
PAPER DETAILS

TITLE: SEMISTAR OPERATIONS ON ALMOST PSEUDO-VALUATION DOMAINS

AUTHORS: Ryûki Matsuda

PAGES: 37-55

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/232821



International Electronic Journal of Algebra

Volume 10 (2011) 37-55

SEMISTAR OPERATIONS ON ALMOST PSEUDO-VALUATION

DOMAINS
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1. Introduction

The notion of a star operation is classical, and that of a Kronecker function ring

which arises by a star operation is also classical. The notions of star operations,

semistar operations, and their Kronecker function rings of integral domains have

been well-known. Let D be an integral domain, K be its quotient field, and F(D)

be the set of non-zero fractional ideals of D. A mapping I 7−→ I⋆ from F(D) to

F(D) is called a star operation on D if, for every x ∈ K \ {0} and I, J ∈ F(D), the

following conditions are satisfied: (1) (x)⋆ = (x); (2) (xI)⋆ = xI⋆; (3) I ⊆ I⋆;

(4) (I⋆)⋆ = I⋆; (5) I ⊆ J implies I⋆ ⊆ J⋆. The Kronecker function ring of D with

respect to a star operation ⋆ on D was first defined by L.Kronecker [7] and further

investigated by W.Krull [8]. Let F′(D) be the set of non-zero D-submodules of K.

A mapping I 7−→ I⋆ from F′(D) to F′(D) is called a semistar operation on D if,

for every x ∈ K \ {0} and I, J ∈ F′(D), the following conditions are satisfied: (1)

(xI)⋆ = xI⋆; (2) I ⊆ I⋆; (3) (I⋆)⋆ = I⋆; (4) I ⊆ J implies I⋆ ⊆ J⋆. We

refer to M.Fontana and K.Loper [2] and [3] and F.Halter-Koch [5] for notions of

star operations, semistar operations, and their Kronecker function rings.

Let Σ(D) (resp., Σ′(D)) be the set of star operations (resp., semistar operations)

on D. In this paper, we are interested in the cardinalities |Σ(D)| and |Σ′(D)|,
especially, when |Σ′(D)| < ∞.

Let D be an integrally closed domain. Then D has only a finite number of

semistar operations if and only if D is a finite dimensional Prüfer domain with only

a finite number of maximal ideals [11, (5.2)].
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Let V be a valuation domain with dimension n, v be a valuation belonging to

V , and Γ be its value group. Let M = Pn % Pn−1 % · · · · · ·P1 % (0) be the prime

ideals of V , let {0} $ Hn−1 $ · · · $ H1 $ Γ be the convex subgroups of Γ, and

let m be an integer with n + 1 ≤ m ≤ 2n + 1. Then the following conditions are

equivalent: (1) |Σ′(V )| = m; (2) The maximal ideal of VPi is principal for exactly

2n+ 1−m of i; (3)
Γ

Hi
has a least positive element for exactly 2n+ 1−m of i [9].

In [12], we studied star operations and semistar operations on a pseudo-valuation

domain D. We gave conditions for D to have only a finite number of semistar oper-

ations, and showed that conditions for |Σ′(D)| < ∞ reduce to conditions for related

fields. In this paper, we will study star operations and semistar operations on al-

most pseudo-valuation domains, and will prove the following,

Main Theorem Let D be an almost pseudo-valuation domain which is not a

pseudo-valuation domain, P its maximal ideal, V = (P : P ), M be the maximal

ideal of V and set K =
V

M
and k =

D

P
. Then |Σ′(D)| < ∞ if and only if one of

the following conditions holds:

(1) K is an infinite field, K = k, dim(D) < ∞, and either P = M2 or P = M3.

(2) K is a finite field, dim(D) < ∞, and P = Mn for some integer n ≥ 2.

The paper consists of six sections. Section 2 contains preliminary results, Section

3 is the case where K = k and min v(M) exists, Section 4 is the case where K = k

and P = M2 or P = M3, Section 5 is the case where K = k and P = Mn with

n ≥ 4, and Section 6 is the case where K % k.

2. Preliminary results

For the general ideal theory, especially for star operations on integral domains,

we refer to R.Gilmer [4]. Thus, for every I, J ∈ F(D), we set (I : J) = {x ∈
q(D) | xJ ⊆ I}, where q(D) denotes the quotient field of D, set I−1 = (D : I), and

set Iv = (I−1)−1. If I = Iv, then I is called divisorial. By [4, Theorem (34.1)],

Iv is the intersection of principal fractional ideals of D containing I, the mapping

I 7−→ Iv from F(D) to F(D) is a star operation on D, and is called the v-operation,

and for every star operation ⋆ on D and for every I ∈ F(D), we have I⋆ ⊆ Iv. The

identity mapping I 7−→ Id = I on F(D) is a star operation on D, and is called the

d-operation.

Let I be an ideal of a domain D. If, for elements a, b ∈ q(D), ab ∈ I and

b ̸∈ I imply a ∈ I, then I is called strongly prime. If every prime ideal of D is
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strongly prime, then D is called a pseudo-valuation domain (or, a PVD). We refer

to J.Hedstrom and E.Houston [6] for a PVD. Thus, every PVD is a local domain,

that is, D has only one maximal ideal. If D is a local domain with maximal ideal

strongly prime, then D is a PVD.

For elements a, b ∈ q(D), if ab ∈ I and b ̸∈ I imply an ∈ I for some positive

integer n, then I is called strongly primary. If every prime ideal of D is strongly

primary, then D is called an almost pseudo-valuation domain (or, an APVD). We

refer to A.Badawi and E.Houston [1] for the notion of an APVD. Thus, every APVD

is a local domain. Let P be the maximal ideal of D, then V = (P : P ) is a valuation

domain, P is a primary ideal of V , and P is primary to the maximal ideal of V . If

D is a local domain with maximal ideal strongly primary, then D is an APVD.

In this section, let D be an APVD which is not a PVD, P be the maximal ideal

of D, V = (P : P ), M be the maximal ideal of V , v be a valuation belonging to

the valuation domain V , Γ be the value group of v, K =
V

M
, and k =

D

P
.

We note that P is not strongly prime and hence P $ M . For, if P is strongly

prime, then D is a PVD by [6, Theorem 1.4]; a contradiction to our assumption

that D is not a PVD.

The following Lemmas 2.1, 2.2 and 2.3 appear in [10, Lemmas 15 and 16 and

Theorem 17].

Lemma 2.1. (1) V = P−1.

(2) P = P v.

(3) The set of non-maximal prime ideals of D coincides with the set of non-

maximal prime ideals of V , and dim(V ) = dim(D).

Since ((I−1)−1)−1 = I−1 for every I ∈ F(D), V is a divisorial fractional ideal of

D.

Lemma 2.2. (1) F′(D) = F(D) ∪ {q(D)}.
(2) The integral closure D̄ of D is a PVD with maximal ideal M .

(3) Let T be an overring of D, that is, T is a subring of q(D) containing D.

Then either T ⊇ V or T ⊆ V .

(4) Let Σ′
1 = {⋆ ∈ Σ′(D) | D⋆ ⊇ V }. Then there is a canonical bijection from

Σ′(V ) onto Σ′
1.

(5) Let Σ′
2 = {⋆ ∈ Σ′(D) | D⋆ $ V }. Then we have Σ′(D) = Σ′

1 ∪ Σ′
2.

(6) If | Σ′(D) |< ∞, then dim(D) < ∞, V = D̄, V is a finitely generated

D-module, and K is a simple extension field of k with degree [K : k] < ∞.
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Every star operation on D can be extended uniquely to a semistar operation on

D, since F′(D)\ F(D) = {q(D)}.

Lemma 2.3. Assume that dim(D) < ∞, and let {Tλ | λ ∈ Λ} be the set of

overrings T of D with T $ V .

(1) | Σ′(V ) |< ∞.

(2) | Σ′
1 | = | Σ′(V ) |.

(3) There is a canonical bijection from the disjoint union
∪

λ Σ(Tλ) onto Σ′
2.

(4) If |Σ′
2| < ∞, then |Σ′(D)| = |Σ′

2|+ |Σ′(V )|.

Let T be an overring of D. Then there is a canonical injective mapping δ from

Σ′(T ) to Σ′(D), and is called the descent mapping from T to D.

Lemma 2.4. Assume that |Σ′(D)| < ∞, then v(M) has a least element.

Proof. It is well-known that for any integral domain, each overring induces a

semistar operation of finite type. Thus the number of overrings is less than the

number of semistar operations of finite type. �

Lemma 2.5. Assume that |Σ′(D)| < ∞, and let I ∈ F(D). If inf v(I) exists in

Γ, then it is min v(I).

Proof. Choose an element x ∈ q(D) \ {0} such that inf v(I) = v(x). Then

x−1I ⊆ V and inf v(x−1I) = 0. Since v(M) has a least element by Lemma 2.4, we

have 0 = min v(x−1I), hence v(x) = min v(I). �

Lemma 2.6. If P = Mn for some integer n ≥ 2, then v(M) has a least element.

Proof. Suppose the contrary, and let x ∈ M\P . We can take elements x1, · · · , xn ∈
M such that v(x) > v(x1) > · · · > v(xn). Then we have x =

x

x1

x1

x2
· · · xn−1

xn
xn ∈

Mn = P ; a contradiction. �

Lemma 2.7. Let Q be an ideal of V with M % Q ⊇ P , and set D+Q = T . Then

T is an APVD which is not a PVD, Q is the maximal ideal of T , and V = (Q : Q).

Proof. We rely on [1, Theorem 3.4]. Then P is strongry primary, P is an M -

primary ideal of V , and so isQ. Clearly, Q is the unique maximal ideal of T = D+Q,

hence T is an APVD, and W = (Q : Q) is a valuation domain with Q primary to

the maximal ideal N of W . Since (Q : Q) ⊇ V , N is a prime ideal of V , hence

N = M , and W = V . Finally, T is not a PVD, because Q is not strongly prime. �

Lemma 2.8. Let ⋆ be a star operation (resp., a semistar operation) on D.

(1) Let T be an overring of D. Then T ⋆ is an overring of D.

(2) Both D⋆ and V ⋆ are overrings of D.
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Proof. Because T ⋆ = (TT )⋆ = (T ⋆T ⋆)⋆ ⊇ T ⋆T ⋆. �

Lemma 2.9. If min v(M) exists, then we may assume that Z is the rank one

convex subgroup of Γ, and min v(M) = 1 ∈ Z ⊆ Γ.

Proof. The rank one convex subgroup of Γ is isomorphic with the ordered group

Z. Therefore there is an isomorphism compatible with orders from Γ onto an

ordered group Γ′ the rank one convex subgroup of which is Z. �

Lemma 2.10. To prove our Theorem, we may assume that v(M) has a least

element and min v(M) = 1 ∈ Z ⊆ Γ.

The proof follows from Lemmas 2.4, 2.6 and 2.9.

3. The case where K = k and min v(M) exists

In this section, let D be an APVD which is not a PVD, P be the maximal ideal

of D, V = (P : P ), M be the maximal ideal of V , v be a valuation belonging to the

valuation domain V , Γ be the value group of v, assume that K =
V

M
=

D

P
, and

min v(M) exists with min v(M) = v(π) = 1 ∈ Z ⊆ Γ for some element π ∈ M ,

and let {αi | i ∈ I} = K be a complete system of representatives of V modulo M

with {0, 1} ⊆ K ⊆ D.

Lemma 3.1. Let x ∈ q(D) \ {0} with v(x) ∈ Z, and let k be a positive integer

with k > v(x). Then x can be expressed uniquely as x = αlπ
l + αl+1π

l+1 + · · · +
αk−1π

k−1 + aπk, where l = v(x) and each αi ∈ K with αl ̸= 0 and a ∈ V .

Proof. Since
x

πl
is a unit of V , we have

x

πl
≡ αl (mod M) for a unique element

αl ∈ K \ {0}. Inductively, there are required elements αl+1, · · · , αk−1 ∈ K and

a ∈ V . �

In Lemma 3.1, we may say that αi is the coefficient of πi in x (or, αi is the

coefficient of degree i in x).

Lemma 3.2. There is a unique integer n ≥ 2 such that P = Mn.

Proof. Set min {v(x) | x ∈ P} = n, and let x ∈ P such that v(x) = n. There is

a unit u of V such that πn = xu. Since P is an ideal of V , we have πn ∈ P , and

hence P = Mn. Since P $ M , we have n ≥ 2. �

For every subset X of q(D), the D-submodule of q(D) generated by X is denoted

by (X). If P = Mn, then we have P = (πn, πn+1, · · · , π2n−2, π2n−1) and V =

(1, π, · · · , πn−1).
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If a1, · · · , an is a finite ordered set, and not only a finite set, we denote it by

< a1, · · · , an > if necessary. That is, < a1, · · · , an > = < b1, · · · , bm > if and only

if n = m and ai = bi for each i.

Lemma 3.3. Let I ∈ F(D).

(1) If inf v(I) exists, then it is min v(I).

(2) If inf v(I) does not exist, then we have I = Iv.

Proof. (1) Then min v(M) exists by the assumption, and the proof is similar to

that of Lemma 2.5.

(2) By Lemma 3.2, there is an integer n ≥ 2 such that P = Mn. Since dI ⊆ D

for some element d ∈ D \ {0}, v(I) is bounded below. Let {v(xλ) | λ ∈ Λ} be

the lower bound of v(I), and let x ∈
∩

λ(xλ). Suppose that v(x) is in the lower

bound of v(I). Then v(x) < v(xλ) for some element λ ∈ Λ, hence x ̸∈ (xλ); a

contradiction. Therefore there are elements a1, a2, · · · , an ∈ I such that v(an) <

· · · < v(a2) < v(a1) < v(x). Then x =
x

a1

a1
a2

· · · an−1

an
an ∈ Mnan ⊆ I. Hence we

have
∩

λ(xλ) ⊆ I. On the other hand, obviously we have I ⊆ (xλ) for every λ. It

follows that I =
∩

λ(xλ), and hence I = Iv by [4, Theorem (34.1)]. �

Example 3.4. (1) Assume that P = M2, then we have

{I ∈ F(D) | D ⊆ I ⊆ V } = {(1), (1, π)}.
(2) Assume that P = M3. Set (1) = I0, (1, π

2) = I0,2, (1, π, π
2) = I0,1,2, and set

(1, π + απ2) = Iα0,1 for every α ∈ K. Then we have

{I ∈ F(D) | D ⊆ I ⊆ V } = {I0, I0,2, I0,1,2} ∪ {Iα0,1 | α ∈ K}.
If Iα0,1 = Iβ0,1 for an element β ∈ K, then α = β.

(3) Assume that P = M4. For elements α1, α2 ∈ K, set

(1) = I0,

(1, π + α1π
2 + α2π

3) = Iα1,α2

0,1 ,

(1, π2 + α1π
3) = Iα1

0,2,

(1, π3) = I0,3,

(1, π + α1π
3, π2 + α2π

3) = Iα1,α2

0,1,2 ,

(1, π + α1π
2, π3) = Iα1

0,1,3,

(1, π2, π3) = I0,2,3,

(1, π, π2, π3) = I0,1,2,3.

Then we have

{I ∈ F(D) | D ⊆ I ⊆ V } = {I0, Iα1,α2

0,1 , Iα1
0,2, I0,3, I

α1,α2

0,1,2 , Iα1
0,1,3, I0,2,3, I0,1,2,3 |

α1, α2 ∈ K}.
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For elements α1, α2, β1, β2 ∈ K, if Iα1
0,2 = Iβ1

0,2, then α1 = β1; if Iα1
0,1,3 = Iβ1

0,1,3,

then α1 = β1; if Iα1,α2

0,1 = Iβ1,β2

0,1 , then the ordered set < α1, α2 > = < β1, β2 >; if

Iα1,α2

0,1,2 = Iβ1,β2

0,1,2 , then < α1, α2 > = < β1, β2 >.

(4) Assume that P = M5. For elements α1, α2, α3, α4 ∈ K, set

(1) = I0,

(1, π + α1π
2 + α2π

3 + α3π
4) = Iα1,α2,α3

0,1 ,

(1, π2 + α1π
3 + α2π

4) = Iα1,α2

0,2 ,

(1, π3 + α1π
4) = Iα1

0,3,

(1, π4) = I0,4,

(1, π + α1π
3 + α2π

4, π2 + α3π
3 + α4π

4) = Iα1,α2,α3,α4

0,1,2 ,

(1, π + α1π
2 + α2π

4, π3 + α3π
4) = Iα1,α2,α3

0,1,3 ,

(1, π + α1π
2 + α2π

3, π4) = Iα1,α2

0,1,4 ,

(1, π2 + α1π
4, π3 + α2π

4) = Iα1,α2

0,2,3 ,

(1, π2 + α1π
3, π4) = Iα1

0,2,4,

(1, π3, π4) = I0,3,4,

(1, π + α1π
4, π2 + α2π

4, π3 + α3π
4) = Iα1,α2,α3

0,1,2,3 ,

(1, π + α1π
3, π2 + α2π

3, π4) = Iα1,α2

0,1,2,4,

(1, π + α1π
2, π3, π4) = Iα1

0,1,3,4,

(1, π2, π3, π4) = I0,2,3,4,

(1, π, π2, π3, π4) = I0,1,2,3,4.

Then we have

{I ∈ F(D) | D ⊆ I ⊆ V } = {I0, Iα1,α2,α3

0,1 , Iα1,α2

0,2 , Iα1
0,3, I0,4, I

α1,α2,α3,α4

0,1,2 , Iα1,α2,α3

0,1,3 ,

Iα1,α2

0,1,4 , Iα1,α2

0,2,3 , Iα1
0,2,4, I0,3,4, I

α1,α2,α3

0,1,2,3 , Iα1,α2

0,1,2,4, I
α1
0,1,3,4, I0,2,3,4, I0,1,2,3,4 | each αi ∈

K}.
For elements α1, · · · , α4, β1, · · · , β4 ∈ K, if Iα1

0,3 = Iβ1

0,3, then α1 = β1; if Iα1,α2

0,2 =

Iβ1,β2

0,2 , then < α1, α1 > = < β1, β2 >; if Iα1,α2,α3

0,1 = Iβ1,β2,β3

0,1 , then < α1, α2, α3 >

= < β1, β2, β3 >; etc.

Proof. (4) Let I be a fractional ideal of D such that D ⊆ I ⊆ V . Let τ =

{v(x) | x ∈ I \P}, and let, for instance, τ = {0, 1, 3}. Then I contains elements a, b

of the form a = π+α2π
2+α3π

3+α4π
4 and b = π3+βπ4, where α2, α3, α4, β ∈ K.

Exchanging a by a − α3b, we may assume that α3 = 0. Let x = β0 + β1π +

β2π
2 + β3π

3 + β4π
4 + p ∈ I, where each βi ∈ K and p ∈ P . We have x =

β0 + β1a + β3b + β′
1π

2 + β′
2π

4 + p′ for some elements β′
i ∈ K and p′ ∈ P . Since

τ = {0, 1, 3}, we have β′
1 = β′

2 = 0, hence I = (1, a, b).

For the second assertion, say Iα1,α2

0,2,3 = Iβ1,β2

0,2,3 . Then π2 + β1π
4 = d0 + d1(π

2 +

α1π
4) + d2(π

3 + α2π
4) for some elements d0, d1, d2 ∈ D. Comparing coefficients
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of 1, π2, π3 in both sides, we have d0 ≡ 0(P ), d1 ≡ 1(P ) and d2 ≡ 0(P ). Then

π2 + β1π
4 = π2 + α1π

4 + p for some element p ∈ P , hence β1 = α1.

Similarly, we have π3 + β2π
4 = d0 + d1(π

2 + α1π
4) + d2(π

3 + α2π
4) for some

elements d0, d1, d2 ∈ D. Comparing coefficients of 1, π2, π3 in both sides, we have

d0 ≡ 0, d1 ≡ 0 and d2 ≡ 1. Then π3 + β2π
4 = π3 + α2π

4 + p for some element

p ∈ P . Hence β2 = α2, and hence < α1, α2 > = < β1, β2 >.

The proofs for (1), (2) and (3) are similar and simpler. �

Lemma 3.5. Assume that P = Mn with n ≥ 2, and let I ∈ F(D) with D ⊆ I ⊆
V . Then there is a set of generators f0, f1, · · · , fm for I satisfying the following

conditions:

(1) Each fi has the following form: f0 = 1, and

fi = πki +

l(i)∑
j=1

αi,jπ
ei,j for each 1 ≤ i ≤ m, where αi,j ∈ K for each i, j.

(2) In (1), the set {0, k1, · · · , km} is a subset of {0, 1, 2, · · · , n − 1} with 0 <

k1 < · · · < km.

(3) {ki + 1, ki + 2, · · · , n − 1} \ {ki+1, · · · , km} = {ei,1, · · · , ei, l(i)} with ei,1 <

ei,2 < · · · < ei, l(i) for each 1 ≤ i ≤ m.

Proof. We have {v(x) | x ∈ I \ P} = {1, k1, · · · , km}, where 1 < k1 < · · · <
km ≤ n − 1. By Lemma 3.1, there are elements f0, f1, · · · , fm ∈ I which have the

following form: f0 = 1, and

fi = πki +

n−1−ki∑
j=1

βi,ki+jπ
ki+j for each 1 ≤ i ≤ m, where βi,j ∈ K for each i, j.

For each 1 ≤ i ≤ m, exchanging fi by fi−βi,kjfj for each j > i, we may assume

that βi,ki+1 = βi,ki+2 = · · · = βi,km = 0. Then f0, f1, · · · , fm satisfy the conditions

(1), (2) and (3).

Suppose that (f0, f1, · · · , fm) $ I, and let x ∈ I \ (f0, f1, · · · , fm). Then v(x) ∈
{1, k1, · · · , km}. Let ki = max {v(x) | x ∈ I \ (f0, f1, · · · , fm)}, where we put

1 = k0, and let y ∈ I \ (f0, f1, · · · , fm) such that v(y) = ki. Then there is an

element α ∈ K such that v(y−αfi) > ki. It follows that y−αfi ∈ (f0, f1, · · · , fm),

and hence y ∈ (f0, f1, · · · , fm); a contradiction. The proof is complete. �

Lemma 3.6. Assume that P = Mn with n ≥ 2, and let I ∈ F(D) with D ⊆ I ⊆
V . Then the system of generators f0, f1, · · · , fm for I satisfying the conditions in

Lemma 3.5 is determined uniquely.

Proof. Let f ′
0, · · · , f ′

m′ be generators for I satisfying the conditions in Lemma 3.5.

Then each f ′
i has the following form: f ′

0 = 1, and
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f ′
i = πk′

i +

l′(i)∑
j=1

α′
i,jπ

e′i,j for each 1 ≤ i ≤ m′, where α′
i,j ∈ K for each i and j,

{0, k′1, · · · , k′m′} is a subset of {0, 1, 2, · · · , n− 1} with 0 < k′1 < · · · < k′m′ , and

{k′i +1, k′i +2, · · · , n− 1} \ {k′i+1, · · · , k′m} = {e′i,1, · · · , e′i,l′(i)} with e′i,1 < e′i,2 <

· · · < e′i,l′(i) for each 1 ≤ i ≤ m′.

Suppose that ki = k′i for each i < j and k′j < kj for some j. Then f ′
j ̸∈

(f0, f1, · · · , fm); a contradiction.

It follows that m = m′, ki = k′i for each i, l(i) = l′(i) for each i, and ei,j = e′i,j

for each i, j.

Suppose that fi = f ′
i for each i < j and that fj ̸= f ′

j . We have f ′
j =

fj + dj+1fj+1 + · · · + dmfm+ p for some elements dj+1, · · · , dm ∈ D and p ∈ P .

If dj+1, · · · , dm ∈ P , there is a contradiction to the uniqueness in Lemma 3.1.

Otherwise, there is an integer k > j and an element α ∈ K \ {0} such that

f ′
j = fj + αfk + d′k+1fk+1 + · · · + d′mfm + p′ for some elements d′k+1, · · · , d′m ∈ D

and for some element p′ ∈ P . The coefficient of πk in the left side f ′
j is zero and

that in the right side is α ̸= 0; a contradiction. The proof is complete. �

Assume that P = Mn for an integer n ≥ 2. Let {0, k1, · · · , km} be a subset of

{0, 1, 2, · · · , n − 1} containing 0 with 0 < k1 < · · · < km. Then the ordered set

< 0, k1, · · · , km > with order 0 < k1 < · · · < km is called a type on D. There are

2n−1 types on D. Let τ = < 0, k1, · · · , km > be a type on D. Set

{ki + 1, ki + 2, · · · , n− 1} \ {ki+1, · · · , km} = {ei,1, · · · , ei,l(i)} with ei,1 < ei,2 <

· · · < ei,l(i) for each 1 ≤ i ≤ m.

Then an ordered set p̄ = < α1,1, · · · , α1, l(1), · · · , αm,1, · · · , αm, l(m) > of ele-

ments in K is called a system of parameters on D belonging to τ . The ordered

set σ = < 0, k1, · · · , km, α1,1, · · · , α1, l(1), · · · , αm,1, · · · , αm, l(m) > is called a data

on D belonging to τ . We denote the data by < 0, k1, · · · , km;α1,1, · · · , α1, l(1),

· · · , αm,1, · · · , αm, l(m) >. τ (resp., p̄) is said to belong to σ, and is denoted by

τ(σ) (resp., p̄(σ)). A system of parameters belonging to τ may be empty. In this

case, the data belonging to τ is τ itself. Set fσ
0 = 1, and

fσ
i = πki +

l(i)∑
j=1

αi,jπ
ei,j for each 1 ≤ i ≤ m.

Then < fσ
0 , f

σ
1 , · · · , fσ

m > is called a canonical system of generators on D be-

longing to σ. And the fractional ideal (fσ
0 , f

σ
1 , f

σ
2 , · · · , fσ

m) is said to be associated

to σ, and is denoted by I p̄τ or, by I(σ).

Let I be a fractional ideal of D with D ⊆ I ⊆ V . Lemmas 3.5 and 3.6 show that

there are a type τ , a system of parameters p̄, a data σ uniquely such that I = I(σ)
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on D. Then τ (resp., p̄, σ) is called the type (resp., the system of parameters,

the data) of I. The system of generators < fσ
0 , f

σ
1 , · · · , fσ

m > for I is called the

canonical system of generators for I.

Lemma 3.7. Assume that P = Mn with n ≥ 2. Then we have {I ∈ F(D) | D ⊆
I ⊆ V } = {I(σ) | σ is a data on D}.

Let I, J ∈ F(D). If there is an element x ∈ q(D) \ {0} such that xJ = I, then I

and J are said similar, and is denoted by I ∼ J .

Lemma 3.8. Assume that P = Mn with n ≥ 2. Let σ, σ′ be two datas on D such

that τ(σ) ̸= τ(σ′). Then I(σ) is not similar to I(σ′).

Proof. Suppose that xI(σ) = I(σ′) for some element x ∈ q(D) \ {0}. Then

v(x) = 0. Let τ(σ) = {0, k1, k2, · · · , km} with 0 < k1 < k2 < · · · < km, and let

τ(σ′) = {0, k′1, k′2, · · · , k′m′} with 0 < k′1 < k′2 < · · · < k′m′ . We may assume that

ki = k′i for each i < j and kj < k′j for some positive integer j. Then we have

xfσ
j ̸∈ I(σ′), and hence xI(σ) ̸⊆ I(σ′); a contradiction. �

Lemma 3.9. Assume that K is a finite field. Then {I ∈ F(D) | D ⊆ I ⊆ V } is

a finite set.

The proof follows from Lemma 3.7.

Lemma 3.10. Assume that K is a finite field, and let l be a negative integer.

Then {I ∈ F(D) | I has min v(I), and l ≤ min v(I) ≤ 0} is a finite set.

Proof. Let P = Mn. By Lemma 3.9, the set {I ∈ F(D) | D ⊆ I ⊆ V } = X is

a finite set. Let I be a fractional ideal of D such that min v(I) = l0 exists with

l ≤ l0 ≤ 0. We have v(a0) = l0 for some element a0 ∈ I. We may assume that

a0 = πl0(1 + α1π + α2π
2 + · · · + αn−1π

n−1 + p) for some element p ∈ P . Since

D ⊆ 1

a0
I ⊆ V , we have

1

a0
I ∈ X, completing the proof. �

Lemma 3.11. Assume that K is a finite field. Then {T | T is an overring of D

with D ⊆ T ⊆ V } is a finite set.

Proof. Because each overring T with T ⊆ V has some type, and each type has

only a finite number of systems of parameters. �

Lemma 3.12. Assume that K is a finite field. Let T be an overring of D with

T ⊆ V , and let l be a negative integer.

(1) {I ∈ F(T ) | T ⊆ I ⊆ V } is a finite set.

(2) {I ∈ F(T ) | min v(I) exists, and l ≤ min v(I) ≤ 0} is a finite set.
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Proof. Since F(T ) ⊆ F(D), the proof follows from Lemmas 3.9 and 3.10. �

4. The case where K = k and P = M2 or P = M3

In this section, let D,P, V,M,K, v,Γ, π and K be as in Section 3. We will prove

the following,

Proposition 4.1. (1) If K is a finite field, then |Σ(D)| < ∞.

(2) If P = M2, then |Σ(D)| = 1.

(3) If P = M2, and if dim(D) < ∞, then |Σ′(D)| = 1 + |Σ′(V )|.
(4) If P = M3, then |Σ(D)| = 3.

(5) If P = M3, and if dim(D) < ∞, then |Σ′(D)| = 4 + |Σ′(V )|.

We note that if dim(D) = ∞, then |Σ′(D)| = |Σ′(V )| = ∞. For, Spec(D) =

{Pλ | λ ∈ Λ} is an infinite set. And, for every λ, there is a semistar operation

I 7−→ IDPλ
. Furthermore, if we have an infinite number of overrings of D, then

|Σ′(D)| = ∞. For, for every overring T , there is a semistar operation I 7−→ IT .

Lemma 4.2. If K is a finite field, then we have |Σ(D)| < ∞.

Proof. Then {I ∈ F(D) | D ⊆ I ⊆ V } = X is a finite set by Lemma 3.9. Let ⋆

be a star operation on D, and let I ∈ X. Since V is a divisorial fractional ideal of

D, we have D ⊆ I⋆ ⊆ V ⋆ ⊆ V v = V , and hence I⋆ ∈ X.

If we set I⋆ = g⋆(I), then the element ⋆ ∈ Σ(D) gives an element g⋆ ∈ XX ,

where XX is the set of mappings from X to X. And the mapping g : ⋆ 7−→ g⋆ from

Σ(D) to XX is injective by the definition. �

Lemma 4.3. Assume that P = M2. Then {T | T is an overring of D with

T $ V } = {D}.

Proof. Because {I ∈ F(D) | D ⊆ I ⊆ V } = {(1), (1, π)} by Example 3.4 (1). �

Lemma 4.4. Assume that P = M2. Then we have |Σ(D)| = 1, and if dim(D) <

∞, then |Σ′(D)| = 1 + |Σ′(V )|.

Proof. If inf v(I) does not exist, then I = Iv by Lemma 3.3. Hence every member

I ∈ F(D) is divisorial. It follows that |Σ(D)| = 1, and Lemma 2.3 completes the

proof. �

A mapping ⋆ from F(D) to F(D) is said to satisfy condition (C) if it satisfies the

following three conditions: (1) D⋆ = D and V ⋆ = V ; (2) (xI)⋆ = xI⋆ for every

element x ∈ q(D) \ {0} and I ∈ F(D); (3) If inf v(I) does not exist, then I⋆ = I.

Obviously, every star operation satisfies the condition (C).
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Throughout the rest of this section, assume that P = M3.

Lemma 4.5. We have {T | T is an overring of D with T $ V } = {D,D+M2}.

Proof. We have that {I ∈ F(D) | D ⊆ I ⊆ V } = {I0, I0,2, I0,1,2} ∪ {Iα0,1 | α ∈ K}
by Example 3.4 (2), and that I0 = D, I0,2 = D +M2, I0,1,2 = V , and Iα0,1 is not a

subring of q(D) for every α ∈ K. �

Lemma 4.6. (1) For elements α, β ∈ K, we have Iα0,1 ⊆ Iβ0,1 if and only if α = β.

(2) I0,2 and Iα0,1 are not comparable for every α ∈ K.

(3) Iα0,1 and Iβ0,1 are similar for every α, β ∈ K.

Proof. (3) Set 1 + απ + α2π2 = x. Then we have x(1, π) = (1, π + απ2).

The proofs for (1) and (2) are similar. �

Lemma 4.7. Let ⋆ be a star operation on D. Then (I0,2)
⋆ is either I0,2 or V , and

(I00,1)
⋆ is either I00,1 or V .

Proof. Since V is a divisorial fractional ideal of D, we have (I0,2)
⋆ ⊆ V and

(I00,1)
⋆ ⊆ V . Then the assertion follows from Lemma 4.6. �

Lemma 4.8. (1) Set I0,2 = (I0,2)
⋆ and I00,1 = (I00,1)

⋆. Then ⋆ can be extended

uniquely to a mapping ⋆1 from F(D) to F(D) with condition (C).

(2) Set I0,2 = (I0,2)
⋆ and V = (I00,1)

⋆. Then ⋆ can be extended uniquely to a

mapping ⋆2 from F(D) to F(D) with condition (C).

(3) Set V = (I0,2)
⋆ and I00,1 = (I00,1)

⋆. Then ⋆ can be extended uniquely to a

mapping ⋆3 from F(D) to F(D) with condition (C).

(4) Set V = (I0,2)
⋆ and V = (I00,1)

⋆. Then ⋆ can be extended uniquely to a

mapping ⋆4 from F(D) to F(D) with condition (C).

Proof. We confer Example 3.4 (2) and Lemma 3.3. Let I ∈ F(D), then Lemma

3.8 implies that either I is similar to one and only one in {I0, I0,2, I0,1,2, I00,1}, or
inf v(I) does not exist. If inf v(I) does not exist, then we set I = I⋆i for each i. �

Lemma 4.9. In Lemma 4.8, we have the following:

(1) ⋆1 is a star operation on D, and ⋆1 = d.

(2) ⋆2 is a star operation on D.

(3) ⋆3 is not a star operation on D.

(4) ⋆4 is a star operation on D, and ⋆4 = v.

Proof. We confer Lemma 4.6.
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(2) For elements x ∈ q(D) \ {0} and I ∈ F(D), we have (x)⋆2 = (x), (xI)⋆2 =

xI⋆2 , I ⊆ I⋆2 , and (I⋆2)⋆2 = I⋆2 .

Let I1, I2 ∈ F(D) with I1 ⊆ I2. The proof for I
⋆2
1 ⊆ I⋆2

2 follows from the following

two facts:

(i) Let (1, π) ⊆ I ∈ F(D) such that inf v(I) does not exist. Then V ⊆ I.

(ii) For elements x ∈ q(D) \ {0} and I ∈ {I0, I0,2}, if xI00,1 ⊆ I, then xV ⊆ I.

(3) Set π + π2 = x. Then x(1, π2) ⊆ (1, π + π2) and xV ̸⊆ (1, π + π2).

The proofs for (1) and (4) are similar. �

Lemma 4.10. Assume that P = M3. Then |Σ(D)| = 3, and, if dim(D) < ∞,

then |Σ′(D)| = 4 + |Σ′(V )|.

Proof. By Lemma 4.9, Σ(D) = {d, v, ⋆2}, and hence |Σ(D)| = 3.

Assume that dim(D) < ∞. By Lemma 2.7, we can apply Lemma 4.4 for D′ =

D +M2. Then, in Lemma 2.3, we have |Σ′
2| = |Σ(D)|+ |Σ(D +M2)| = 3+ 1 = 4.

It follows that |Σ′(D)| = |Σ′
1|+ |Σ′

2| = 4 + |Σ′(V )|. �

The proof for Proposition 4.1 is complete.

5. The case where K = k and P = Mn with n ≥ 4

In this section, let D,P, V,M,K, v,Γ, π and K be as in Section 3. We will prove

the following,

Proposition 5.1. (1) Assume that K is an infinite field and P = Mn with n ≥ 4.

Then |Σ(D)| = ∞.

(2) Assume that K is a finite field and dim(D) < ∞. Then |Σ′(D)| < ∞.

Lemma 5.2. Let T be an overring of D with T ⊆ V , and let I ∈ F(T ).

(1) If inf v(I) exists, then it is min v(I).

(2) If inf v(I) does not exist, then I is a divisorial fractional ideal of T .

The proof is similar to that of Lemma 3.3.

Lemma 5.3. Assume that K is a finite field, and let T be an overring of D with

T ⊆ V . Then |Σ(T )| < ∞.

Proof. Let P = Mn. Set {I ∈ F(T ) | T ⊆ I ⊆ V } = X, and set {I ∈ F(T ) |
min v(I) exists, and −n ≤ min v(I) ≤ 0} = Y . Then X and Y are finite sets by

Lemma 3.12. Let I ∈ F(T ). Then either min v(I) exists or inf v(I) does not exist,

and, if inf v(I) does not exist, then I is a divisorial fractional ideal of T by Lemma

5.2.
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Let ⋆ be a star operation on T , and let I ∈ X. Since πnI ⊆ T , we have

πnI⋆ ⊆ T . Hence min v(I⋆) exists, and −n ≤ min v(I⋆) ≤ 0, that is, I⋆ ∈ Y . If

we set I⋆ = g⋆(I), there is a canonical mapping g : Σ(T ) −→ Y X , where Y X is the

set of mappings from X to Y . Moreover, g is injective by the definition, and hence

|Σ(T )| < ∞. �

Lemma 5.4. Assume that K is a finite field and dim(D) < ∞. Then |Σ′(D)| <

∞.

Proof. By Lemmas 3.11 and 5.3, we have |Σ′
2| < ∞ and |Σ′(D)| < ∞ in Lemma

2.3. �

Lemma 5.5. Let < τ ;α1, · · · , αk >, < τ ;β1, · · · , βk > be two datas on D with

the same type τ and with k ≥ 1. Then I(τ ;α1, · · · , αk) ⊆ I(τ ;β1, · · · , βk) if and

only if αi = βi for each i.

Proof. For instance, assume that P = M5 and that Iα1,α2,α3,α4

0,1,2 ⊆ Iβ1,β2,β3,β4

0,1,2 .

Then we have π + α1π
3 + α2π

4 = (π + β1π
3 + β2π

4) + (π2 + β3π
3 + β4π

4)p1 + p2

for some elements p1, p2 ∈ P . Hence α1 = β1 and α2 = β2. Similarly, we have

π2 + α3π
3 + α4π

4 = (π2 + β3π
3 + β4π

4) + p3 for some element p3 ∈ P . Hence

α3 = β3 and α4 = β4. �

Lemma 5.6. Assume that P = Mn with n ≥ 4 and that K is an infinite field.

(1) The set {T | T is an overring of D with T ⊆ V } is an infinite set.

(2) |Σ′(D)| = ∞.

Proof. (1) Iα0,n−2 is an overring of D with Iα0,n−2 ⊆ V for every α ∈ K. Since

|K| = ∞, the assertion holds by Lemma 5.5.

(2) follows from (1). �

Lemma 5.7. Assume that P = Mn with n ≥ 3. Let I ∈ F(D) such that D ⊆ I ⊆
V with type τ , let J ∈ F(D), and let x ∈ q(D) \ {0}.

(1) If I ⊆ J , and if inf v(J) does not exist, then V ⊆ J .

(2) If xI ⊆ I0, and if τ ̸∈ {< 0 >,< 0, n− 1 >}, then xV ⊆ I0.

(3) If xI ⊆ I0,n−1, and if τ ̸∈ {< 0 >,< 0, n− 1 >}, then xV ⊆ I0,n−1.

(4) If xI ⊆ I
α1,··· ,αn−2

0,1 , and if τ ̸∈ {< 0 >,< 0, 1 >,< 0, n − 1 >}, then

xV ⊆ I
α1,··· ,αn−2

0,1 .

Proof. (3) Suppose that v(x) = 0. Since τ ̸∈ {< 0 >,< 0, n−1 >}, I contains an

element a such that 0 < v(a) < n− 1. We have xa ∈ I0,n−1 and 0 < v(xa) < n− 1;

a contradiction.



SEMISTAR OPERATIONS ON ALMOST PSEUDO-VALUATION DOMAINS 51

(4) We have v(xI) ⊆ {0, 1, n, n+ 1, · · · }. Since x ∈ I
α1,··· ,αn−2

0,1 , we have v(x) ∈
{0, 1, n, n+ 1, · · · }.

If v(x) = 0, then v(I) ⊆ {0, 1, n, n+1, · · · }. Hence τ is either < 0 > or < 0, 1 >;

a contradiction.

If v(x) = 1, then v(I) ⊆ {0, n−1, n, · · · }. Hence τ is either < 0 > or < 0, n−1 >;

a contradiction.

Finally, if v(x) ≥ n, then xV ⊆ I
α1,··· ,αn−2

0,1 .

The proofs for (1) and (2) are similar. �

Lemma 5.8. Assume that P = Mn with n ≥ 4. Then I(0, 1; 0, · · · , 0, α) ∼
I(0, 1; 0, · · · , 0, β) if and only if α = β.

Proof. The necessity: There is an element x ∈ q(D) \ {0} such that x(1, π +

απn−1) = (1, π +βπn−1). We may assume that x = 1 + (π + βπn−1)α′ for some

element α′ ∈ K. Since x(π + απn−1) ∈ (1, π + βπn−1), we have α = β. �

Example 5.9. Assume that P = M5. In the following, let αi, βi, α(i) ∈ K for

each i.

(1) Iα1,α2,α3

0,1 ∼ Iβ1,β2,β3

0,1 if and only if α2−β2 ≡ (α1−β1)(α1+β1) (modP) and

(α3 − β3) ≡ (α1 − β1)(α2 + α1β1 + β2) (modP).

(2) Let x ∈ q(D) \ {0}. If xI
α(1),α(2),α(3)

0,1 ⊆ Iα1,α2,α3

0,1 , and if I
α(1),α(2),α(3)

0,1 ̸∼
Iα1,α2,α3

0,1 , then xV ⊆ Iα1,α2,α3

0,1 .

(3) Fix a data < 0, 1;α(1), α(2), α(3) > on D. Let I ∈ F(D) with D ⊆ I ⊆ V .

If I is either I0 or I0,4 or Iα1,α2,α3

0,1 with Iα1,α2,α3

0,1 ̸∼ I
α(1),α(2),α(3)

0,1 , set I = I⋆0 , and

otherwise set V = I⋆0 . Then ⋆0 determines uniquely a star operation ⋆ on D.

(4) If K is an infinite field, then |Σ(D)| = ∞.

Proof. We confer Example 3.4 (4).

(1) Set π + α1π
2 + α2π

3 + α3π
4 = A and set π + β1π

2 + β2π
3 + β3π

4 = B.

The necessity: There is an element x ∈ q(D) \ {0} such that xIα1,α2,α3

0,1 =

Iβ1,β2,β3

0,1 . Then we have v(x) = 0. We may assume that x = 1 + Bα for some

element α ∈ K. Since xA ∈ (1, B), we have α ≡ β1 − α1, β2 − α2 ≡ α(α1 + β1) and

β3 − α3 ≡ α(α2 + α1β1 + β2).

The sufficiency: Let β1−α1 ≡ α with α ∈ K, and set 1+Bα = x. We have that

A+ABα = B+p1 for some element p1 ∈ P , and hence x(1, A) ⊆ (1, B). Similarly,

let α1 − β1 ≡ β with β ∈ K, 1 +Aβ = y, and B +ABβ = A+ p2 for some element

p2 ∈ P . Then y(1, B) ⊆ (1, A). On the other hand, since xy is a unit of D, it

follows that x(1, A) = (1, B) and y(1, B) = (1, A).
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(2) Suppose that v(x) = 0. Then we may assume that x = 1+(π+α1π
2+α2π

3+

α3π
4)α for some element α ∈ K. Then x(π + α(1)π

2 + α(2)π
3 + α(3)π

4) ∈ Iα1,α2,α3

0,1

implies that α(2) − α2 ≡ (α(1) − α1)(α(1) + α1) and α(3) − α3 ≡ (α(1) − α1)(α(2) +

α(1)α1 + α2); a contradiction.

(3) We introduced the condition (C) in Section 4. Then ⋆0 can be extended

uniquely to a mapping ⋆ from F(D) to F(D) with condition (C). Let I1, I2 ∈ F(D)

with I1 ⊆ I2, then we have I⋆1 ⊆ I⋆2 by Lemma 5.7 and (2).

(4) Let ⋆α(1),α(2),α(3)
be the star operation on D determined in (3). If Iα1,α2,α3

0,1 ̸∼
Iβ1,β2,β3

0,1 , then ⋆α1,α2,α3 ̸= ⋆β1,β2,β3 . By Lemma 5.8, we have |Σ(D)| = ∞. �

Lemma 5.10. Assume that P = Mn with n ≥ 4.

(1) Then I(0, 1;α1, · · · , αn−2) ∼ I(0, 1;β1, · · · , βn−2) if and only if αk − βk ≡
(α1 − β1)(

∑k−1
0 βiαk−1−i) (modP) for each 2 ≤ k ≤ n− 2.

(2) Let x ∈ q(D) \ {0}. If xI(0, 1;α1, · · · , αn−2) ⊆ I(0, 1;β1, · · · , βn−2) with

I(0, 1;α1, · · · , αn−2) ̸∼ I(0, 1;β1, · · · , βn−2), then xV ⊆ I(0, 1;β1, · · · , βn−2).

Proof. We confer Lemma 5.9, where n = 5.

(1) Set π+α1π
2+ · · ·+αn−2π

n−1 = A, and set π+β1π
2+ · · ·+βn−2π

n−1 = B.

The necessity: There is an element x ∈ q(D) \ {0} such that xI
α1,α2,··· ,αn−2

0,1 =

I
β1,β2,··· ,βn−2

0,1 . Since v(x) = 0, we may assume that x = 1 + Bα for some element

α ∈ K. Since xA ∈ (1, B), we have α ≡ β1 − α1 and βk − αk ≡ α(
∑k−1

0 βiαk−1−i)

for each 2 ≤ k ≤ n− 2.

The sufficiency is similar to the proof for Lemma 5.9 (1).

(2) Suppose that v(x) = 0. Then we may assume that x = 1 + (π + β1π
2 +

· · ·+ βn−2π
n−1)α for some element α ∈ K. Then x(π + α1π

2 + · · ·+ αn−2π
n−1) ∈

I
β1,··· ,βn−2

0,1 implies that βk−αk ≡ (β1−α1)(
∑k−1

0 αiβk−1−i) for each 2 ≤ k ≤ n−2;

a contradiction. �

Lemma 5.11. Assume that P = Mn with n ≥ 4. Fix a data < 0, 1;α(1), α(2), · · · ,
α(n−2) > on D, and let I ∈ F(D) with D ⊆ I ⊆ V . If I is either I0 or I0,n−1

or I(0, 1;α1, α2, · · · , αn−2) with I(0, 1;α1, α2, · · · , αn−2) ̸∼ I(0, 1;α(1), α(2), · · · ,
α(n−2)), set I = I⋆0 , and otherwise set V = I⋆0 . Then ⋆0 determines uniquely a

star operation ⋆ on D.

Proof. We confer Lemma 5.9 (3). Then ⋆0 can be extended uniquely to a mapping

⋆ from F(D) to F(D) with condition (C). Let I1, I2 ∈ F(D) with I1 ⊆ I2. Then, by

Lemma 5.7 and Lemma 5.10 (2), we have I⋆1 ⊆ I⋆2 . �

Lemma 5.12. Assume that K is an infinite field and P = Mn with n ≥ 4. Then

|Σ(D)| = ∞.
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Proof. Let ⋆α(1),α(2),··· ,α(n−2)
be the star operation on D determined in Lemma

5.11. If I
α1,α2,··· ,αn−2

0,1 ̸∼ I
β1,β2,··· ,βn−2

0,1 , then ⋆α1,α2,··· ,αn−2 ̸= ⋆β1,β2,··· ,βn−2 . By

Lemma 5.8, we have |Σ(D)| = ∞. �

The proof for Proposition 5.1 is complete, and the proof for the case whereK = k

in our Theorem is complete.

6. The case where K % k

In this final section, let D be an APVD which is not a PVD, P be the maximal

ideal of D, V = (P : P ), M be the maximal ideal of V , K =
V

M
, k =

D

P
, v be a

valuation belonging to V , Γ be the value group of v, {αi | i ∈ I} = K be a complete

system of representatives of V modulo M with {0, 1} ⊆ K, and assume that K % k,

and that min v(M) exists with min v(M) = v(π) = 1 ∈ Z ⊆ Γ for some element

π ∈ M . We will prove the following,

Proposition 6.1. The following conditions are equivalent.

(1) |Σ′(D)| < ∞.

(2) K is a finite field, dim(D) < ∞, and P = Mn for some n ≥ 2.

Lemma 6.2. (1) Let x ∈ q(D)\{0} with v(x) ∈ Z, and let k be a positive integer

with k > v(x). Then x can be expressed uniquely as x = αlπ
l + αl+1π

l+1 + · · · +
αk−1π

k−1 + aπk, where l = v(x) and each αi ∈ K with αl ̸= 0 and a ∈ V .

(2) There is a unique integer n ≥ 2 such that P = Mn.

(3) Let I ∈ F(D) such that inf v(I) exists. Then inf v(I) = min v(I).

(4) Let I ∈ F(D) such that inf v(I) does not exist. Then I = Iv.

The proofs are similar to those for Lemmas 3.1, 3.2 and 3.3.

Lemma 6.3. Assume that P = Mn for some n ≥ 2. Let T be an overring of D

with T ⊆ V and let I ∈ F(T ).

(1) If inf v(I) exists, then it is min v(I).

(2) If inf v(I) does not exist, then I is a divisorial fractional ideal of T .

The proof is similar to that for Lemma 3.3.

Lemma 6.4. Assume that K is a finite field and P = Mn for some n ≥ 2.

(1) The set {I ∈ F(D) | D ⊆ I ⊆ V } is a finite set.

(2) Let l be a negative integer. Then the set {I ∈ F(D) | min v(I) exists, and

l ≤ min v(I) ≤ 0} is a finite set.

(3) The set {T | T is an overring of D with D ⊆ T ⊆ V } is a finite set.
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(4) The set {I ∈ F(T ) | T ⊆ I ⊆ V } is a finite set.

(5) Let T be an overring of D with T ⊆ V , and let l be a negative integer. Then

the set {I ∈ F(T ) | min v(I) exists, and l ≤ min v(I) ≤ 0} is a finite set.

The proofs are similar to those for Lemmas 3.9, 3.10, 3.11 and 3.12.

Lemma 6.5. Assume that k is an infinite field and P = Mn for some n ≥ 2.

Then there is an infinite number of intermediate rings between D and V .

Proof. Let u ∈ V such that ū = u + M ∈ K \ k. Let a ∈ D \ P , and set

(1, (1 + au)πn−1) = Da. Then Da is an overring of D with Da ⊆ V .

Let a, b ∈ D \ P such that Da = Db. Then we have ā = b̄. For, we have

(1 + au)πn−1 = (1 + bu)πn−1d+ p for some elements d ∈ D and p ∈ P . It follows

that 1− d = (bd− a)u+m for some element m ∈ M . If bd− a ≡ 0, then 1− d ≡ 0,

hence b̄ = b̄d̄ = ā. Suppose that bd− a ̸= 0̄. Since 1− d = bd− a ū, we have ū ∈ k;

a contradiction. It follows that {Da | a ∈ D \ P} is an infinite set, since k is an

infinite field. The proof is complete. �

Proof for Proposition 6.1. (1) =⇒ (2): By Lemma 2.2 (6), we have dim(D) < ∞
and [K : k] < ∞. We may apply Lemma 6.2. Then we have P = Mn for some

n ≥ 2. Suppose that K is an infinite field. Since [K : k] < ∞, k is an infinite field.

By Lemma 6.5, there is an infinite number of intermediate rings between D and V .

It follows that |Σ′(D)| = ∞; a contradiction.

(2) =⇒ (1): We can apply Lemma 6.4. The set {I ∈ F(D) | D ⊆ I ⊆ V } = X

is a finite set. Let ⋆ be a star operation on D, and let I ∈ X. We note that V is a

divisorial fractional ideal of D. Since D ⊆ I⋆ ⊆ V , we have I⋆ ∈ X.

If we set I⋆ = g⋆(I), then the element ⋆ ∈ Σ(D) gives an element g⋆ ∈ XX .

By Lemma 6.2 (3), the mapping g : ⋆ 7−→ g⋆ from Σ(D) to XX is an injection. It

follows that |Σ(D)| < ∞.

Let T be an overring of D with T ⊆ V . Set {I ∈ F(T ) | T ⊆ I ⊆ V } = X, and

set {I ∈ F(T ) | min v(I) exists, and −n ≤ min v(I) ≤ 0} = Y . Then X and Y are

finite sets. For every I ∈ F(T ), either min v(I) exists or inf v(I) does not exist by

Lemma 6.3 (1). Let ⋆ be a star operation on T , and let I ∈ X. Since πnI ⊆ T , we

have πnI⋆ ⊆ T . Hence min v(I⋆) exists, and −n ≤ min v(I⋆) ≤ 0, that is, I⋆ ∈ Y .

If we set I⋆ = g⋆(I), there is a canonical mapping g : Σ(T ) −→ Y X . Lemma 6.3

implies that g is an injection, hence |Σ(T )| < ∞. By Lemma 6.4 (3) and Lemma

2.3, we have |Σ′
2| < ∞, and |Σ′(D)| < ∞.
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The proof for our Theorem is complete by Propositions 5.1 and 6.1.
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