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1. Introduction

Throughout this paper, R denotes an integral domain with quotient field K,

T = R\{0} and M is a unitary torsion free R-module. A submodule N of M is

called prime if N ̸= M and for arbitrary r ∈ R and m ∈ M , rm ∈ N implies m ∈ N

or r ∈ (N : M), where (N : M) = {r ∈ R|rM ⊆ N}. It is clear that when N is a

prime submodule, (N : M) is a prime ideal of R.

An R-module M is called a multiplication R-module, if for each submodule N

of M , there exists an ideal I of R such that N = IM . (For more information about

multiplication modules, see [1], [3], [4], [10], [13], [14]). An integral domain R is

called a valuation ring, if for each x ∈ K\{0}, x ∈ R or x−1 ∈ R. (see [5], [6], [10]).

An integral domain R is called a pseudo-valuation domain, if whenever a prime

ideal P contains the product xy of two elements of K, we have x ∈ P or y ∈ P .

Such a prime ideal P is called a strongly prime ideal. (see [7], [8], [9]). In the first

section of this paper, we generalize the notion of strongly prime ideal to a prime

submodule of a torsion free R-module and obtain results which characterize it. In

the second section, we introduce pseudo-valuation modules and obtain some basic

results.

This research has been supported by Mahani Mathematical Research Center.
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2. Strongly Prime Submodules

Let R be an integral domain with quotient field K and M be a torsion free

R-module. For any submodule N of M , suppose y = r
s ∈ K and x = a

t ∈ MT .

We say yx ∈ N , if there exists n ∈ N such that ra = stn, where T = R\{0} and

MT = {a
t |a ∈ M, t ∈ T}. It is clear that this is a well-defined operation (see [12, p.

399]).

Definition 2.1. Let R be an integral domain with quotient field K and M be a

torsion free R-module. A prime submodule P of M is called strongly prime, if for

any y ∈ K and x ∈ MT , yx ∈ P gives x ∈ P or y ∈ (P : M).

Example 2.2. i) Let R be a domain and P ∈ Spec(R). P is a strongly prime

ideal of R if and only if P is a strongly prime R-submodule of R.

ii) The zero submodule is a strongly prime submodule of M .

iii) For a prime number p, let

R = {pn a
b
|a, b ∈ Z, b ̸= 0, n ∈ N∗, (p, a) = (p, b) = 1},

M = {pn a
b
|a, b ∈ Z, b ̸= 0, n ∈ N, (p, a) = (p, b) = 1}, and

L = {pn a
b
|a, b ∈ Z, b ̸= 0, n ∈ N, n ≥ 2, (p, a) = (p, b) = 1}.

Then L is a strongly prime submodule of M .

iv) Every proper submodule of any vector space, is strongly prime.

v) 2Z is a prime, but not a strongly prime submodule of Z-module Z.
vi) The unique maximal ideal of a discrete valuation domain R (which is not

a field) is a strongly prime ideal, and hence a strongly prime submodule of

R (See [7, Proposition 1.1]).

Following [11], an R-submodule N of MT is called a fractional submodule of M ,

if there exists r ∈ T such that rN ⊆ M .

Theorem 2.3. Let N be a proper submodule of M , then N is strongly prime if

and only if for any fractional ideal I of R and any fractional submodule L of M ,

IL ⊆ N , gives L ⊆ N or I ⊆ (N : M).

Proof. Let N be strongly prime, x ∈ L\N and y ∈ I. Then yx ∈ IL and since

IL ⊆ N , x ∈ MT \N and y ∈ K, we have y ∈ (N : M). So I ⊆ (N : M).

Conversely, it is clear that N is a prime submodule of M . Let for y ∈ K and

x ∈ MT , yx ∈ N . Put I = Ry, a fractional ideal of R and L = Rx, a fractional

submodule of M . IL ⊆ N and so L = Rx ⊆ N or I = Ry ⊆ (N : M). Therefore

x ∈ N or y ∈ (N : M). Thus N is a strongly prime submodule of M . �
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Corollary 2.4. Let N be a proper submodule of M . Then N is strongly prime if

and only if for any y ∈ K and any fractional submodule L of M , yL ⊆ N , gives

L ⊆ N or y ∈ (N : M).

Theorem 2.5. Let N be a prime submodule of M . For the following statements

we have (i)⇔(ii), (iii)⇔(iv), (iv)⇒(i).

i) N is a strongly prime submodule.

ii) For any fractional ideal I of R and any fractional submodule L of M ,

IL ⊆ N gives L ⊆ N or I ⊆ (N : M).

iii) N is comparable to each cyclic fractional submodule of M .

iv) N is comparable to each fractional submodule of M .

Proof. (i)⇔(ii) follows from by Theorem 2.3. (iv)⇒(iii) is clear.

(iii)⇒(iv) Let L be a fractional submodule of M such that L ̸⊆ N .

So there exists x ∈ L\N . Rx is a cyclic fractional submodule of M and Rx ̸⊆ N .

So by (iii) N ⊆ Rx ⊆ L.

(iv)⇒(i) Suppose that for y = r
s ∈ K, x = a

t ∈ MT , we have yx ∈ N , x ̸∈ N

and y ̸∈ (N : M). Since x ̸∈ N by (iv), N ⊆ Rx, xy ∈ Rx. So y ∈ R. On the other

hand, since y ̸∈ (N : M), by (iv) N ⊆ yM , xy ∈ yM . Therefore x ∈ M . Now for

y ∈ R and x ∈ M , yx ∈ N where N is prime, we have x ∈ N or y ∈ (N : M) which

is a contradiction. Thus N is a strongly prime. �

Remark 2.6. In Theorem 2.5, in general, (i)̸⇒(iii). For example, let R = R,
M = R⊕ R, N = R⊕ (0) which is strongly prime, but for x = (0, 1), Rx ̸⊆ N and

N ̸⊆ Rx.

Lemma 2.7. Let P be a strongly prime submodule of M , then (P : M) is a strongly

prime ideal of R.

Proof. It is clear that (P : M) ∈ Spec(R). Let ab ∈ (P : M), for a, b ∈ K. Then

a(bM) = abM ⊆ P . By Corollary 2.4, a ∈ (P : M) or bM ⊆ P . Since P ⊂ M , we

have b ∈ (P : M). So (P : M) is a strongly prime ideal. �

Let R = {pn a
b |a, b ∈ Z, b ̸= 0, n ∈ N∗, (p, a) = (p, b) = 1}, M = R[x]. Then

P = (x) is a prime but not a strongly prime submodule of M , and (P : M) = (0)

is a strongly prime ideal of R. So the converse of Lemma 2.7, is not true.

Definition 2.8. Let M be a R-module and P be an ideal of ring R. Define

TP (M) = {m ∈ M | (1− p)m = 0, for some p ∈ P}.
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If M = TP (M), then M is called a P -torsion R-module, and if there exists

m ∈ M and q ∈ P such that (1 − q)M ⊆ Rm, then M is called a P -cyclic R-

module[1].

Theorem 2.9. Let M be an R-module. Then M is a multiplication R-module if

and only if for every maximal ideal P of R, M is P -cyclic or P -torsion R-module.

Proof. [1,Theorem1.2]. �

Proposition 2.10. Let P be a prime ideal of an integral domain R and M be a

faithful multiplication R-module. Then P is a strongly prime ideal if and only if

PM is a strongly prime submodule.

Proof. It is enough to show the necessity. It is clear that PM is a prime submodule

of M . Suppose that for y = r
s ∈ K, x = a

t ∈ MT , yx ∈ PM . If y ̸∈ P , put

A = {b ∈ R|bx ∈ PM}. A is an ideal of R. If A = R, then x ∈ PM . Let A ̸= R,

then there exists a maximal ideal Q of R such that A ⊆ Q. Since M ̸= TQ(M), M

is Q-cyclic. So there exists m ∈ M , q ∈ Q such that (1 − q)M ⊆ Rm. Therefore

(1 − q)PM ⊆ Pm. Now there exists u ∈ R, v ∈ P such that (1 − q)a = um,

(1− q)ra = stvm. So ru = stv and u
t ∈ P . Since (1− q)a = um, hence (1− q)x =

(1− q)at = u
tm ∈ PM and therefore 1− q ∈ A j Q, which is a contradiction. Thus

PM is a strongly prime submodule of M . �

Theorem 2.11. Let P be a prime submodule of M . Then P is strongly prime if

and only if for any y ∈ K, y−1P ⊆ P or y ∈ (P : M).

Proof. Let y ∈ K\(P : M) and x ∈ P . Since x = yy−1x ∈ P and P is a strongly

prime, y−1x ∈ P . So y−1P ⊆ P . Conversely, suppose that for y ∈ K, x ∈ MT , we

have yx ∈ P . If y−1P ⊆ P , then x = y−1(yx) ∈ P . Otherwise y ∈ (P : M). So P

is strongly prime. �

Lemma 2.12. Let L be a strongly prime submodule of M and N be a proper

submodule of M such that NT ∩M = N . Then L ∩N = N or L ∩N is a strongly

prime submodule of N .

Proof. Let L∩N ̸= N . It is clear that L∩N is a prime submodule of N . Let for

y ∈ K, x ∈ NT , yx ∈ L ∩N . Since yx ∈ L and L is strongly prime, y ∈ (L : M) or

x ∈ L. Since NT ∩M = N , y ∈ (L ∩N : N) or x ∈ N ∩ L. So N ∩ L is a strongly

prime submodule of N . �

Lemma 2.13. Let N j L be two submodules of M such that for any y ∈ K,

yN j N . Then L is a strongly prime submodule of M if and only if L
N is a strongly

prime submodule of M
N .
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Proof. Let L be a strongly prime submodule of M , and y ∈ K. By Theorem 2.11,

y−1L ⊆ L or y ∈ (L : M). So y−1 L
N j L

N or y ∈ ( L
N : M

N ).

Conversely, let y ∈ K. Since L
N is strongly prime, y−1 L

N j L
N or y ∈ ( L

N : M
N ).

So y−1L ⊆ L or y ∈ (L : M) and by Theorem 2.11, L is a strongly prime submodule

of M . �

Remark 2.14. Let f : M → M ′ be an R-epimorphism and N ′ be a strongly prime

submodule of M ′. Then in general N = f−1(N ′) is not a strongly prime submodule

of M . Consider

f : Z[x] → Z, p[x] 7→ p[0]

which is clearly a surjective Z-module homomorphism. However the kernel of f

which is f−1(0) is not a strongly prime submodule of Z[x], although {0} is strongly

prime in Z. To see this, we can take the product 2.x2 = x ∈ f−1(0), in which

2 ̸∈ (f−1(0) : Z[x]) = 0 and x
2 ̸∈ f−1(0).

Proposition 2.15. Let Q be a strongly prime submodule of M and P be a prime

ideal of R such that (Q : M) ⊆ P . Then RP - module, QP is a strongly prime

submodule of MP .

Proof. Let for y = r
s ∈ K and x = a

t ∈ MT , yx ∈ QP . Then ra ∈ Q and since Q

is a prime submodule a ∈ Q or rM ⊆ Q. So x ∈ Q or y ∈ (QP : MP )RP . �

Following [2], the R-module M is said to be integrally closed whenever ynmn +

· · ·+ ym1 +m0 = 0, for some n ∈ N, y ∈ K and mi ∈ M , then ymn ∈ M .

Lemma 2.16. Let P be a strongly prime submodule of an R-module M . Then P

is an integrally closed R-module.

Proof. Let ynxn + · · · + yx1 + x0 = 0, for y ∈ K, xi ∈ P . Since P is strongly

prime, y−1P j P or y ∈ (P : M). If y−1P j P , then y−iP j P for all i ∈ N. So

yxn = −(xn−1 + y−1xn−2 + · · · + y−(n−1)x0) ∈ P . If y ∈ (P : M), then yM j P

and so yxn ∈ P . Thus P is an integrally closed R-module. �

Lemma 2.17. Let (R,m) be a quasi-local domain and M be an R-module. If M

is a finitely generated R-module or mM ̸= M , where m is a strongly prime ideal of

R, then mM is a strongly prime submodule of M .

Proof. Since mM ̸= M and m ∈ max(R), hence mM ∈ Spec(M). Let y ∈ K. If

y ̸∈ R, then y−1m ⊆ m and so y−1mM ⊆ mM . If y ∈ R and y ̸∈ m, then y−1 ∈ R

and so y−1mM ⊆ mM .

Finally, if y ∈ m, then y ∈ (mM : M) = m. Thus mM is a strongly prime

submodule of M . �
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3. Pseudo-Valuation Modules

Following [7], an integral domain R is called a pseudo-valuation domain (PV D),

if every prime ideal of R is a strongly prime. By [7, Lemma 2.1], any valuation

domain is PV D. In this section we generalize this concept to torsion free R-modules

and obtain basic results.

Definition 3.1. An R-module M is called a pseudo-valuation module (PVM), if

every prime submodule of M is strongly prime.

Example 3.2. i) Let R be a domain. R is a PV D if and only if the R-module

R is a PVM .

ii) The Z-module Q is a PVM .

iii) Any vector space is PVM .

iv) The Z-module Z is not a PVM .

Lemma 3.3. Let M be a PVM . Then {(P : M)|P ∈ Spec(M)} is a totally ordered

set.

Proof. Let P,Q ∈ Spec(M), a ∈ (P : M)\(Q : M) and b ∈ (Q : M). If a
b ∈ R,

then since bM ⊆ Q, we have aM = a
b bM j a

bQ ⊆ Q. So a ∈ (Q : M) which is a

contradiction. Therefore a
b ̸∈ R. By Theorem 2.11, b

aP ⊆ P . Now since a ∈ (P :

M), hence bM = b
aaM ⊆ b

aP ⊆ P . So b ∈ (P : M) and (Q : M) ⊆ (P : M). �

Corollary 3.4. Let M be a multiplication PVM . Then the prime submodules of

M are linearly ordered and so M has an unique maximal submodule.

Remark 3.5. Let R = {pn a
b |a, b ∈ Z, b ̸= 0, n ∈ N∗, (p, a) = (p, b) = 1} and

M = R[x]. Then R is a PV D, but M is not a PVM .

Lemma 3.6. Let M be a faithful multiplication R-module. Then M is a PVM if

and only if R is a PV D.

Proof. Let M be a PVM and P ∈ Spec(R). Since M is a multiplication, PM ∈
Spec(M) and since M is a PVM , PM is a strongly prime submodule of M . By

Proposition 2.10, P is a strongly prime ideal of R. So R is a PV D. Conversely, let

N ∈ Spec(M). Since M is a multiplication, N = PM , for some prime ideal P of

R. Since R is a PV D, P is a strongly prime ideal. Now by Proposition 2.10, N is

a strongly prime submodule. So M is a PVM . �
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Proposition 3.7. Let (R,m) be a quasi-local domain and M be an R-module. For

the following statements we have (i)⇒(ii)⇒(iii).

i) M is a PVM and m is a strongly prime ideal of R.

ii) For any two submodules N , L of M , (N : M) ⊆ (L : M) or m(L : M) ⊆
m(N : M).

iii) For any two submodules N , L of M , (N : M) ⊆ (L : M) or m(L : M) ⊆
(N : M).

Proof. (i)⇒(ii) Let N , L be two submodules of M , such that (N : M) ̸⊆ (L : M).

So there exists a ∈ (N : M)\(L : M). Let b ∈ (L : M), then a
b ̸∈ R. Since

m is a strongly prime ideal b
am ⊆ m. So bm j am ⊆ m(N : M). Therefore

m(L : M) ⊆ m(N : M).

(ii)⇒(iii) This is clear. �

Remark 3.8. It is easily seen that in the example of Remark 3.5, (iii)̸⇒(i) .

Proposition 3.9. Let M be a finitely generated R-module. Then for the following

statements we have (i)⇒(ii)⇔(iii), (i)⇒(iv)⇔(v).

i) M is a PVM .

ii) For any y ∈ K\R and a ∈ M , if M ̸= Ra, then Ra ⊆ yM .

iii) For any y ∈ K\R and a ∈ M , if M ̸= Ra, then y−1a ∈ M .

iv) For any y ∈ K\R and a ∈ R, if M ̸= aM , then (y + a)M = yM .

v) For any y ∈ K\R and a ∈ R, if M ̸= aM , then y−1aM ⊆ M .

Proof. (i)⇒(ii) Let y ∈ K\R, M ̸= Ra, for a ∈ M . Since M is finitely generated,

there exists a prime submodule P such that a ∈ P . By Proposition 2.10, y−1P ⊆ P .

So y−1a ∈ y−1P ⊆ P ⊆ M . Therefore Ra ⊆ yM .

(ii)⇔(iii) This is clear.

(i)⇒(iv) Let y ∈ K\R, a be a non unit of R. Then y+a ̸∈ R, aM ̸= M . Since M

is finitely generated there exists prime submodule P of M such that aM ⊆ P . On

the other hand, by Lemma 2.7 and Proposition 2.10, (y + a)−1(P : M) ⊆ (P : M).

Therefore (y + a)−1a ∈ (P : M) ⊆ R. So (y + a)−1y = 1 − (y + a)−1a ∈ R and

(y + a)−1yM ⊆ M . Thus yM ⊆ (y + a)M . Conversely, since y ∈ K\R, y−1(P :

M) ⊆ (P : M), hence y−1a ∈ (P : M) ⊆ R. Therefore (y + a)y−1 = 1 + y−1a ∈ R

and (y + a)y−1M ⊆ M . Thus (y + a)M ⊆ yM .

(iv)⇒(v) Let y = r
s ∈ K\R and x ∈ M . So (y + a)x ∈ yM . There exists u ∈ M

such that (y + a)x = yu. So (r + sa)x = ru and y−1ax = u − x ∈ M . Therefore

y−1aM ⊆ M .
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(v)⇒(iv) Let y ∈ K\R, a be a non unit of R. Then y + a ̸∈ R. By (v),

(y+a)−1aM ⊆ M . So y(y+a)−1M = [1−(y+a)−1a]M ⊆ M−(y+a)−1aM ⊆ M .

Therefore yM ⊆ (y+ a)M . Conversely, by (v), y−1(y+ a)M = (1+ y−1a)M ⊆ M .

So (y + a)M ⊆ yM . �

Proposition 3.10. Let M be a free PVM . Then R is a PV D.

Proof. Let P be a prime ideal of R, then P ⊕ · · · ⊕ P is a prime submodule of

R⊕· · ·⊕R. Since M is a PVM , P ⊕· · ·⊕P is strongly prime. Let y ∈ K\R. Then

by Theorem 2.11, y−1(P ⊕ · · · ⊕ P ) ⊆ P ⊕ · · · ⊕ P and so y−1P ⊆ P . Therefore P

is a strongly prime ideal of R and so R is a PV D. �

Proposition 3.11. Let M be a finitely generated PVM such that every nonzero

prime submodule is maximal. Then R is a PV D.

Proof. Let P be a nonzero prime ideal of R. By [2, Lemma 3.11], dimR = 1.

So PM is a prime submodule and hence a strongly prime submodule of M . Now

by Lemma 2.7, P = (PM : M) is a strongly prime ideal of R. Therefore R is a

PV D. �

Lemma 3.12. Let M be a Noetherian PVM . Then for any y ∈ K\R, y−1 ∈ R,

where R is an integral closure of R.

Proof. Let y ∈ K\R. There exists a strongly prime submodule of M like P . So

by Theorem 2.11, y−1P ⊆ P . Since M is Noetherian, P is finitely generated, and

we have y−1 ∈ R. �

Lemma 3.13. Let M be an R-module and for any y ∈ K\R, y−1 ∈ R. Then for

any prime submodule P of M , y−1(P : M) ⊆ (P : M).

Proof. Let P be a prime submodule of M . Then (P : M) ∈ Spec(R) and there

exists q ∈ Spec(R) such that q ∩ R = (P : M). Let y ∈ K\R. Since y−1 ∈ R, we

have y−1(P : M) ⊆ y−1q ⊆ q. On the other hand, we can show that y−1(P : M) ⊆
R. So y−1(P : M) ⊆ q ∩R = (P : M). �

Lemma 3.14. Let M be a Noetherian R-module such that for any y ∈ K\R,

y−1 ∈ R. Then R is a PV D.

Proof. Let P ∈ Spec(R). There exists a prime submodule N of M such that

(N : M) = P . By Lemma 3.13, y−1(N : M) ⊆ (N : M). So y−1P ⊆ P . By

Theorem 2.11, P is a strongly prime ideal and so R is a PV D. �

Theorem 3.15. Let M be a Noetherian PVM . Then R is a PV D.
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Proof. Take y ∈ K\R and a prime ideal P of R. There exists a prime submodule

N of M such that (N : M) = P . Since M is a PVM , N is a strongly prime

submodule of M , and so y−1N ⊆ N . It follows that y−1PM ⊆ y−1N ⊆ N . Since

M ̸= N and N is strongly prime, we must have y−1P ⊆ (N : M) = P . Therefore,

it follows from [7, proposition 1.2] that P is a strongly prime ideal of R. �

Theorem 3.16. Let M be a finitely generated noncyclic PVM which has only one

maximal submodule. Then M is an integrally closed R-module.

Proof. Let ynxn+ · · ·+yx1+x0 = 0, for xi ∈ M , y ∈ K. Let P be an unique max-

imal submodule of M . As M is not cyclic and P is the unique maximal submodule

of M , we have for any i, xi ∈ P . Since M is a PVM , P is a strongly prime. So by

Theorem 2.11, y ∈ (P : M) or y−1P j P . If y ∈ (P : M), then yM j P j M and

so yxn ∈ M . If y−1P ⊆ P , then for any i ∈ N, y−iP ⊆ P and so yxn ∈ P ⊆ M .

Therefore M is an integrally closed R-module. �

Lemma 3.17. Let M be a divisible R-module. Then M is a PVM .

Proof. Let P be a prime submodule of M , y = r
s ∈ K and x ∈ P . If y = 0, then

y ∈ (P : M). Let y ̸= 0, so rM = M . There exists u ∈ M such that x = ru. Since

x ∈ P and P is a prime submodule u ∈ P or r ∈ (P : M).

If r ∈ (P : M), then M = rM ⊆ P which is a contradiction. So u ∈ P and

y−1x = s
rx = s

r ru = su ∈ P . Therefore y−1P ⊆ P and P is a strongly prime

submodule of M . Thus M is a PVM . �

Theorem 3.18. Let M be an injective R-module. Then M is a PVM .

Proof. Since any injective R-module is divisible, hence by Lemma 3.17, M is a

PVM . �

Following [11], a torsion free R-module M is called a valuation R-module (VM)

if for all y ∈ K, yM ⊆ M or y−1M ⊆ M .

By [7, Proposition 1.1], every V D is PV D, but by the example in Remark 3.5,

any VM is not a PVM . Also by [7], since every PV D is not a V D, hence every

PVM is not a VM .

Lemma 3.19. Let M be a finitely generated, non cyclic, PVM . Then M is a

VM .

Proof. Let y ∈ K. If y ∈ R, then yM j M . If y ̸∈ R, then by Proposition 3.9,

(i⇒iii) for any a ∈ M , y−1a ∈ M and so y−1M ⊆ M . Therefore M is a VM . �
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Proposition 3.20. Let M be a Noetherian, integrally closed, PVM . Then M is

a VM .

Proof. Let y ∈ K. If y ∈ R, then yM j M . If y ̸∈ R, then by Lemma 3.12,

y−1 ∈ R. Now since M is an integrally closed R-module, M is also an R-module.

So y−1M ⊆ M and therefore M is a VM . �

Proposition 3.21. Let an R-module M have an invertible strongly prime submod-

ule. Then M is a VM .

Proof. Let P be an invertible strongly prime submodule of M , then P ′P = M .

Let y ∈ K. Then by Theorem 2.11, y−1P ⊆ P or y ∈ (P : M). If y ∈ (P : M),

then yM ⊆ P ⊆ M . If y−1P ⊆ P , then y−1M = y−1P ′P ⊆ P ′P = M . Therefore

M is a VM . �
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