PAPER DETAILS

TITLE: ON THE ASSOCIATED PRIMES OF THE d-LOCAL COHOMOLOGY MODULES

AUTHORS: Z RAHIMIMOLAEI, Sh PAYROVI, S BABAEI

PAGES: 55-63

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/613179

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA Volume 25 (2019) 55-63 DOI: 10.24330/ieja.504110

ON THE ASSOCIATED PRIMES OF THE *d*-LOCAL COHOMOLOGY MODULES

Z. Rahimi-Molaei, Sh. Payrovi and S. Babaei

Received: 23 January 2018; Revised: 29 July 2018; Accepted: 18 August 2018 Communicated by A. Çiğdem Özcan

ABSTRACT. This paper is concerned to relationship between the sets of associated primes of the *d*-local cohomology modules and the ordinary local cohomology modules. Let *R* be a commutative Noetherian local ring, *M* an *R*-module and *d*, *t* two integers. We prove that $\operatorname{Ass}(H_d^t(M)) = \bigcup_{I \in \Phi} \operatorname{Ass}(H_I^t(M))$ whenever $H_d^i(M) = 0$ for all i < t and $\Phi = \{I : I \text{ is an ideal of R with dim } R/I \leq d\}$. We give some information about the non-vanishing of the *d*-local cohomology modules. To be more precise, we prove that $H_d^i(R) \neq 0$ if and only if i = n - d whenever *R* is a Gorenstein ring of dimension *n*. This result leads to an example which shows that $\operatorname{Ass}(H_d^{n-d}(R))$ is not necessarily a finite set.

Mathematics Subject Classification (2010): 13D45, 14B15 Keywords: Associated primes, vanishing theorem, *d*-local cohomology module

1. Introduction

Throughout this paper, R denotes a commutative Noetherian ring with non-zero identity. For an ideal I of R and an R-module M, the *i*th local cohomology module of M with respect to I is defined as

$$H_I^i(M) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_R^i(R/I^n, M).$$

The reader can refer to [6] for the basic properties of local cohomology modules. An important problem in commutative algebra is determining when the set of associated primes of the *i*th local cohomology module $H_I^i(M)$ is finite. In [10], Huneke raised the following question: If M is a finitely generated R-module, then the set of associated primes of $H_I^i(M)$ is finite for all ideals I of R and all $i \ge 0$. This problem has been studied by many authors, it was shown that it is true in many situations, for examples see [4,5,8]. In particular, it is shown in [5] that if for a finitely generated R-module M and integer t, the local cohomology modules $H_I^i(M)$ are finitely generated for all i < t, then the set $Ass(H_I^t(M))$ is finite. There are several papers devoted to the extension of the above results to more general situations, for examples see [1,9]. However there are counterexamples which show that it is not true in general, for examples see [11,16]. The purpose of this paper is to make a counterexample to above question in the context of general local cohomology modules. The theory of general local cohomology modules over commutative Noetherian rings introduced by Bijan-Zadeh in [3]. General local cohomology theory described as follows.

Let Φ be a non-empty set of ideals of R. We call Φ a system of ideals of R if, whenever $I, I' \in \Phi$, then there exists $J \in \Phi$ such that $J \subseteq II'$. Such a system of ideals gives rise to an additive, left exact functor

$$\Gamma_{\Phi}(M) = \{ x \in M : Ix = 0 \text{ for some ideal } I \in \Phi \}$$

from the category of *R*-modules and *R*-homomorphisms to itself. $\Gamma_{\Phi}(-)$ is called the Φ -torsion functor. For each $i \geq 0$, the *i*th right derived functor of $\Gamma_{\Phi}(-)$ is denoted by $H^i_{\Phi}(-)$. For an ideal *I* of *R*, if $\Phi = \{I^n : n \in \mathbb{N}\}$, then $H^i_{\Phi}(-)$ coincides with the ordinary local cohomology functor $H^i_I(-)$.

Let $d \ge 0$ be an integer. We denote $\Gamma_{\Phi}(-)$ and $H^i_{\Phi}(-)$ by $\Gamma_d(-)$ and $H^i_d(-)$ respectively, for the system of ideals $\Phi = \{I : I \text{ is an ideal of } \mathbb{R} \text{ with } \dim \mathbb{R}/I \le d\}$. The functor $\Gamma_d(-)$ was originally defined in [2] and the modules $H^i_d(M)$ were called *d*-local cohomology modules associated to M were studied in [18,19]. After some preliminary results in Section 2, for an \mathbb{R} -module M and an integer t we prove that

$$\operatorname{Ass}(H^t_d(M)) = \bigcup_{I \in \Phi} \operatorname{Ass}(\operatorname{Ext}^t_R(R/I, M)) = \bigcup_{I \in \Phi} \operatorname{Ass}(H^t_I(M)),$$

where $\Phi = \{I : I \text{ is an ideal of } \mathbb{R} \text{ with } \dim \mathbb{R}/I \leq d\}$ and $H_d^i(M) = 0$ for all i < t. In Section 3, we shall provide some results concerning the vanishing and non-vanishing of *d*-local cohomology modules: we shall prove that, over a local ring R, if the non-zero finitely generated R-module M has (Krull) dimension n, then there exists an integer i with $0 \leq i \leq d$ such that $H_d^{n-i}(M) \neq 0$. We shall also prove that, when R is local Gorenstein of dimension n, then $H_d^i(R) \neq 0$ if and only if i = n - d. Furthermore, we shall prove that $H_d^{n-d}(R)$ is a non-Artinian flat module for which $\operatorname{Ass}(H_d^{n-d}(R)) = \{\mathfrak{p} \in \operatorname{Spec}(R) : \dim \mathbb{R}/\mathfrak{p} = d\}$. This result leads to an example which shows that the Huneke question is not true in the context of *d*-local cohomology modules.

2. The associated primes

It is our intention in this section to present the relationship between the sets of associated primes of the d-local cohomology modules and the ordinary local

cohomology modules. So throughout this section, R will denote a ring and I is an ideal of R, d is an integer and $\Phi = \{I : I \text{ is an ideal of } R \text{ with } \dim R/I \leq d\}.$

Lemma 2.1. Let M be an R-module and t be an integer such that $H^i_d(M) = 0$ for all i < t. Then the following statements are true:

- (i) $H^i_I(M) \subseteq H^i_d(M)$ for all $I \in \Phi$ and $i \leq t$.
- (ii) $H^i_c(M) \subseteq H^i_d(M)$ for all $c \leq d$ and $i \leq t$.

Proof. (i) Since $\operatorname{Hom}_R(R/I, \Gamma_d(M)) \cong \operatorname{Hom}_R(R/I, M)$ for all $I \in \Phi$ so, by [14, Theorem 11.38], the Grothendieck spectral sequence $E_2^{p,q} := \operatorname{Ext}_R^p(R/I, H_d^q(M))$ converges to $E^{p+q} := \operatorname{Ext}_R^{p+q}(R/I, M)$. It follows that there is a finite filtration

$$0 = F^{q+1}E^q \subseteq F^q E^q \subseteq \dots \subseteq F^1 E^q \subseteq F^0 E^q = E^q$$

of E^q such that $E_{\infty}^{p,q-p} \cong F^p E^q / F^{p+1} E^q$, for all $p = 0, 1, \dots, q$. Because $E_{\infty}^{p,q-p}$ is a subquotient of $E_2^{p,q-p}$ so $E_{\infty}^{p,q} = 0$, for all q < t. Thus $E_{\infty}^{0,q} \cong E^q$, for all $q \leq t$. On the other hand, for all $q \leq t$, by the sequence $0 \longrightarrow E_2^{0,q} \longrightarrow E_2^{2,q-1}$ and $E_2^{2,q-1} = 0$ we have $E_{\infty}^{0,q} \cong E_2^{0,q}$. Thus $E^q \cong E_2^{0,q}$. Therefore, $\operatorname{Ext}_R^i(R/I, M) \cong \operatorname{Hom}_R(R/I, H_d^i(M))$ and so

$$\Gamma_{I}(H_{d}^{i}(M)) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Hom}_{R}(R/I^{n}, H_{d}^{i}(M)) \cong \varinjlim_{n \in \mathbb{N}} \operatorname{Ext}_{R}^{i}(R/I^{n}, M) \cong H_{I}^{i}(M),$$

for all $i \leq t$. The proof is therefore complete.

(ii) It is similar to that of (i).

Corollary 2.2. Let M be an R-module and t be an integer such that $H_d^i(M) = 0$, for all i < t. Then the following statements are true:

- (i) $\operatorname{Ass}(H^i_I(M)) = \operatorname{Ass}(H^i_d(M)) \cap V(I)$, for all $I \in \Phi$ and $i \leq t$.
- (ii) $\operatorname{Ass}(H^i_J(M)) \subseteq \operatorname{Ass}(H^i_I(M))$ for all $I, J \in \Phi$ with $I \subseteq J$ and $i \leq t$.

Proof. (i) By a similar argument to that of Lemma 2.1 (i), one can shows that $\operatorname{Hom}_R(R/I, H^i_d(M)) \cong \operatorname{Hom}_R(R/I, H^i_I(M))$, for all $I \in \Phi$ and all $i \leq t$. Therefore, $\operatorname{Ass}(\operatorname{Hom}_R(R/I, H^t_d(M))) = \operatorname{Ass}(\operatorname{Hom}_R(R/I, H^t_I(M)))$. Thus $\operatorname{Ass}(H^t_I(M)) = V(I) \cap \operatorname{Ass}(H^t_d(M))$.

(ii) It is obvious by (i).

We say that an *R*-module *M* is *d*-torsion if $\Gamma_d(M) = M$, and it is *d*-torsion free if $\Gamma_d(M) = 0$. Note, if *M* is *d*-torsion, then $\text{Supp}(M) \subseteq \Phi$. Also, if *M* is finitely generated of dim M = n, then *M* is *d*-torsion if and only if $n \leq d$. We are now in a position to prove that the main result of this section.

Theorem 2.3. Let M be an R-module and t be an integer such that $H^i_d(M) = 0$, for all i < t. Then

$$\operatorname{Ass}(H^t_d(M)) = \bigcup_{\mathfrak{p} \in V(\Phi)} \operatorname{Ass}(\operatorname{Ext}^t_R(R/\mathfrak{p}, M)) = \bigcup_{\mathfrak{p} \in V(\Phi)} \operatorname{Ass}(H^t_\mathfrak{p}(M)),$$

where $V(\Phi) = \operatorname{Spec}(R) \cap \Phi$.

Proof. First of all, we show that

$$\operatorname{Ass}(H_d^t(M)) = \bigcup_{\mathfrak{p} \in V(\Phi)} \operatorname{Ass}(\operatorname{Hom}_R(R/\mathfrak{p}, H_d^t(M))).$$

For an ideal I of R, it is clear that $0 :_{H_d^t(M)} I \cong \operatorname{Hom}_R(R/I, H_d^t(M))$ thus $\operatorname{Ass}(H_d^t(M)) \supseteq \bigcup_{\mathfrak{p} \in V(\Phi)} \operatorname{Ass}(\operatorname{Hom}_R(R/\mathfrak{p}, H_d^t(M)))$. Let $\mathfrak{p} \in \operatorname{Ass}(H_d^t(M))$. Then there exists a non-zero element m of $H_d^t(M)$ such that $\mathfrak{p} = \operatorname{Ann}(m)$ so that $\mathfrak{p} \in V(\Phi)$ by the pervious paragraph, because $H_d^t(M)$ is a d-torsion R-module. Thus $m \in$ $0 :_{H_d^t(M)} \mathfrak{p} \cong \operatorname{Hom}_R(R/\mathfrak{p}, H_d^t(M))$ and therefore $\bigcup_{\mathfrak{p} \in V(\Phi)} \operatorname{Ass}(\operatorname{Hom}_R(R/\mathfrak{p}, H_d^t(M)))$ $\supseteq \operatorname{Ass}(H_d^t(M))$. The result follows now by the proof of Lemma 2.1, since

$$\operatorname{Hom}_{R}(R/\mathfrak{p}, H^{t}_{d}(M)) \cong \operatorname{Ext}_{R}^{t}(R/\mathfrak{p}, M) \cong \operatorname{Hom}_{R}(R/\mathfrak{p}, H^{t}_{\mathfrak{p}}(M)).$$

Theorem 2.4. Let M be an R-module and t be an integer such that $H_d^i(M) = 0$, for all i < t. Then $Ass(H_d^t(M)) \subseteq \{\mathfrak{p} : \dim R/\mathfrak{p} = d\}$ if and only if $H_c^t(M) = 0$ for all integers c < d.

Proof. Assume that $\operatorname{Ass}(H_d^t(M)) \not\subseteq \{\mathfrak{p} : \dim R/\mathfrak{p} = d\}$. Thus there exists a prime ideal \mathfrak{p} in $\operatorname{Ass}(H_d^t(M))$ such that $\dim R/\mathfrak{p} = c < d$. Now, the exact sequence $0 \longrightarrow \Gamma_c(R/\mathfrak{p}) \longrightarrow \Gamma_c(H_d^t(M))$ and $\Gamma_c(R/\mathfrak{p}) = R/\mathfrak{p}, \ \Gamma_c(H_d^t(M)) \cong H_c^t(M)$ show that $\mathfrak{p} \in \operatorname{Ass}(H_c^t(M))$. Hence, $H_c^t(M) \neq 0$. The converse is true by Lemma 2.1 (ii).

3. The non-vanishing theorems

In this section, we shall provide some results concerning the vanishing and nonvanishing of *d*-local cohomology modules. Throughout R is a local ring with maximal ideal \mathfrak{m} and d is a non negative integer.

We are now in a position to prove that the non-vanishing theorems in the *d*-local cohomology modules.

Theorem 3.1. Let (R, \mathfrak{m}) be a local ring and let M be a non-zero finitely generated R-module of dimension n. Then there is at least one j with $0 \leq j \leq d$ for which $H_d^{n-j}(M) \neq 0$.

Proof. Since $\Gamma_{\mathfrak{m}}(\Gamma_d(M)) \cong \Gamma_{\mathfrak{m}}(M)$, so there is the Grothendieck spectral sequence

$$E_2^{i,j}:=H^i_{\mathfrak{m}}(H^j_d(M)) \Rightarrow H^{i+j}_{\mathfrak{m}}(M)=E^{i+j}.$$

We have $\operatorname{Supp}(H_d^j(M)) \subseteq \Phi$ and so $\dim H_d^j(M) \leq d$. Thus by [6, Theorem 6.1.2], $E_2^{i,j} = 0$ for all i > d. There is a filtration $0 \subseteq F^n E^n \subseteq \cdots \subseteq F^1 E^n \subseteq E^n$ with $E_{\infty}^{i,n-i} \cong F^i E^n / F^{i+1} E^n$. Then $F^{d+1} E^n = \cdots = F^n E^n = 0$. If $E_{\infty}^{j,n-j} = 0$, for all j with $0 \leq j \leq d$, then $F^d E^n = \cdots = F^0 E^n = E^n = 0$ contrary to [6, Theorem 7.3.2]. So suppose that $E_{\infty}^{j,n-j} \neq 0$ for some j with $0 \leq j \leq d$. Thus $E_2^{j,n-j} \neq 0$ and then $H_d^{n-j}(M) \neq 0$. The proof is therefore complete.

Theorem 3.2. Let R be a complete ring with respect to the \mathfrak{m} -adic topology. Then the following statements are true:

- (i) If M is a finitely generated R-module of dimension n and 0 < d ≤ n, then Hⁿ_d(M) = 0.
- (ii) If dim R = n and 0 < d < n, then either $H_d^{n-1}(R) = 0$ or $H_d^{n-1}(R)$ is not finitely generated. In particular, $H_1^{n-1}(R)$ is not finitely generated.

Proof. (i) Let $\mathfrak{p} \in \operatorname{Ass}(M)$ and $\dim R/\mathfrak{p} = n$. In this case Φ contains an ideal I of R with $\dim R/I = 1$ and $\mathfrak{p} \subseteq I$. So that $\dim R/(I + \mathfrak{p}) = \dim R/I = 1$ thus in view of [13, Theorem 2.4], the result follows.

(ii) Let $H_d^{n-1}(R) \neq 0$. Then $H_d^{n-1}(R) \cong H_d^{n-1}(R/\Gamma_d(R))$. So that in view of [6, Lemma 2.1.1] there exists a non-zero divisor $x \in \mathfrak{m}$. The exact sequence $0 \to R \xrightarrow{x} R \to R/xR \to 0$ induces an exact sequence $\cdots \to H_d^{n-1}(R) \xrightarrow{x} H_d^{n-1}(R) \to H_d^{n-1}(R/xR)$. By assumption R/xR is a local complete ring of dimension n-1, so that $H_d^{n-1}(R/xR) = 0$ by (i). Thus $H_d^{n-1}(R) = xH_d^{n-1}(R)$ which implies $H_d^{n-1}(R)$ is not finitely generated by Nakayma's Lemma.

In view of Theorem 3.1, there exists j with $0 \le j \le 1$ such that $H_1^{n-j}(R) \ne 0$ on the other hand $H_1^n(R) = 0$ by (i). Hence, $H_1^{n-1}(R) \ne 0$ and so is not finitely generated.

Corollary 3.3. If R is a complete ring with respect to the \mathfrak{m} -adic topology and M is a non-zero finitely generated R-module of dimension $n \ge 1$, then there is at least one j with $1 \le j \le d$ for which $H_d^{n-j}(M) \ne 0$.

Proof. It is obvious by Theorems 3.1 and 3.2.

Theorem 3.4. Let R be Gorenstein of dimension n and let $0 \le d \le n$. Then the following statements are true:

(i) $H^i_d(R) \neq 0$ if and only if i = n - d.

- (ii) $\operatorname{Ass}(H_d^{n-d}(R)) = \{ \mathfrak{p} \in \operatorname{Spec}(R) : \dim R/\mathfrak{p} = d \}.$
- (iii) $H_d^{n-d}(R)$ is not an Artinian module, for d > 0.
- (iv) $H^{n-d}_d(R)$ has injective dimension d.
- (v) $H^{n-d}_d(R)$ is a flat module.

Proof. (i) Let $0 \to R \to E^0 \to E^1 \to \cdots \to E^{n-1} \to E^n \to 0$ be a minimal injective resolution of R. Then by [12, Theorems 18.1 and 18.8] we have $E^i = \bigoplus_{\dim R/\mathfrak{p}=n-i} E(R/\mathfrak{p})$. If $i \ge n-d$, then $\dim R/\mathfrak{p} = n-i \le n-(n-d) = d$, and so $\mathfrak{p} \in \Phi$. Thus $\Gamma_d(E(R/\mathfrak{p})) = E(R/\mathfrak{p})$ and therefore $\Gamma_d(E^i) = E^i$. If i < n-d, then $\dim R/\mathfrak{p} = n-i > d$ and so $\mathfrak{p} \notin \Phi$. Thus $\Gamma_d(E(R/\mathfrak{p})) = 0$ and then $\Gamma_d(E^i) = 0$. It follows that $H^i_d(R) = 0$, whenever $i \ne n-d$. On the other hand, by Theorem 3.1, there is one j with $0 \le j \le d$ for which $H^{n-j}_d(R) \ne 0$. Hence, $H^{n-d}_d(R) \ne 0$.

(ii) This is immediate from (i) that

$$\operatorname{Ass}(H^{n-d}_d(R)) \subseteq \operatorname{Ass}(\bigoplus_{\dim R/\mathfrak{p}=d} E(R/\mathfrak{p})) = \{\mathfrak{p} \in \operatorname{Spec}(R) : \dim R/\mathfrak{p}=d\}.$$

Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and $\dim R/\mathfrak{p} = d$. By [2, Lemma], $(H_d^{n-d}(R))_{\mathfrak{p}} \cong H_{d-\dim R/\mathfrak{p}}^{n-d}(R_{\mathfrak{p}}) = H_0^{n-d}(R_{\mathfrak{p}}) \cong H_{\mathfrak{p}R_\mathfrak{p}}^{n-d}(R_{\mathfrak{p}})$ since every Gorenstein local ring is catenary and biequidimensional, see [12, Theorem 17.3]. Moreover, $H_{\mathfrak{p}R_\mathfrak{p}}^{n-d}(R_\mathfrak{p}) \neq 0$, by [6, Theorem 7.3.2]. Thus \mathfrak{p} is a minimal element of $\operatorname{Supp}(H_d^{n-d}(R))$ and then $\mathfrak{p} \in \operatorname{Ass}(H_d^{n-d}(R))$.

- (iii) By (ii), $\operatorname{Ass}(H^{n-d}_d(R)) \not\subseteq \operatorname{Max}(R)$ so $H^{n-d}_d(R)$ is not Artinian.
- (iv) It is obvious by the proof of (i).
- (v) See [17, Theorem 2.1].

Example 3.5. Let K be a field and let $R = K[X_1, \dots, X_n]$ be the ring of polynomials over K in the indeterminates X_1, \dots, X_n . Then for $\mathfrak{m} = (X_1, \dots, X_n)$, $R_{\mathfrak{m}}$ is a local Goenstein ring of dimension n. So by Theorem 3.4 we have

$$\operatorname{Ass}(H_1^{n-1}(R_{\mathfrak{m}})) = \{\mathfrak{p}R_{\mathfrak{m}} \in \operatorname{Spec}(R_{\mathfrak{m}}) : \dim(R/\mathfrak{p})_{\mathfrak{m}} = 1\}.$$

Now, $\operatorname{Ass}(H_1^{n-1}(R_{\mathfrak{m}}))$ has infinite members by [15, Exercise 15.3].

Theorem 3.6. Let R be Gorenstein of dimension n, I an ideal of R and let $0 \le d \le n$. Then the following statements are true:

- (i) If $I \notin \Phi$, then for all $i \geq 0$, $H_I^i(H_d^{n-d}(R)) \cong H_{\Psi}^{n-d+i}(R)$, where $\Psi = \{I^n + J : n \geq 1, J \in \Phi\}.$
- (ii) For all $I \in \Phi$ and all $i \ge 0$, $H_I^i(H_d^{n-d}(R)) \cong H_I^{n-d+i}(R)$.

Proof. (i) Let $I \notin \Phi$ and $\Psi = \{I^n + J : n \ge 1, J \in \Phi\}$. Then $\Gamma_I(\Gamma_d(R)) = \Gamma_{\Psi}(R)$. Thus there is a Grothendieck spectral sequence

$$E_2^{i,j} := H_I^i(H_d^j(R)) \Longrightarrow H_{\Psi}^{i+j}(R) = E^{i+j}.$$

60

Since $E_{\infty}^{i,n-d-i}$ is a subquotient of $E_2^{i,n-d-i}$ so by Theorem 3.4(i) we have $E_{\infty}^{i,n-d-i} = 0$, for all $i \ge 1$. Thus the filtration

$$0 = F^{n-d}E^{n-d} \subseteq F^{n-d-1}E^{n-d} \subseteq \dots \subseteq F^1E^{n-d} \subseteq F^0E^{n-d} = E^{n-d}$$

implies that $F^{n-d}E^{n-d} = \cdots = F^1E^{n-d} = 0$ and $E_{\infty}^{0,n-d} \cong E^{n-d}$. By the sequence $0 \longrightarrow E_2^{0,n-d} \longrightarrow E_2^{2,n-d-1}$ and $E_2^{2,n-d-1} = 0$ we have $E_{\infty}^{0,n-d} \cong E_2^{0,n-d}$. Therefore, $\Gamma_I(H_d^{n-d}(R)) \cong H_{\Psi}^{n-d}(R)$.

Let $0 \to R \to E^0 \to E^1 \to \cdots \to E^{n-1} \to E^n \to 0$ be a minimal injective resolution of R. Then $0 \to H^{n-d}_d(R) \to E^{n-d} \to \cdots \to E^{n-1} \to E^n \to 0$ is an injective resolution of $H^{n-d}_d(R)$. For all $i \ge n-d$ we have

$$\Gamma_I(E^i) \cong \oplus_{\dim R/\mathfrak{p}=n-i} \Gamma_I(E(R/\mathfrak{p})) \cong \oplus_{\dim R/\mathfrak{p}=n-i} \Gamma_{\Psi}(E(R/\mathfrak{p})) \cong \Gamma_{\Psi}(E^i).$$

Hence, $H_I^i(H_d^{n-d}(R)) \cong H_{\Psi}^{n-d+i}(R)$, for all i > 0.

(ii) The proof is similar to that of (i).

Corollary 3.7. Let R be Gorenstein of dimension n and let $0 \le d \le n$. Then $\dim H^{n-d}_d(R) = \operatorname{depth} H^{n-d}_d(R) = d$ and $H^{n-d}_d(R)$ is not a finitely generated R-module.

Proof. It follows by the proof of Theorems 3.2(ii), 3.4, 3.6 and [7, Exercise 9.1.12(c)].

Lemma 3.8. Let $\{\mathfrak{p}_{\lambda} : \mathfrak{p}_{\lambda} \notin \Phi\}_{\lambda \in \Lambda}$ be a family of prime ideals of R. Then for any *d*-torsion R-module M, $\operatorname{Hom}_{R}(M, \bigoplus_{\lambda \in \Lambda} E(R/\mathfrak{p}_{\lambda})) = 0$.

Proof. Suppose that $\operatorname{Hom}_R(M, E(R/\mathfrak{p})) \neq 0$, for some $\mathfrak{p} \notin \Phi$. Thus there is a nonzero element $f \in \operatorname{Hom}_R(M, E(R/\mathfrak{p}))$ so $f(x) \neq 0$ for some $x \in M$. By assumption there is an $I \in \Phi$ such that Ix = 0 and so If(x) = 0. Hence, $I \subseteq \mathfrak{p}$. Otherwise for each $a \in I \setminus \mathfrak{p}$ we have the automorphism $E(R/\mathfrak{p}) \xrightarrow{a} E(R/\mathfrak{p})$, contrary to If(x) = 0. Therefore, $\operatorname{Hom}_R(M, E(R/\mathfrak{p})) = 0$ and so $\operatorname{Hom}_R(M, \bigoplus_{\lambda \in \Lambda} E(R/\mathfrak{p}_{\lambda})) = 0$.

Theorem 3.9. Let R be Gorenstein of dimension n and let

 $0 \to R \to E^0 \to \dots \to E^i \xrightarrow{d^i} E^{i+1} \dots \to E^{n-1} \to E^n \to 0$

be an injective resolution of R. Then the following statements are true:

(i) $\operatorname{Ext}_{R}^{j}(H_{d}^{i}(M), R) = 0$, for all *R*-module $M, 0 \leq j < n - d$ and $i \geq 0$.

(ii) $\operatorname{Ext}_R^j(E^i, R) = 0$ for all $i \ge 1$ and j < i.

Proof. (i) It follows by Lemma 3.8.

(ii) For $i \ge 1$ we have $H_{n-i}^i(R) \cong \ker d^i$. Thus

$$0 \to H^i_{n-i}(R) \to E^i \to H^{i+1}_{n-i-1}(R) \to 0$$

is an exact sequence that induces the long exact sequence

$$\cdots \to \operatorname{Ext}_{R}^{j}(H_{n-i-1}^{i+1}(R), R) \to \operatorname{Ext}_{R}^{j}(E^{i}, R) \to \operatorname{Ext}_{R}^{j}(H_{n-i}^{i}(R), R) \to \cdots$$

By (i), $\operatorname{Ext}_R^j(H_{n-i-1}^{i+1}(R), R) = 0 = \operatorname{Ext}_R^j(H_{n-i}^i(R), R)$, for all j < i. Hence $\operatorname{Ext}_R^j(E^i, R) = 0$ for all j < i

Acknowledgement. The authors would like to thank the referee for the valuable suggestions and comments.

References

- J. Azami, R. Naghipour and B. Vakili, *Finiteness properties of local cohomology* modules for a-minimax modules, Proc. Amer. Math. Soc., 137(2) (2009), 439-448.
- [2] C. Banica and M. Stoia, Singular sets of a module and local cohomology, Boll. Un. Mat. Ital. B, 16 (1976), 923-934.
- M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc., 19(3) (1979), 402-410.
- [4] K. B. Lorestani, P. Sahandi and S. Yassemi, Artinian local cohomology modules, Canad. Math. Bull., 50(4) (2007), 598-602.
- [5] M. P. Brodmann and A. L. Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc., 128(10) (2000), 2851-2853.
- [6] M. P. Brodmann and R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.
- [7] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.
- [8] M. T. Dibaei and S. Yassemi, Associated primes and cofiniteness of local cohomology modules, Manuscripta Math., 117(2) (2005), 199-205.
- K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc., 133(3) (2005), 655-660.
- [10] C. Huneke, Problems on local cohomology. Free Resolution in Commutative Algebra and Algebraic Geometry. (Sundance, UT, 1990), Res. Notes Math., 2, Jones and Bartlett, Boston, MA, (1992), 93-108.
- [11] M. Katzman, An example of an infinite set of associated primes of local cohomology module, J. Algebra, 252(1) (2002), 161-166.

- [12] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
- [13] R. Naghipour, Integral closures, local cohomology and ideal topologies, Rocky Mountain J. Math., 37(3) (2007), 905-916.
- [14] J. J. Rotman, Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.
- [15] R. Y. Sharp, Steps in Commutative Algebra, Second edition, London Mathematical Society Student Texts, 51, Cambridge University Press, Cambridge, 2000.
- [16] A. K. Singh, *p*-Torsion elements in local cohomology modules, Math. Res. Lett., 7(2-3) (2000), 165-176.
- [17] J. Z. Xu, Minimal injective and flat resolutions of modules over Gorenstein rings, J. Algebra, 175(2) (1995), 451-477.
- [18] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, d-Transform functor and some finiteness and isomorphism results, Vietnam. J. Math., 42(2) (2014), 179-186.
- [19] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, Cohomology with support of dimension $\leq d$, J. Algebra Appl., 15(3) (2016), 1650042 (10 pp).

Z. Rahimi-Molaei, Sh. Payrovi (Corresponding Author) and S. Babaei

Department of Mathematics Imam Khomeini International University Postal Code: 34149-1-6818 Qazvin, Iran e-mails: z.rahimi@edu.ikiu.ac.ir (Z. Rahimi-Molaei) shpayrovi@sci.ikiu.ac.ir (Sh. Payrovi) sakinehbabaei@gmail.com (S. Babaei)