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ABSTRACT. This paper concerns with the study of pretorsion classes and pre-
torsion free classes considered as big lattices, ordered by class inclusion. We
obtain structural results about these lattices and we apply them to character-
ize the rings for which these lattices coincide, as the Artinian principal ideal

rings.
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1. Introduction

In this work R denotes an associative ring with unitary element 1 and R-mod
denotes the category of left unital modules over the ring R.

We shall work with big lattices of classes of R-modules. Among the closure
properties we will consider here are those of being closed under: monomorphisms
(), homomorphic images (—), direct sums (@), direct products (II), injective
hulls (E ()), projective covers (P ( )) and extensions (ext).

Also we consider classes closed under isomorphic copies of its elements.

If P is a set of some of the closure properties above, we denote by Lp the (big)
lattice of all classes of R-modules closed under the properties in P. All these lattices
have inclusion as their partial order and thus infima is given by intersection. The
least element is {0}, denoted by 0, and the greatest element is R-mod, denoted
by 1.

As examples we can mention the well known frame of hereditary torsion theories
in R-mod (R-tors) which here coincides with L o ext,—}- Another example is the
boolean lattice of natural classes in R-mod (R-nat) which here will be denoted by

Li 0,8 )eatt = Lim,o,8()} (see [9]).
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We can also notice that some of these lattices have an underlying set of elements
while other have a proper class of elements, in this last case we use the term big
lattice instead of lattice.

In the proof of the main result we use the fact that E{H} = C{H,} is equivalent
with R being an Artinian principal ideal ring (see [2, Theorem 38]).

Given P a set of closure properties and given a class C of R-modules we let £p(C)
denote the least class in £p containing C as a subclass. Respectively we let xp(C)
denote the largest class in Lp in which C is a subclass.

For a preradical r in R-mod we let T, = {M € R-mod | r(M)= M} and F, =
{M € R-mod | (M) =0}. A hereditary torsion theory is an ordered pair (7, F)
of classes or R-modules such that (i) Hom(T,F) =0 for al T € T, F € F, (i)
Hom(A,F) = 0 for all F € F implies that A € T, (ii1) Hom(T, A) = 0 for all
T € T implies that A € F, (iv) T is closed under submodules. It is a known fact
that for a hereditary torsion theory 7 € L, ¢ ext,—} and F € Ly 11 cat, E()}-

2. The lattices £, , 1y and £, 4

We begin by giving the description of the generated class in the big lattices
Ly and £, 4 respectively.

Remark 2.1. If X is a class of R-modules, it is easily seen that £, 173 (X) is given
by the class of the X-cogenerated R-modules and &;_, 4}(X) is given by the class
of the X-generated R-modules.

We denote by R-pr the big lattice of preradicals in R-mod.

It is well known that there is a one to one correspondence between the class of
idempotent preradicals (R-idp) and £;_, o} and that there is a one to one corre-
spondence between the class of radicals ( R-rad) and £y, 1. In general R-idp and

R-rad are not sublattices of R-pr.

Example 2.2. Take R =7.

(a) Let d be the preradical that assigns to every abelian group its divisible part
and s be the preradical wich assigns to every abelian group its socle. Then t and s
are both idempotent but if M = Zpe then in Z-idp we have that (s Nd) (M) = Z,
and (s Nd) (s ANd) (M) =0. Thus (s Ad) is not idempotent.

(b) Let t be the preradical that assigns to every abelian group its torsion sub-

group and d as in (a). Then t and d are both radicals but if M = le_IPZp with P
P
the set of prime numbers, then in Z-rad we have that (tV d) (M) = & Z, and
peEP

(tVvd) (W) # 0. Hence tV d is not a radical.
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Proposition 2.3. If £ ) C £}, then R-rad is a complete sublattice of R-pr.

Proof. Let {r.},cyx be a collection of radicals.

(1) We always have that A {r,} is a radical. Indeed, if M € R-mod, then
aeX

M B . M
(aé\x{m}) </\ {m}) (M) _aQX (/\ {m}) (M)

acX aeX

Since ( A {ra}> (M) C ro (M) for each o € X, then by [8, Chapter VL
aeX
Lemma 1.1] we have that

. M _ To (M) “ .
(Aed)an) (A ) an et
Then
. M _ ra (M)
(&) (A trad) 0n) e (A a)) o)
-0 () <o
This proves that, A {ra} is a radical.
(2) Now if M € R-mod, we have
M M
(%) (v trar) ) K= (v trar) 00
For each a € X, there exists an epimorphism
M N M .
(g ) o)

Since % € F,, and as F,., € £ 113, all of whose members we are assuming

closed under homomorphic images, we have (M € F,_ for each a € X.

V {ra}> (M)
aceX
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Thus
M _
(v, o) (v ) =0
hence V/ {ro} is a radical O

Proposition 2.4. If £, oy C £y, then R-idp is a complete sublattice of R-pr.

Proof. Let {ro},cx

(1) We always have that \/ {r,} is an idempotent preradical. Indeed, if M € R-
aceX

be a collection of idempotent preradicals.

mod, then

() (2 )

For each 8 € X it happens that

(£ ra00) 2 S rara )

acX acX

() (5 rman)
Zm(Zm(M))-

acX aceX

hence

Zra(Zra(M)> D Y rpra (M) D Y rere (M) =

acX acX acX acX
BeX
= S0 = (Y, ) 00

The reciprocal inclusion is clear.

(2) For infima, take M € R-mod. Then
(A=) (A ) an) = (A ) (0 00)
re(ne0n).

Since for each o € X, ro (M) € T,, € £(_, ¢}, all of whose members we are

assuming closed under monomorphisms, we have

vy ( N 7MM)) — () ra (M), for each § € X.

aeX aeX
Thus

( n m) (nretn) = Aran=( A ) 1)

peX aceX aceX acX
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hence A\ {r.} is an idempotent preradical. O
aeX

Given C € £p, a pseudocomplement for C in £p is an element D €£p such
that C "D = 0 and which is maximal with respect to this property. If D is
largest with this property, we will call D the strong pseudocomplement of C (S-
pseudocomplement, for short).

If C € £p we let C17 denote to some pseudocomplement (S-pseudocomplement)
of C, if it exists. If each C € £p has a pseudocomplement (S-pseudocomplement)

we say that £p is a pseudocomplemented (or S-pseudocomplemented) (big) lattice.

Remark 2.5. £, and £(_,, are S-pseudocomplemented big lattices. Actually if
CeLy .y and D €Ly, then:

Ctt—=r = {M € R-mod | M has no non zero submodules in C}
and

D+~} = {M € R-mod | M has no non zero homomorphic images in D} .

Lemma 2.6. IfC € £{H7_,,} then:
(1) Cti—r e S{H} and
(2) Clti-r e 2{@}.

Proof. (1) If {M,} .y is a family of R-modules in C*(—} and there exists

04C [ {Ms) withCec
aeX

then there exists § € X such that C I 1T {M.} i Mg is not zero. Thus 0 #
acX
ppof(C) < Mg, and as C is closed under homomorphic images, then pgo f (C) € C,

a contradiction. So [] {M,} €C.
aeX
(2) Tt is similar to (1). O

Proposition 2.7. (1) If C €€ 1y and C is closed under homomorphic images
then C has an S-pseudocomplement in £, 11y. Moreover

Ccto—m =l
and Cti—m € L IL,E() ext) -

(2) If C €Ly ey and C is closed under monomorphisms, then C has an S-

pseudocomplement in £¢_, oy. Moreover

Clti—ey = cti—r

and CHi~e} € 2{_»7@719( ),ext}-
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Proof. (1) By Lemma 2.6, C+(~} is also closed under products, and so C1t—} €
L my and Ctt=1NC = 0. Now, let D € £ m} be such that DNC = 0. Since
D€ £y, then D CCH.

(2) Tt is similar to (1). O

Lemma 2.8. If £, &, C £_; then every finitely generated (or finitely cogener-

ated) projective R-module P is injective.

Proof. By Remark 2.1, we have that
§{oey (B(P)) = {M € R-mod | 3 E(P)(X) — M for some set X} .

By the present hypothesis £;_, o3 (E (P)) is closed under submodules, thus P €
{i—.@) (B (P)). So P is E (P)-generated.
Since P is finitely generated (or finitely cogenerated) and projective, then P is a

direct summand of a finite direct sum of copies of E (P). Thus P is injective. O
Corollary 2.9. If £, oy C £y then R is left self-injective.

Remark 2.10. If Q{H,n} C 2{_»} then R is isomorphic to a finite direct product
of right perfect left local rings.

Proof. If (7, F) is a hereditary torsion theory, then 7 € £ . 13, so that F is

closed under homomorphic images and we conclude using [6]. O

Remark 2.11. Notice that in Remark 2.10, such a ring is Morita equivalent to a

finite product of local right and left perfect rings. (see also [5, Theorem VI.2.4])

Lemma 2.12. If £, . 11y C £(_, then R is a finilely cogenerated injective cogen-

erator. In particular every finitely cogenerated projective module is injective.

Proof. By Remark 2.1, we have that
&—m (R) = {M € R-mod | 3 M — R™ for some set X }.

Since R € &y (R) and since &1, 1y (R) is closed under homomorphic images

and direct sums, then as each R-module is a quotient of a free R-module,
{—my (R) = R-mod.
In particular for a simple R-module S, there exists a set X and a monomorphism
E(S) 2 RX.
Then there exists an ¢ € X such that the composition

S E(S) S RY A
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is a monomorphism, p; : RX — R being a projection. Since S C., E (S), then
pip : E(S) — Risamonomorphism. Thus E(S) is isomorphic to a direct summand
of R.

By Remarks 2.10 and 2.11 we can assume that R is local.

If R=FE(S)® Jand J # 0, then R would have at least two maximal left ideals
contradicting that R is local. Hence R = E (S) and R is self-injective and finitely

cogenerated. O

Now we will prove the main Theorem of this work:

Theorem 2.13. The following assertions are equivalent for a ring R:
(1) R is an Artinian principal ideal ring.

(2) L—my € Lo m)-

(3) £~0) © Lmy-

Proof. (1= 2) By [2, Theorem 38] (1) is equivalent to £;_,; = £;.;. Now, if
C GS{H,H}, then C € 2{_,,} and since £{>_,7H} - S{@}, then C 62{_»7@}. Hence
Li—my € L0y

(1=3) If C € £, g}, by [2, Theorem 38], C € £(., 5.} On the other
hand we have that R is a left Artinian ring, so by [4] C € £{_, & .. m} and then
Loy € Ly

(3 = 1) By Corollary 2.9, R is left self-injective.

Let C € £ ¢}, by (3) C € £, @, m}- Then, by [4], R is left Artinian. Thus
R is a QF-ring.

Noting that the condition 2{_»,@} - E{Hﬂ} holds when we take a quotient ?
of R, we get that each factor % is QF-ring too. Then by [7, Proposition 25.4.6B]
R is an Artinian principal ideal ring.

(2= 1) By Lemma 2.12 we have that R is a left self-injective ring and we can
suppose that R is a local right and left perfect ring and finitely cogenerated. Again
notice that the condition S{H,n} - 2{_»7@} holds also with respect to a quotient
%. Then for each two sided ideal I of R we have that % is finitely cogenerated too.

Let J be the Jacobson radical of R. We claim J is nilpotent. Indeed, if I =

) J", then I is a two sided ideal of R. As £ is finitely cogenerated and | (‘]Tn) =
neN neN
0, there exists m € N such that J™ = I. Then J™ is an idempotent two sided ideal

of R. By [8, Chapter VIII, Corollary 6.4] there exists an idempotent e such that
J™ = ReR. Since R = E (S) then R is indecomposable, thus its only idempotents
are 0 and 1. Since J" # R, then e = 0 and thus J" = 0.
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Now, we will see that R is left Artinian by induction on m, the nilpotency index

of J. Since R is right perfect, for m = 1 we have that R & % which is semisimple

Artinian. If m > 1 then we consider the exact sequence

0—>J" 1 3R -0

Jmfl
Since Rad(i) = —Z+ whose nilpotency index is at most m — 1, then 2
Fm—1 Jm—1 y ) Fm—1

is left Artinian by induction hypothesis. On the other hand, J™~! is an %—module
R

J
Jm=1 < R and R is finitely cogenerated, then J™~! is finitely cogenerated and

and since £ is semisimple Artinian, we note that J™ ! is semisimple. Finally as
semisimple. Hence J™~! and R are left Artinian.

Since R is left self-injective, R is a QF-ring. Note that the same applies for
a quotient % of R. By [7, Proposition 25.4.6B], R is an Artinian principal ideal
ring,. (|

Proposition 2.14. If £, ) C £(,,, then
Skel(E{H’H}) =R —nat = E{H,mﬁ,}E()’emt}.

Proof. Since £ .1y € £(.,;, we have by Remark 2.10 that R is a finite di-
rect product of right perfect left local rings. By [9, Propositions 2.4 and 2.5],
every natural class is closed under direct products and quotients. Thus R-nat
= L I, E(),eat) -

If C € £(. 1}, then by hypothesis and Proposition 2.7 we have that

Ctt—m =t~ = {M | M has no non zero submodules in C} .

Hence £y, 11y is S-pseudocomplemented.
Now, since R-nat C £, 1y € £,y and skel(£4.}) = R-nat (see [1, Theorem
12]) we can apply [3, Theorem 1.4] to obtain skel(£(,, ;) = R-nat. O
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