of compact elements of M is denoted by M_* . If each element of M is a join of compact elements of M, then M is called a CG*lattice L-module.* If $(O_M : I_M) = 0$, then M is called a *faithful L-module*. M is said to be a *PG*-lattice *L*-module if each element of M is the join of principal elements of M. For all the definitions in a lattice module and some other definitions, one can refer [7].

According to [11], a proper element $q \in L$ is said to be a 2-absorbing element if for every $a, b, c \in L$; $abc \leq q$ implies either $ab \leq q$ or $bc \leq q$ or $ca \leq q$ and a proper element $q \in L$ is said to be a *weakly 2-absorbing* element if for every $a, b, c \in L; 0 \neq abc \leq q$ implies either $ab \leq q$ or $bc \leq q$ or $ca \leq q$. Obviously a prime element of L is a 1-absorbing element and a weakly prime element of L is a weakly 1-absorbing element. According to [6], a proper element of $q \in L$ is said to be a *n*-absorbing element if for every $a_1, a_2, \dots, a_n, a_{n+1} \in L; a_1a_2 \cdots a_na_{n+1} \leq q$ implies there are n of $a'_i s$ whose product is less than or equal to q, that is, $\hat{a}_i \leq q$ for some i $(1 \leq i \leq (n+1))$ where \hat{a}_i is the element $a_1 \cdots a_{i-1} a_{i+1} \cdots a_n a_{n+1}$ and a proper element of $q \in L$ is said to be a *weakly n-absorbing* element if for every $a_1, a_2, \dots, a_n, a_{n+1} \in L$; $0 \neq a_1 a_2 \cdots a_n a_{n+1} \leq q$ implies there are n of $a'_i s$ whose product is less than or equal to q. In this paper we introduce and investigate 2-absorbing, n-absorbing, (n, k)-absorbing, weakly 2-absorbing, weakly *n*-absorbing and weakly (n, k)-absorbing elements in a lattice module M. We give characterization for 2-absorbing and weakly 2-absorbing elements of M. By counter example we show that a weakly 2-absorbing element of M need not be 2-absorbing. We establish a condition for a weakly 2-absorbing element of M to be a 2-absorbing

element. Finally we show if $N \in M$ is a 2-absorbing element then rad(N) is a 2-absorbing element of M.

This paper is motivated by [8] and [9]. Many of the results obtained in this paper are versions of results in [8] and [9]. It should be mentioned that there is a significant difference between our results and the already existing ones presented in [8] and [9], as principal elements of M are used in these proofs. We have generalized the important results of a multiplication module over a commutative ring obtained in [10] to a multiplication lattice module M over a multiplicative lattice L, using the principal elements so as to establish the results of rad(N).

2. Absorbing elements in M

In this section we introduce and study absorbing elements of an L-module M. We begin with the following definitions.

Definition 2.1. A proper element N of an L-module M is said to be 2-absorbing if for every $a, b \in L$ and $Q \in M$; $abQ \leq N$ implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$.

Obviously a prime element of an L-module M is a 2-absorbing element. Also a prime element of M can be thought of as a 1-absorbing element.

Definition 2.2. A proper element N of an L-module M is said to be weakly 2-absorbing if for every $a, b \in L$ and $Q \in M$; $O_M \neq abQ \leq N$ implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$.

Definition 2.3. Let $n \in \mathbb{Z}_+$. A proper element N of an L-module M is said to be n-absorbing if for every $a_1, a_2, \dots, a_n \in L$ and $Q \in M$; $a_1 a_2 \cdots a_n Q \leq N$ implies either $a_1 a_2 \cdots a_n \leq (N : I_M)$ or there are (n-1) of $a'_i s$ whose product with Q is less than or equal to N, that is, either $a_1 a_2 \cdots a_n \leq (N : I_M)$ or $\hat{a}_i Q \leq N$ for some $i \ (1 \leq i \leq n)$ where \hat{a}_i is the element $a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$.

Definition 2.4. Let $n \in \mathbb{Z}_+$. A proper element N of an L-module M is said to be weakly n-absorbing if for every $a_1, a_2, \dots, a_n \in L$ and $Q \in M$; $O_M \neq a_1 a_2 \dots a_n Q \leq N$ implies either $a_1 a_2 \dots a_n \leq (N : I_M)$ or there are (n-1) of $a'_i s$ whose product with Q is less than or equal to N, that is, either $a_1 a_2 \dots a_n \leq (N : I_M)$ or $\hat{a}_i Q \leq N$ for some i $(1 \leq i \leq n)$ where \hat{a}_i is the element $a_1 \dots a_{i-1} a_{i+1} \dots a_n$.

Definition 2.5. Let $n, k \in \mathbb{Z}_+$ where n > k. A proper element N of an Lmodule M is said to be (n, k)-absorbing if for every $a_1, a_2, \dots, a_n \in L$ and $Q \in M$; $a_1a_2 \cdots a_nQ \leq N$ implies either there are k of the a'_is whose product is less than or equal to $(N : I_M)$ or there are (k - 1) of the $a'_i s$ whose product with Q is less than or equal to N.

Definition 2.6. Let $n, k \in \mathbb{Z}_+$ where n > k. A proper element N of an L-module M is said to be *weakly* (n, k)-absorbing if for every $a_1, a_2, \dots, a_n \in L$ and $Q \in M$; $O_M \neq a_1 a_2 \cdots a_n Q \leq N$ implies either there are k of the $a'_i s$ whose product is less than or equal to $(N : I_M)$ or there are (k - 1) of the $a'_i s$ whose product with Q is less than or equal to N.

Now we give the characterization of a 2-absorbing element of M.

Theorem 2.7. Let M be a CG-lattice L-module and N be a proper element M. Then the following statements are equivalent:

- (1) N is a 2-absorbing element of M.
- (2) for every $a, b \in L$ and $Q \in M$ such that $N \leq Q$; $abQ \leq N$ implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$.
- (3) for every $a, b \in L$ such that $ab \notin (N : I_M)$; either (N : ab) = (N : a) or (N : ab) = (N : b).
- (4) for any elements $r, s \in L_*, K \in M_*$; if $rsK \leq N$ then either $rs \leq (N : I_M)$ or $rK \leq N$ or $sK \leq N$.

Proof. $(1) \Rightarrow (2)$ It is obvious.

 $(2) \Rightarrow (3)$ Suppose (2) holds. Let $K \in M$ be such that $K \leq (N : ab)$ and $ab \leq (N : I_M)$ for $a, b \in L$. Then $abK \leq N$. Clearly $ab(K \vee N) = (abK) \vee (abN) \leq N$. Let $U = K \vee N$. Now as $N \leq U$, $abU \leq N$ and $ab \leq (N : I_M)$; by (2) it follows that either $aU \leq N$ or $bU \leq N$ which implies either $aK \leq N$ or $bK \leq N$ and so either $K \leq (N : a)$ or $K \leq (N : b)$. Hence we have either $(N : ab) \leq (N : a)$ or $(N : ab) \leq (N : b)$. Obviously $(N : a) \leq (N : ab)$ and $(N : b) \leq (N : ab)$. Thus either (N : ab) = (N : a) or (N : ab) = (N : a) or (N : ab) = (N : b).

 $(3) \Rightarrow (4)$ Suppose (3) holds. Let $rsK \leq N$ and $rs \leq (N : I_M)$ for $r, s \in L_*$, $K \in M_*$. Then by (3) we have either (N : rs) = (N : r) or (N : rs) = (N : s). So as $K \leq (N : rs)$ we have either $K \leq (N : r)$ or $K \leq (N : s)$. Thus either $rK \leq N$ or $sK \leq N$.

 $(4) \Rightarrow (1)$ Suppose (4) holds. Let $abX \leq N$, $aX \leq N$ and $bX \leq N$ for $a, b \in L, X \in M$. As L and M are compactly generated, there exist $r, s \in L_*$ and $Y, Y' \in M_*$ such that $r \leq a, s \leq b, Y \leq X, Y' \leq X, rY' \leq N$ and $sY' \leq N$. Then $rs \leq ab$. Now $r, s \in L_*, (Y \lor Y') \in M_*$ such that $rs(Y \lor Y') \leq abX \leq N, r(Y \lor Y') \leq N$ and $s(Y \lor Y') \leq N$. So by (4) $rs \leq (N : I_M)$ which implies $ab \leq (N : I_M)$. Therefore N is a 2-absorbing element of M. A similar characterization of a weakly 2-absorbing element of M is as follows.

Theorem 2.8. Let M be a CG-lattice L-module and N be a proper element of M. Then the following statements are equivalent:

- (1) N is a weakly 2-absorbing element of M.
- (2) For every $a, b \in L$ and $Q \in M$ such that $N \leq Q$; $O_M \neq abQ \leq N$ implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$.
- (3) For every $a, b \in L$ such that $ab \notin (N : I_M)$; either $(N : ab) = (O_M : ab)$ or (N : ab) = (N : a) or (N : ab) = (N : b).
- (4) For every $r, s \in L_*, K \in M_*$; if $O_M \neq rsK \leq N$ then either $rs \leq (N : I_M)$ or $rK \leq N$ or $sK \leq N$.

Proof. (1) \Rightarrow (2) It is obvious.

 $(2) \Rightarrow (3)$ Suppose (2) holds. Let $K \in M$ be such that $K \leq (N : ab)$ and $ab \notin (N : I_M)$ for $a, b \in L$. Then $abK \leq N$. If $abK = O_M$, then $K \leq (O_M : ab)$. If $abK \neq O_M$, then $O_M \neq ab(K \lor N) = (abK) \lor (abN) \leq N$. Let $U = K \lor N$. Now as $N \leq U$, $O_M \neq abU \leq N$ and $ab \notin (N : I_M)$; by (2) it follows that either $aU \leq N$ or $bU \leq N$ which implies either $aK \leq N$ or $bK \leq N$ and so either $K \leq (N : a)$ or $K \leq (N : b)$. Hence we have either $(N : ab) \leq (O_M : ab)$ or $(N : ab) \leq (N : b)$. Obviously $(O_M : ab) \leq (N : ab)$, $(N : a) \leq (N : ab)$ and $(N : b) \leq (N : ab)$. Thus either $(N : ab) = (O_M : ab)$ or (N : ab) = (N : a) or (N : ab) = (N : b).

 $(3) \Rightarrow (4)$ Suppose (3) holds. Let $O_M \neq rsK \leq N$ and $rs \leq (N : I_M)$ for $r, s \in L_*, K \in M_*$. Then by (3) we have either (N : rs) = (N : r) or (N : rs) = (N : s) or $(N : rs) = (O_M : rs)$. Since $K \leq (N : rs)$ it follows that either $K \leq (O_M : rs)$ or $K \leq (N : r)$ or $K \leq (N : s)$. As $K \leq (O_M : rs)$ gives $rsK = O_M$, a contradiction, we must have either $K \leq (N : r)$ or $K \leq (N : r)$ or $K \leq (N : r)$ or $K \leq N$.

 $(4) \Rightarrow (1)$ Suppose (4) holds. Let $O_M \neq abX \leq N$, $aX \leq N$ and $bX \leq N$ for $a, b \in L, X \in M$. As L and M are compactly generated, there exist $r, s \in L_*$ and $Y, Y' \in M_*$ such that $r \leq a, s \leq b, Y \leq X, Y' \leq X, rY' \leq N, sY' \leq N$ and $O_M \neq rsY'$. Then $rs \leq ab$. Now $r, s \in L_*, (Y \lor Y') \in M_*$ such that $O_M \neq rs(Y \lor Y') \leq abX \leq N, r(Y \lor Y') \leq N$ and $s(Y \lor Y') \leq N$. So by (4) $rs \leq (N : I_M)$ which implies $ab \leq (N : I_M)$. Therefore N is a weakly 2-absorbing element of M.

In the next theorem, we show that the meet and join of a family of ascending chain of 2-absorbing elements of M are again 2-absorbing.

Theorem 2.9. Let $\{N_i \mid i \in \mathbb{Z}_+\}$ be a (ascending or descending) chain of 2absorbing elements of an L-module M. Then

- (1) $\bigwedge_{i \in \mathbb{Z}_+} N_i$ is a 2-absorbing element of M.
- (2) $\bigvee_{i \in \mathbb{Z}_+} N_i$ is a 2-absorbing element of M if I_M is compact.

Proof. Let $N_1 \leq N_2 \leq \cdots \leq N_i \leq \cdots$ be an ascending chain of 2-absorbing elements of M.

(1) Clearly, $(\bigwedge_{i\in\mathbb{Z}_{+}}N_{i})\neq I_{M}$. Let $abQ \leq (\bigwedge_{i\in\mathbb{Z}_{+}}N_{i})$ and $aQ \leq (\bigwedge_{i\in\mathbb{Z}_{+}}N_{i})$ for $a, b \in L$, $Q \in M$. Then $aQ \leq N_{j}$ for some $j \in \mathbb{Z}_{+}$ but $abQ \leq N_{j}$ which implies $ab \leq (N_{j} : I_{M})$ or $bQ \leq N_{j}$ as N_{j} is a 2-absorbing element. Now let $N_{i} \neq N_{j}$. Then as $\{N_{i}\}$ is a chain we have either $N_{i} < N_{j}$ or $N_{j} < N_{i}$. If $N_{i} < N_{j}$ then as N_{i} is a 2-absorbing element, $abQ \leq N_{i}$ and $aQ \leq N_{i}$ we have either $ab \leq (N_{i} : I_{M})$ or $bQ \leq N_{i}$. If $N_{j} < N_{i}$ then either $ab \leq (N_{j} : I_{M}) \leq (N_{i} : I_{M})$ or $bQ \leq N_{j} < N_{i}$. Thus either $ab \leq \bigwedge_{i\in\mathbb{Z}_{+}}(N_{i} : I_{M}) = [(\bigwedge_{i\in\mathbb{Z}_{+}}N_{i}) : I_{M}]$ or $bQ \leq \bigwedge_{i\in\mathbb{Z}_{+}}N_{i}$ which proves that $\bigwedge_{i\in\mathbb{Z}_{+}}N_{i}$ is a 2-absorbing element of M.

(2) Since I_M is compact, $(\bigvee_{i\in\mathbb{Z}_+}N_i)\neq I_M$. Let $abQ \leq (\bigvee_{i\in\mathbb{Z}_+}N_i)$ and $aQ \notin (\bigvee_{i\in\mathbb{Z}_+}N_i)$ for $a, b \in L, Q \in M$. Then as $\{N_i\}$ is a chain we have $abQ \leq N_j$ for some $j \in \mathbb{Z}_+$ but $aQ \notin N_j$ which implies either $abI_M \leq N_j \leq (\bigvee_{i\in\mathbb{Z}_+}N_i)$ or $bQ \leq N_j \leq (\bigvee_{i\in\mathbb{Z}_+}N_i)$ as N_j is a 2-absorbing element and thus $\bigvee_{i\in\mathbb{Z}_+}N_i$ is a 2-absorbing element of M. \Box

The "weakly" version of above Theorem 2.9 is as follows.

Theorem 2.10. Let $\{N_i \mid i \in \mathbb{Z}_+\}$ be a (ascending or descending) chain of weakly 2-absorbing elements of an L-module M. Then

- (1) $\bigwedge_{i \in \mathbb{Z}_+} N_i$ is a weakly 2-absorbing element of M.
- (2) $\bigvee_{i \in \mathbb{Z}} N_i$ is a weakly 2-absorbing element of M if I_M is compact.

Proof. The proof is similar to the proof of Theorem 2.9 and hence omitted. \Box

Theorem 2.11. If a proper element N of an L-module M is a 2-absorbing element then (N : d) is a 2-absorbing element of M for every $d \in L$.

Proof. Let $d, a, b \in L$ and $Q \in M$. Assume that $abQ \leq (N : d), aQ \leq (N : d)$ and $bQ \leq (N : d)$. As $ab(dQ) \leq N, a(dQ) \leq N, b(dQ) \leq N$ and $N \in M$ is 2 absorbing we get $abI_M \leq N$ which implies $d(abI_M) \leq N$. It follows that $ab \leq ((N : d) : I_M)$ and hence (N : d) is a 2-absorbing element of M.

The following theorem shows that if an element in M (or L) is 2-absorbing then its corresponding element in L (or M) is also 2-absorbing. **Theorem 2.12.** Let M be a faithful multiplication PG-lattice L-module with I_M compact where L is also a PG-lattice. Then the following statements are equivalent:

- (1) N is a 2-absorbing element of M.
- (2) $(N:I_M)$ is a 2-absorbing element of L.
- (3) $N = qI_M$ for some 2-absorbing element $q \in L$.

Proof. (1) \Rightarrow (2) Assume that N is a 2-absorbing element of M. Let $abc \leq (N : I_M)$ such that $ab \notin (N : I_M)$ and $bc \notin (N : I_M)$ for $a, b, c \in L$. Then as $ac(bI_M) \leq N$, $a(bI_M) \notin N$, $c(bI_M) \notin N$ and N is a 2-absorbing element we have $ac \leq (N : I_M)$ which implies $(N : I_M)$ is a 2-absorbing element of L.

 $(2) \Rightarrow (1)$ Assume that $(N : I_M)$ is a 2-absorbing element of L. Let $abQ \leq N$ for $a, b \in L, Q \in M$. Since M is a multiplication lattice L-module, $Q = qI_M$ for some $q \in L$. Then as $abq \leq (N : I_M)$ and $(N : I_M)$ is a 2-absorbing element we have either $ab \leq (N : I_M)$ or $bq \leq (N : I_M)$ or $aq \leq (N : I_M)$ which implies either $ab \leq (N : I_M)$ or $bQ \leq N$ or $aQ \leq N$ and hence $N \in M$ is a 2-absorbing element.

(2) \Rightarrow (3) Assume that $(N : I_M)$ is a 2-absorbing element of L. Then obviously (3) holds since in a multiplication lattice L-module M we have $N = (N : I_M)I_M$.

(3) \Rightarrow (2) Assume that $N = qI_M$ for some 2-absorbing element $q \in L$. Also $N = (N : I_M)I_M$ since M is a multiplication lattice L-module. It follows that $qI_M = (N : I_M)I_M$. As I_M is compact, (2) holds by Theorem 5 of [7].

In view of above Theorem 2.12 we give the following corollary without proof.

Corollary 2.13. If a proper element N of an L-module M is 2-absorbing, then $(N : I_M)$ is a 2-absorbing element of L. The converse holds if M is a multiplication lattice L-module.

The above Corollary 2.13 is true for "weakly" version provided M is faithful as shown below.

Theorem 2.14. If a proper element N of a faithful L-module M is weakly 2absorbing, then $(N : I_M)$ is a weakly 2-absorbing element of L. The converse holds if M is a multiplication lattice L-module.

Proof. Assume that N is a weakly 2-absorbing element of M. Let $0 \neq abc \leq (N : I_M)$ such that $ab \notin (N : I_M)$ and $bc \notin (N : I_M)$ for $a, b, c \in L$. If $acbI_M = O_M$ then as M is faithful we have $abc \leq (O_M : I_M) = 0$; a contradiction. Now as N is a weakly 2-absorbing element with $O_M \neq ac(bI_M) \leq N$, $a(bI_M) \notin N$ and $c(bI_M) \notin N$ we have $ac \leq (N : I_M)$ which implies $(N : I_M)$ is a 2-absorbing element of L. Conversely assume that $(N : I_M)$ is a weakly 2-absorbing element of

L and *M* is a multiplication lattice *L*-module. Let $O_M \neq abQ \leq N$ for $a, b \in L$, $Q \in M$. Since *M* is a multiplication lattice *L*-module, $Q = qI_M$ for some $q \in L$. If abq = 0, then $abQ = O_M$, a contradiction. Now as $0 \neq abq \leq (N : I_M)$ and since $(N : I_M)$ is a weakly 2-absorbing element we have either $ab \leq (N : I_M)$ or $bq \leq (N : I_M)$ or $aq \leq (N : I_M)$ which implies either $ab \leq (N : I_M)$ or $bQ \leq N$ or $aQ \leq N$ and hence *N* is a 2-absorbing element of *M*.

Result similar to Theorem 2.12 for a weakly 2-absorbing element of M is as follows.

Theorem 2.15. Let M be a faithful multiplication PG-lattice L-module with I_M compact where L is also PG-lattice. Then the following statements are equivalent:

- (1) N is a weakly 2-absorbing element of M.
- (2) $(N:I_M)$ is a weakly 2-absorbing element of L.
- (3) $N = qI_M$ for some weakly 2-absorbing element $q \in L$.

Proof. The proof is similar to the proof of Theorem 2.12 and hence omitted. \Box

Thus a proper element N of a multiplication lattice L-module M is a 2-absorbing element if and only if $(N : I_M)$ is a 2-absorbing element of L and a proper element N of a faithful multiplication lattice L-module M is a weakly 2-absorbing element if and only if $(N : I_M)$ is a weakly 2-absorbing element of L.

Theorem 2.16. If a proper element N of an L-module M is prime, then N is a (2,1)-absorbing element. The converse holds if M is a multiplication lattice L-module.

Proof. Assume that $N \in M$ is prime. Let $abQ \leq N$ for $a, b \in L, Q \in M$. Then as N is prime we have either $a \leq (N : I_M)$ or $b \leq (N : I_M)$ or $Q \leq N$ and we are done. Conversely assume that $N \in M$ is (2,1)-absorbing. Let $aQ \leq N$ for $a \in L$, $Q \in M$. Since M is a multiplication lattice L-module, $Q = qI_M$ for some $q \in L$. Then as $a(qI_M) \leq N$ and N is (2,1)-absorbing we have either $a \leq (N : I_M)$ or $q \leq (N : I_M)$ which implies either $a \leq (N : I_M)$ or $Q = qI_M \leq N$ and hence N is prime.

Theorem 2.17. If a proper element N of an L-module M is weakly prime, then N is a weakly (2, 1)-absorbing element. The converse holds if M is a multiplication lattice L-module.

Proof. The proof is similar to the proof of Theorem 2.16 and hence omitted. \Box

Theorem 2.18. If a proper element N of an L-module M is 2-absorbing, then N is a (3,2)-absorbing element. The converse holds if M is a multiplication lattice L-module.

Proof. Assume that $N \in M$ is 2-absorbing. Let $abcQ \leq N$ for $a, b, c \in L, Q \in M$. Then by repeated use of the fact that N is 2-absorbing we get either $ab \leq (N : I_M)$ or $[a(cQ) \leq N]$ or $[b(cQ) \leq N]$ which implies either $ab \leq (N : I_M)$ or $[ac \leq (N : I_M)$ or $aQ \leq N$ or $cQ \leq N]$ or $[bc \leq (N : I_M)$ or $bQ \leq N]$. It follows that N is (3, 2)-absorbing. Conversely assume that N is a (3, 2)-absorbing element of a multiplication lattice L-module M. Let $abQ \leq N$ for $a, b \in L, Q \in M$. Since M is a multiplication lattice L-module, $Q = qI_M$ for some $q \in L$. Then as $ab(qI_M) \leq N$ and N is (3, 2)-absorbing we have either $[abI_M \leq N \text{ or } bqI_M \leq N \text{ or } aqI_M \leq N]$ or $[aI_M \leq N \text{ or } pI_M \leq N]$ which implies either $[abI_M \leq N \text{ or } bqI_M \leq N]$ or $aqI_M \leq N$ or $aQI_M \leq N$. It follows that either $ab \leq (N : I_M)$ or $bQ \leq N$ or $aQ \leq N$ and hence N is 2-absorbing.

Theorem 2.19. If a proper element N of an L-module M is weakly 2-absorbing, then N is a weakly (3, 2)-absorbing element. The converse holds if M is a multiplication lattice L-module.

Proof. The proof is similar to the proof of Theorem 2.18 and hence omitted. \Box

Theorem 2.20. Let N be a proper element of an L-module M and $n, k \in \mathbb{Z}_+$ such that n > k.

- (1) If N is (n, k)-absorbing, then N is (k + 1, k)-absorbing.
- (2) If N is (n, k)-absorbing, then N is (n, k')-absorbing for every positive integer k' > k.

Proof. (1) Assume that $N \in M$ is (n, k)-absorbing. Let $a_1 a_2 \cdots a_n Q \leq N$ where $a_1, a_2, \cdots, a_n \in L, Q \in M$. Since N is (n, k)-absorbing it follows that either the product of any k of the $a'_i s$ is less than or equal to $(N : I_M)$ or there are (k - 1) of the $a'_i s$ whose product with Q is less than or equal to N and hence N is (k + 1, k)-absorbing.

(2) Assume that $N \in M$ is (n, k)-absorbing. Let $k' \in \mathbb{Z}_+$ such that k' > k. Let $a_1a_2 \cdots a_nQ \leq N$ where $a_1, a_2, \cdots, a_n \in L$, $Q \in M$. Since N is (n, k)-absorbing, we have either $b_1b_2 \cdots b_k \leq (N : I_M)$ or $c_1c_2 \cdots c_{k-1}Q \leq N$ where these b'_is and c'_is are some of the a'_is obtained on renaming. It follows that either $bb_1b_2 \cdots b_k \leq (N : I_M)$ for any element b among a'_is but other than b'_is or $cc_1c_2 \cdots c_{k-1}Q \leq N$ for any element c among a'_is but other than c'_is and hence continuing the same argument we get N is (n, k')-absorbing.

Theorem 2.21. Let N be a proper element of an L-module M and $n, k \in \mathbb{Z}_+$ such that n > k.

- (1) If N is weakly (n, k)-absorbing, then N is weakly (k + 1, k)-absorbing.
- (2) If N is weakly (n, k)-absorbing, then N is weakly (n, k')-absorbing for every positive integer k' > k.

Proof. The proof is similar to the proof of Theorem 2.20 and hence omitted. \Box

Corollary 2.13 for an n-absorbing element of an L-module M is as follows.

Theorem 2.22. Let $n \in \mathbb{Z}_+$. If a proper element N of an L-module M is nabsorbing, then $(N : I_M)$ is an n-absorbing element of L. The converse holds if M is a multiplication lattice L-module.

Proof. Let N be an n-absorbing element of M and let $\hat{a}_i = a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$ where i $(1 \leq i \leq n)$ and $a_1, \cdots, a_n \in L$. Assume that $a_1 \cdots a_n a_{n+1} \leq (N : I_M)$ and $\hat{a}_i a_{n+1} \not\leq (N : I_M)$ for every i $(1 \leq i \leq n)$. Then as N is n-absorbing, $a_1 \cdots a_n (a_{n+1}I_M) \leq N$ and $\hat{a}_i a_{n+1}I_M \not\leq N$ we have $a_1 \cdots a_n \leq (N : I_M)$ which implies $(N : I_M)$ is an n-absorbing element of L. Conversely assume that $(N : I_M)$ is an n-absorbing element of L and M is a multiplication lattice L-module. Let $a_1 \cdots a_n Q \leq N$ for $a_1, \cdots, a_n \in L$, $Q \in M$. Since M is a multiplication lattice L-module, $Q = qI_M$ for some $q \in L$. Then as $a_1 \cdots a_n q \leq (N : I_M)$ and since $(N : I_M)$ is an n-absorbing element we have either $a_1 \cdots a_n \leq (N : I_M)$ or there exist (n-1) of $a'_i s$ whose product with q is less than or equal to $(N : I_M)$ which implies either $a_1 \cdots a_n \leq (N : I_M)$ or there exist (n-1) of $a'_i s$ whose product with $qI_M = Q$ is less than or equal to N and hence N is an n-absorbing element of M.

Lemma 2.23. Let $m, n \in \mathbb{Z}_+$. If a proper element N of an L-module M is nabsorbing then N is an m-absorbing element of M for all m > n.

Proof. Let $m, n \in \mathbb{Z}_+$ be such that m > n. Let $x_1 \cdots x_m Q = x_1 \cdots x_n (x_{n+1} \cdots x_m Q) \leq N$ for $x_1, \cdots, x_m \in L$, $Q \in M$. Then as N is n-absorbing, we have either $x_1 \cdots x_n \leq (N : I_M)$ or $x_1 \cdots x_{i-1} x_{i+1} \cdots x_n (x_{n+1} \cdots x_m Q) \leq N$ for some i $(1 \leq i \leq n)$ which implies either $x_1 \cdots x_n \cdots x_m \leq (N : I_M)$ or $(x_1 \cdots x_{i-1} x_{i+1} \cdots x_n x_{n+1} \cdots x_m) Q \leq N$ for some i $(1 \leq i \leq m)$ and thus N is an m-absorbing element of M.

In view of above Lemma 2.23, we have the following definition.

Definition 2.24. If a proper element N is an n-absorbing element of M for some $n \in \mathbb{Z}_+$, then we define $\omega(N) = \min\{n \in \mathbb{Z}_+ \mid N \text{ is an } n\text{-absorbing element of } M\}$ otherwise we write $\omega(N) = \infty$. Moreover we define $\omega(I_M) = 0$.

Thus for any element $N \in M$ we have $\omega(N) \in \mathbb{Z}_+ \cup \{0, \infty\}$ with $\omega(N) = 1$ if and only if N is a prime element of M and $\omega(N) = 0$ if and only if $N = I_M$. So $\omega(N)$ measures in some sense how far 'N' is from being a prime element of M.

Theorem 2.25. If a proper element N of an L-module M is p-primary such that $p^n I_M \leq N$ where $n \in \mathbb{Z}_+$, then N is an n-absorbing element of M. Moreover, $\omega(N) \leq n$.

Proof. Let $a_1 \cdots a_n Q \leq N$ with $\hat{a}_i Q \leq N$ for every i $(1 \leq i \leq n)$ where \hat{a}_i is the element $a_1 \cdots a_{i-1} a_{i+1} \cdots a_n$ and $a_1, \cdots, a_n \in L$, $Q \in M$. As N is p-primary, $a_i(\hat{a}_i Q) \leq N$ and $\hat{a}_i Q \leq N$, we have $a_i \leq \sqrt{N : I_M} = p$ for every i $(1 \leq i \leq n)$ which implies $a_1 \cdots a_n \leq p^n$. It follows that $a_1 \cdots a_n \leq (N : I_M)$ and thus N is an n-absorbing element of M. The "moreover" statement is clear. \Box

Corollary 2.26. Let a proper element N of an L-module M be p-primary. Then N is 2-absorbing if and only if $p^2 I_M \leq N$.

Proof. Let a *p*-primary element $N \in M$ be 2-absorbing. Then by Corollary 2.13 $(N : I_M)$ is a 2-absorbing element of L which implies $(\sqrt{N : I_M})^2 \leq (N : I_M)$ by Lemma 2(iii) of [11] and thus $p^2 I_M \leq N$. The converse part is clear by Theorem 2.25.

We define a classical prime element of an L-module M as follows.

Definition 2.27. A proper element $N \in M$ is said to be *classical prime* if for each element $K \in M$ and elements $a, b \in L$; $abK \leq N$ implies either $aK \leq N$ or $bK \leq N$.

Theorem 2.28. Let N be a proper element of an L-module M. Then N is prime implies N is classical prime implies N is 2-absorbing implies N is weakly 2-absorbing.

Proof. Assume that $N \in M$ is prime. Let $abK \leq N$ for $a, b \in L, K \in M$. Then as N is prime we have either $a \leq (N : I_M) \leq (N : K)$ or $bK \leq N$ which implies either $aK \leq N$ or $bK \leq N$ and thus N is classical prime. Now let N be classical prime and let $abK \leq N$ for $a, b \in L, K \in M$. Then as N is classical prime we have either $aK \leq N$ or $bK \leq N$ and thus N is 2-absorbing. Last implication is obvious since every 2-absorbing element is weakly 2-absorbing.

From the above Theorem 2.28, it is clear that every 2-absorbing element is weakly 2-absorbing. But the converse is not true as shown in the following example.

Example 2.29. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}/(30\mathbb{Z})$. Then M is a module over \mathbb{Z} . Suppose that L(R) is the set of all ideals of R and L(M) is the set of all submodules of M. Then L(M) is a lattice module over L(R). Obviously $N = \{30\mathbb{Z}\}$ being the zero element of L(M) is weakly 2-absorbing. However N is not a 2-absorbing element of L(M) since $(2)(3)(5+30\mathbb{Z}) \subseteq N$ and $(2)(3) \notin (N:M)$, $(2)(5+30\mathbb{Z}) \notin N$, $(3)(5+30\mathbb{Z}) \notin N$.

The following theorem shows that under particular condition a weakly 2-absorbing element of an L-module M is 2-absorbing.

Theorem 2.30. If a weakly 2-absorbing element N of an L-module M is such that $(N: I_M)^2 N \neq O_M$, then N is a 2-absorbing element.

Proof. Assume that $(N:I_M)^2 N \neq O_M$. Let $abQ \leq N$ for $a, b \in L, Q \in M$. If $abQ \neq O_M$, then as N is weakly 2-absorbing we get either $ab \leq (N:I_M)$ or $aQ \leq N$ or $bQ \leq N$ and we are done. So let $abQ = O_M$. First assume that $abN \neq O_M$. Then $abN_0 \neq O_M$ for some $N_0 \leq N$ in M. As $O_M \neq ab(Q \vee N_0) \leq N$ and N is weakly 2-absorbing we have either $ab \leq (N : I_M)$ or $a(Q \vee N_0) \leq N$ or $b(Q \vee N_0) \leq N$ which implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$ and we are done. Hence we may assume that $abN = O_M$. If $a(N : I_M)Q \neq O_M$, then $ar_0Q \neq O_M$ for some $r_0 \leq (N : I_M)$ in L. Since $O_M \neq ar_0 Q \leq a(b \vee r_0) Q \leq N$ and N is weakly 2-absorbing we have either $a(b \lor r_0) \leq (N : I_M)$ or $aQ \leq N$ or $(b \lor r_0)Q \leq N$ which implies either $ab \leq (N:I_M)$ or $aQ \leq N$ or $bQ \leq N$ and we are done. So we can assume that $a(N:I_M)Q = O_M$. Likewise we can assume that $b(N:I_M)Q = O_M$. As $(N:I_M)^2 N \neq O_M$, there exist $a_0, b_0 \leq (N:I_M)$ and $X_0 \leq N$ with $a_0 b_0 X_0 \neq 0$ O_M . If $ab_0X_0 \neq O_M$ then $O_M \neq ab_0X_0 \leq a(b \lor b_0)(Q \lor X_0) \leq N$. As N is weakly 2absorbing we get either $a(b \lor b_0) \leq (N : I_M)$ or $a(Q \lor X_0) \leq N$ or $(b \lor b_0)(Q \lor X_0) \leq$ N which implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$ and we are done. So we can assume that $ab_0X_0 = O_M$. Likewise we can assume that $a_0b_0Q = O_M$ and $a_0bX_0 = O_M$. Then as $O_M \neq a_0b_0X_0 \leqslant (a \lor a_0)(b \lor b_0)(Q \lor X_0) \leqslant N$ and N is weakly 2-absorbing we get either $(a \lor a_0)(b \lor b_0) \leq (N : I_M)$ or $(a \lor a_0)(Q \lor X_0) \leq N$ or $(b \vee b_0)(Q \vee X_0) \leq N$ which implies either $ab \leq (N : I_M)$ or $aQ \leq N$ or $bQ \leq N$ and thus N is a 2-absorbing element.

We define a nilpotent element of an L-module M in the following manner.

Definition 2.31. A proper element N of an L-module M is said to be *nilpotent* if $(N : I_M)^k N = O_M$ for some $k \in \mathbb{Z}_+$.

The consequences of Theorem 2.30 are presented in the form of following corollaries. **Corollary 2.32.** If a proper element N of an L-module M is weakly 2-absorbing but not 2-absorbing, then N is a nilpotent element of M.

Proof. The proof is obvious.

Corollary 2.33. If a proper element N of an L-module M is weakly 2-absorbing but not 2-absorbing, then $(N : I_M)^3 N = O_M$.

Proof. As $(N : I_M)^3 \leq (N : I_M)^2$, we have $(N : I_M)^3 N \leq (N : I_M)^2 N = O_M$ by Theorem 2.30 and hence $(N : I_M)^3 N = O_M$.

Corollary 2.34. If a proper element N of an L-module M is weakly 2-absorbing but not 2-absorbing, then $(N : I_M)^n N = O_M$ for every $n \ge 3$.

Proof. The proof is obvious.

Corollary 2.35. If a proper element N of a multiplication lattice L-module M is weakly 2-absorbing but not 2-absorbing, then $(N : I_M)^3 I_M = O_M$.

Proof. Since M is a multiplication lattice L-module, we have $N = (N : I_M)I_M$. By Theorem 2.30, we have $(N : I_M)^2 N = O_M$ which implies $(N : I_M)^3 I_M = O_M$. \Box

Corollary 2.36. If a proper element N of a faithful multiplication lattice L-module M is weakly 2-absorbing but not 2-absorbing, then $(N : I_M) \leq \sqrt{0}$ and hence $\sqrt{N : I_M} = \sqrt{0}$. Moreover, if L is a reduced lattice then $(N : I_M) = 0$.

Proof. The proof is obvious.

Corollary 2.37. Let L be a reduced lattice. If $O_M < N < I_M$ is a weakly 2absorbing element of a faithful multiplication lattice L-module M, then N is a 2-absorbing element of M.

Proof. The proof is obvious.

3. rad(N) as a 2-absorbing element of M

In this section, we prove rad(N) is a 2-absorbing element of an *L*-module *M* if $N \in M$ is a 2-absorbing element. We begin with defining the radical of an element of a lattice module. In view of the definition of the *M*-radical of a submodule of an *R*-module *M* in [12], the definition of the radical of an element of an *L*-module *M* is as follows.

Definition 3.1. Let N be a proper element of an L-module M. Then the radical of N is denoted as rad(N) and is defined as the element $\wedge \{P \in M \mid P \text{ is a prime element and } N \leq P\}$. If $N \leq P$ for any prime $P \in M$, then we write $rad(N) = I_M$.

71

Before proving rad(N) is a 2-absorbing element of M, we prove the results required to show that $rad(aI_M) = \sqrt{a}I_M$ as proved in an R-module M in [10].

Lemma 3.2. Let *L* be a *PG*-lattice and *M* be a faithful multiplication *PG*-lattice *L*-module. Then $\bigwedge_{\alpha \in \wedge} (a_{\alpha}I_M) = (\bigwedge_{\alpha \in \wedge} a_{\alpha})I_M$ where $\{a_{\alpha} \in L \mid \alpha \in \Delta\}$.

Proof. Clearly $(\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M \leq \bigwedge_{\alpha \in \Delta} (a_{\alpha}I_M)$. Let $X \leq \bigwedge_{\alpha \in \Delta} (a_{\alpha}I_M)$ where $X \in M$. We may suppose that X is a principal element. Assume that $((\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M : X) \neq 1$. Then there exists a maximal element $q \in L$ such that $((\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M : X) \leq q$. As M is a multiplication lattice L-module and $q \in L$ is maximal, by Theorem 4 of [7], two cases arise:

Case 1. For principal element $X \in M$, there exists a principal element $r \in L$ with $r \notin q$ such that $rX = O_M$. Then $r \notin (O_M : X) \notin ((\bigwedge_{\alpha \in \Delta} a_\alpha)I_M : X) \notin q$ which is a contradiction.

Case 2. There exists a principal element $Y \in M$ and a principal element $b \in L$ with $b \notin q$ such that $bI_M \notin Y$. Then $bX \notin Y$, $bX \notin b[\bigwedge_{\alpha \in \Delta} (a_\alpha I_M)] \notin \bigwedge_{\alpha \in \Delta} (a_\alpha bI_M) \notin \bigwedge_{\alpha \in \Delta} (a_\alpha Y)$ and $(O_M : Y)bI_M \notin (O_M : Y)Y = O_M$ since Y is meet principal. As M is faithful it follows that $b(O_M : Y) = 0$. Since Y is meet principal, $(bX : Y)Y = bX \land Y = bX$. Let s = (bX : Y) then $sY = bX \notin \bigwedge_{\alpha \in \Delta} (a_\alpha Y)$. So $s = (bX : Y) = (sY : Y) \notin [\bigwedge_{\alpha \in \Delta} (a_\alpha Y) : Y] = \bigwedge_{\alpha \in \Delta} (a_\alpha Y : Y) = \bigwedge_{\alpha \in \Delta} [a_\alpha \lor (O_M : Y)]$ since Y is join principal. Therefore $bs \notin b[\bigwedge_{\alpha \in \Delta} [a_\alpha \lor (O_M : Y)]] \notin \bigwedge_{\alpha \in \Delta} [b[a_\alpha \lor (O_M : Y)]$ $M = \bigwedge_{\alpha \in \Delta} [(ba_\alpha) \lor b(O_M : Y)] = \bigwedge_{\alpha \in \Delta} (ba_\alpha) \notin b \land (\bigwedge_{\alpha \in \Delta} a_\alpha) \notin (\bigwedge_{\alpha \in \Delta} a_\alpha)$ and so $b^2 X = b(bX) = bsY \notin (\bigwedge_{\alpha \in \Delta} a_\alpha)Y \notin (\bigwedge_{\alpha \in \Delta} a_\alpha)I_M$. Hence $b^2 \notin ((\bigwedge_{\alpha \in \Delta} a_\alpha)I_M : X) \notin q$ which implies $b \notin \sqrt{q} = q$; a contradiction.

Thus the assumption that $((\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M : X) \neq 1$ is absurd and so we must have $((\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M : X) = 1$ which implies $X \leq (\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M$. It follows that $\bigwedge_{\alpha \in \Delta} (a_{\alpha}I_M) \leq (\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M$ and hence $\bigwedge_{\alpha \in \Delta} (a_{\alpha}I_M) = (\bigwedge_{\alpha \in \Delta} a_{\alpha})I_M$.

Lemma 3.3. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with I_M compact. If a proper element $q \in L$ is a prime element, then qI_M is a prime element of M.

Proof. As I_M is compact and $q \in L$ is proper by Theorem 5 of [7] we have $qI_M \neq I_M$. Let $aX \leq qI_M$ and $a \leq (qI_M : I_M)$ for $a \in L, X \in M$. Then $a \leq q$. We may suppose that X is a principal element. Assume that $((qI_M) : X) \neq 1$. Then there exists a maximal element $m \in L$ such that $((qI_M) : X) \leq m$. As M is a multiplication lattice L-module and $m \in L$ is maximal, by Theorem 4 of [7], two cases arise:

Case 1. For principal element $X \in M$, there exists a principal element $r \in L$ with $r \notin m$ such that $rX = O_M$. Then $r \leq (O_M : X) \leq ((qI_M) : X) \leq m$ which is a contradiction.

Case 2. There exists a principal element $Y \in M$ and a principal element $b \in L$ with $b \notin m$ such that $bI_M \notin Y$. Then $bX \notin Y$, $baX \notin bqI_M = q(bI_M) \notin qY$ and $(O_M : Y)bI_M \notin (O_M : Y)Y = O_M$ since Y is meet principal. As M is faithful it follows that $b(O_M : Y) = 0$. Since Y is meet principal, (bX : Y)Y = bX. Let s = (bX : Y) then sY = bX and so $asY = abX \notin qY$. Since Y is meet principal, abX = (abX : Y)Y = cY where c = (abX : Y). Since $cY = abX \notin qY$ and Y is join principal we have $c \lor (O_M : Y) = (cY : Y) \notin (qY : Y) = q \lor (O_M : Y)$. So $bc \notin bq \notin q$. On the other hand since Y is join principal, c = (abX : Y) = (asY : $Y) = as \lor (O_M : Y)$ and so $abs \notin abs \lor b(O_M : Y) = b(as \lor (O_M : Y)) = bc \notin q$. If $b \notin q$, then $b \notin q \notin ((qI_M) : X) \notin m$ which contradicts $b \notin m$ and so $b \notin q$. Now as $abs \notin q, a \notin q, b \notin q$ and q is prime, we have $s \notin q$. Hence $bX = sY \notin qY \notin (qI_M)$ which implies $b \notin ((qI_M) : X) \notin m$; a contradiction.

Thus the assumption that $((qI_M) : X) \neq 1$ is absurd and so we must have $((qI_M) : X) = 1$ which implies $X \leq (qI_M)$. Therefore qI_M is a prime element of M.

Lemma 3.4. In an L-module M, if a proper element $Q \in M$ is prime such that $X \leq Q$, then $(Q : I_M) \in L$ is prime such that $\sqrt{X : I_M} \leq (Q : I_M)$ where $X \in M$ is a proper element.

Proof. Obviously, $(Q : I_M) \in L$ is prime by Proposition 3.6 of [1]. Further, if $a \leq \sqrt{X : I_M}$, then $a^n \leq (X : I_M) \leq (Q : I_M)$ for some $n \in \mathbb{Z}_+$ which implies $a \leq (Q : I_M)$ and so $\sqrt{X : I_M} \leq (Q : I_M)$.

Lemma 3.5. For every proper element N of an L-module M, $(\sqrt{N:I_M})I_M \leq rad(N)$.

Proof. Let $P \in M$ be prime such that $N \leq P$. Then by Lemma 3.4, $(P : I_M) \in L$ is prime such that $\sqrt{N : I_M} \leq (P : I_M)$ which implies $(\sqrt{N : I_M})I_M \leq P$. Thus whenever $P \in M$ is prime such that $N \leq P$ we have $(\sqrt{N : I_M})I_M \leq P$. It follows that $(\sqrt{N : I_M})I_M \leq rad(N)$.

Theorem 3.6. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with I_M compact. Then $rad(N) = \sqrt{a}I_M$ for every proper element $N = aI_M$ of M where $a = (N : I_M) \in L$.

Proof. Let $b = \wedge \{p \in L \mid p \text{ is a prime element and } a \leq p\} = \sqrt{a}$. Then by Lemma 3.2, $bI_M = (\bigwedge_{p \text{ is prime}; a \leq p} p)I_M = \bigwedge_{p \text{ is prime}; a \leq p} (pI_M)$. Let $p \in L$ be prime

such that $a \leq p$. Also as $p \in L$ is a prime element by Lemma 3.3 we have $pI_M \in M$ is a prime element. Then $N = aI_M \leq pI_M$ and so $rad(N) \leq pI_M$. It follows that $rad(N) \leq \bigwedge_{\substack{p \text{ is prime}; a \leq p}} (pI_M) = bI_M$ and hence $rad(N) \leq \sqrt{a}I_M$. But by Lemma 3.5 we have $\sqrt{a}I_M \leq rad(N)$. Therefore $rad(N) = \sqrt{a}I_M$.

Following corollary is an outcome of Corollary 2.35 and Theorem 3.6.

Corollary 3.7. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with I_M compact. If a proper element N of M is weakly 2-absorbing but not 2-absorbing, then $N \leq rad(O_M)$.

Proof. As $O_M = (O_M : I_M)I_M = 0I_M$, we have $rad(O_M) = \sqrt{0}I_M$ by Theorem 3.6. By Corollary 2.35, we have $(N : I_M)^3I_M = O_M$ which implies $(N : I_M)^3 \leq (O_M : I_M) = 0$ and hence $(N : I_M) \leq \sqrt{0}$. It follows that $N = (N : I_M)I_M \leq \sqrt{0}I_M = rad(O_M)$.

Lemma 3.8. In a multiplication lattice L-module M, the meet of each pair of distinct prime elements of M is a 2-absorbing element.

Proof. Let N and K be any two distinct prime elements of M. Let $abQ \leq (N \wedge K)$ with $aQ \leq (N \wedge K)$ and $bQ \leq (N \wedge K)$ for $a, b \in L, Q \in M$. Since M is a multiplication lattice L-module, $Q = qI_M$ for some $q \in L$. Clearly $aQ \leq N$ and $bQ \leq N$ lead us to a contradiction because N is prime and $a(bQ) \leq (N \wedge K) \leq N$ gives $aI_M \leq N$ which implies $qaI_M = aQ \leq N$. Similarly $aQ \leq K$ and $bQ \leq K$ lead us to a contradiction. So assume that $aQ \leq N$ and $bQ \leq K$. Now $a(bQ) \leq$ $(N \wedge K) \leq K, bQ \leq K, K$ is prime gives $a \leq (K : I_M)$ and $b(aQ) \leq (N \wedge K) \leq N,$ $aQ \leq N, N$ is prime gives $b \leq (N : I_M)$. Hence $ab \leq (a \wedge b) \leq [(K : I_M) \wedge (N :$ $I_M)] = [(N \wedge K) : I_M]$ which implies $(N \wedge K)$ is a 2-absorbing element of M. \Box

Now we are in a position to prove rad(N) is a 2-absorbing element of M which is the main aim of this section.

Theorem 3.9. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with I_M compact. If a proper element $N \in M$ is a 2-absorbing element, then rad(N) is a 2-absorbing element of M.

Proof. By Corollary 2.13, $(N : I_M)$ is a 2-absorbing element of *L*. By Theorem 3 of [11], two cases arise:

Case 1. $\sqrt{N:I_M} = p$ is a prime element of L. Then by Lemma 3.3 and Theorem 3.6, we have $rad(N) = (\sqrt{N:I_M})I_M = pI_M$ is prime and hence rad(N) is a 2-absorbing element of M.

Case 2. $\sqrt{N:I_M} = p_1 \wedge p_2$ where p_1, p_2 are the only distinct prime elements of L that are minimal over $(N:I_M)$. Then by Lemma 3.3, p_1I_M and p_2I_M are distinct prime elements of M and are minimal over N. So by Theorem 3.6 and Lemma 3.2, we have $rad(N) = (\sqrt{N:I_M})I_M = (p_1 \wedge p_2)I_M = p_1I_M \wedge p_2I_M$. Hence by Lemma 3.8, rad(N) is a 2-absorbing element of M.

Theorem 3.10. Let L be a PG-lattice and M be a faithful multiplication PG-lattice L-module with I_M compact. If a proper element $N \in M$ is 2-absorbing, then one of the following statement holds true:

- (1) $rad(N) = pI_M$ is a prime element of M such that $p^2I_M \leq N$.
- (2) $rad(N) = p_1 I_M \wedge p_2 I_M$ and $(p_1 p_2) I_M \leq N$ where $p_1 I_M$ and $p_2 I_M$ are the only distinct prime elements of M that are minimal over N.

Proof. By Corollary 2.13, $(N : I_M)$ is a 2-absorbing element of L. Then by Theorem 3 of [11], we have either $\sqrt{N:I_M} = p$ is a prime element of L such that $p^2 \leq (N:I_M)$ or $\sqrt{N:I_M} = p_1 \wedge p_2$ and $p_1p_2 \leq (N:I_M)$ where p_1 and p_2 are the only distinct prime elements of L that are minimal over $(N:I_M)$. By Theorem 3.6, Lemma 3.3 and Lemma 3.2, it follows that either $rad(N) = pI_M$ is a prime element of M such that $p^2I_M \leq N$ or $rad(N) = (p_1 \wedge p_2)I_M = p_1I_M \wedge p_2I_M$ and $(p_1p_2)I_M \leq N$ where p_1I_M and p_2I_M are the only distinct prime elements of Mthat are minimal over N.

Note that if N is a 2-absorbing element of a faithful multiplication PG-lattice L-module M with I_M compact, then $(\sqrt{N:I_M})rad(N) \leq N \leq rad(N)$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

- E. A. Al-Khouja, Maximal elements and prime elements in lattice modules, Damascus University Journal for BASIC SCIENCES, 19(2) (2003), 9-21.
- [2] F. Alarcón, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Period. Math. Hungar., 30(1) (1995), 1-26.
- [3] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39(5) (2011), 1646-1672.
- [4] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417-429.
- [5] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2) (2013), 441-452.

- [6] S. Ballal and V. Kharat, On generalization of prime, weakly prime and almost prime elements in multiplicative lattices, Int. J. Algebra, 8(9) (2014), 439-449.
- [7] F. Callialp and U. Tekir, Multiplication lattice modules, Iran. J. Sci. Technol. Trans. A Sci., 35(4) (2011), 309-313.
- [8] A. Y. Darani and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math., 9(3) (2011), 577-584.
- [9] A. Y. Darani and F. Soheilnia, On n-absorbing submodules, Math. Commun., 17(2) (2012), 547-557.
- [10] Z. A. El-Bast and P. F. Smith, *Multiplication modules*, Comm. Algebra, 16(4) (1988), 755-779.
- [11] C. Jayaram, U. Tekir and E. Yetkin, 2-absorbing and weakly 2-absorbing elements in multiplicative lattices, Comm. Algebra, 42(6) (2014), 2338-2353.
- [12] R. L. McCasland and M. E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull., 29(1) (1986), 37-39.

C. S. Manjarekar

Department of Mathematics Shivaji University, Vidyanagar Kolhapur-416004 India e-mail: csmanjrekar@yahoo.co.in

A. V. Bingi

Department of Mathematics St. Xavier's College-autonomous 5, Mahapalika Marg Mumbai-400001 India e-mail: ashok.bingi@xaviers.edu