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1. Introduction

Frattini theory for algebras goes back at least 50 years. A general theory can be

found in [14] and there are many works on special classes of algebras, especially Lie

algebras. Leibniz algebras, as a generalization of Lie algebras, is a natural class to

investigate and [2] - [9] contain results on Frattini subalgebras and ideals. Frattini

theory for groups goes back to the nineteenth century and there have been many

results that are similar in groups and Lie algebras. Subgroups that have Frattini

like properties have been considered in [7] and related special types of subgroups

have been studied in [11]. It is the purpose of this paper to view the Leibniz algebra

analogues to some of these theories. Many of these results are new for Lie algebras

as well. We consider only finite dimensional Leibniz algebras over a field F . The

intersection of all maximal subalgebras of A is called the Frattini subalgebra of A

and is denoted by F (A). Even in the solvable case, it need not be an ideal in A [5]

and the unique maximal one among the ideals of A contained in F (A) is called the

Frattini ideal of A and denoted by Φ(A). References for Leibniz algebras include

[1], [2], [10], and [12].

2. Generalized Frattini ideals

In [7], a proper subgroup, H, of a finite group G is called generalized Frattini if

whenever G = HNG(P ) for any Sylow subgroup P of any normal subgroup K of G,

then G = NG(P ). To consider such a property in Leibniz algebras, we replace Sylow
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subgroups with Cartan subalgebras. Unlike group theory, Frattini subalgebras do

not have to be invariant and we will use the Frattini ideal as our model to be

formalized. To guarantee existence of Cartan subalgeras, we assume the algebras

are over an infinite field, [2, Theorem 6.5]. In this context, an ideal H of L is

generalized Frattini in A if whenever A = H+NA(C), C a Cartan subalgebra of an

ideal K in A, it follows that A = NA(C). We will show H is a generalized Frattini

ideal of A if and only if whenever D and B are ideals of A and D is contained in

B ∩H, then B/D being nilpotent implies that B is nilpotent, which is a property

possessed by Frattini ideals. We will find examples of this concept and conditions

that guarantee that an ideal is generalized Frattini.

Proposition 2.1. Let H be a generalized Frattini ideal in A. Then the following

are true.

(1) H is nilpotent.

(2) Any ideal of A that is contained in H is also a generalized Frattini ideal in

A.

(3) H + Φ(A) is a generalized Frattini ideal in A.

(4) H+Z(A) is a generalized Frattini ideal in A whenever H+Z(A) is a proper

subalgebra of A.

Proof. (1) Let C be a Cartan subalgebra of H. Then A = H+NA(C) by Theorem

6.6 in [2]. H is generalized Frattini in A, hence A = NA(C). Therefore, H =

NH(C). Since C is a Cartan subalgebra of H, NH(C) = C. Thus H = C and H is

nilpotent.

(2) Let N be an ideal of A such that N ⊆ H. Let K be an ideal of A and let C be

a Cartan subalgebra of K such that A = N +NA(C). Then A = H +NA(C) and,

hence, A = NA(C) since H is generalized Frattini in A. Thus by definition, N is

also generalized Frattini in A.

(3) Let K be an ideal in A with Cartan subalgebra C such that A = H + Φ(A) +

NA(C). Suppose that M is a maximal subalgebra of A such that H+NA(C) ⊆M .

Then H+Φ(A)+NA(C) ⊆M , a contradiction. Hence A = H+NA(C). Therefore

A = NA(C) since H is generalized Frattini in A. Therefore H+Φ(A) is generalized

Frattini in A.

(4) Suppose that K is an ideal in A with Cartan subalgebra C such that A =

H +Z(A) +NA(C). Then A = H +NA(C) and A = NA(C) since H is generalized

Frattini in A. Therefore H + Z(A) is also generalized Frattini in A. �
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Corollary 2.2. In a non-abelian Leibniz algebra, A, both Z(A) and Φ(A) are

generalized Frattini in A.

Lemma 2.3. Any proper ideal, H, of a nilpotent Leibniz algebra A is generalized

Frattini in A.

Proof. LetK be an ideal in A with Cartan subalgebra C such thatH+NA(C) = A.

Then C = K and NA(C) = A. �

The next result shows that an important property of the Frattini ideal is shared

with any generalized Frattini ideal.

Theorem 2.4. Let H be generalized Frattini in A. If K is an ideal in A that

contains H and K/H is nilpotent, then K is nilpotent.

Proof. Let K be as in the statement of the theorem and let C be a Cartan sub-

algebra of K. Then (C + H)/H is a Cartan subalgebra of K/H by Corollary 6.3

of [2]. Since K/H is nilpotent, K/H = (C +H)/H and K = C +H. Furthermore

A = K+NA(C) by Theorem 6.6 of [2]. Then A = K+NA(C) = H+C+NA(C) =

H +NA(C) = NA(C) since H is generalized Frattini. Hence K = NK(C) = C and

K is nilpotent. �

Corollary 2.5. Suppose that A is not 0. A is nilpotent if and only if A2 is gener-

alized Frattini.

Proof. If A2 is generalized Frattini, then the result follows from Theorem 2.4. If

A is nilpotent, then the result follows from Lemma 2.3. �

Corollary 2.6. Let H be generalized Frattini in A. If K is an ideal in A such that

Kω ⊆ H. Then K is nilpotent.

Proof. Let σ be the natural mapping from K/Kω onto K + H/H. K + H/H is

nilpotent and then K +H is nilpotent by Theorem 2.4. �

Theorem 2.7. Let H be an ideal in a Leibniz algebra A. H is generalized Frattini

in A if and only if for each ideal J of A that contains H, whenever J/H is nilpotent,

then J is nilpotent.

Proof. If H is generalized Frattini, then the result is Theorem 2.4. Conversely,

suppose that the condition on ideals J holds. Let K be an ideal of A, C a Cartan

subalgebra of K with A = H+NA(C). Then (C+H)/H is an ideal in A/H, hence

also in (K+H)/H. As H and K are ideals in L and C is a Cartan subalgebra of K,
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by Corollary 6.3 of [2], C+ (K ∩H)/(K ∩H) is Cartan in K/(K ∩H). By the first

isomorphism theorem, C+H/H is Cartan in K+H/H. Since (C+H)/H is Cartan

in (K +H)/H, (C +H)/H = (K +H)/H. Therefore (K +H)/H is nilpotent and

K+H is nilpotent by hypothesis. Therefore, K = C. Hence NA(C) = NA(K) = A

and H is generalized Frattini in A. �

Example 2.8. Let A be a Leibniz algebra with basis x, y, z and multiplications

xz = x = −zx and zy = y = −yz and xy = yx = 0. Let H = (x) and K = (y).

H and K are generalized Frattini in A but H + K is not. Thus the sum of two

generalized Frattini ideals need not be generalized Frattini. Note that this example

is Lie so the result stands in Lie algebras as well.

Theorem 2.9. Let H be a generalized Frattini ideal in A and let K be an ideal of

A that contains H. Then K/H is generalized Frattini in A/H if and only if K is

generalized Frattini in A.

Proof. Suppose that K is generalized Frattini in A. Let J/H be an ideal in A/H

such J/H contains K/H and (J/H)/(K/H) is nilpotent. Then J/K is nilpotent.

Since K is generalized Frattini in A, J is nilpotent by Theorem 2.7. Hence J/H is

nilpotent and K/H is generalized Frattini in A/H by Theorem 2.7.

Conversely, suppose that K/H is generalized Frattini in A/H. Let J be an ideal

in A which contains K and J/K is nilpotent. Then (J/H)/(K/H) is nilpotent.

Hence J/H is nilpotent since K/H is generalized Frattini and, then, J is nilpotent

since H is generalized Frattini. Therefore K is generalized Frattini in A by Theorem

2.7. �

Proposition 2.10. If Nil(A) is generalized Frattini in A, then every solvable ideal

of A is nilpotent and is generalized Frattini in A.

Proof. Suppose that Nil(A) is generalized Frattini in A, let H be a solvable ideal

in A and k be the smallest positive integer such that H(k+1) = 0. Then H(k) is

abelian and H(k) ⊆ Nil(A). Then H(k) is generalized Frattini in A by Proposition

2.1. ConsiderA/Hk. The nilradical of this quotient, N = Nil(A/Hk), is isomorphic

to Nil(A)/Hk using Theorem 2.7 and N is generalized Frattini by Theorem 2.9. By

induction, H/Hk is contained in N which gives H ⊆ Nil(A). Thus H is nilpotent

and it is contained in a generalized Frattini ideal, Nil(A). Hence H is generalized

Frattini in A. �

Corollary 2.11. If Nil(A) is generalized Frattini in A, then A is not solvable.
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Proof. A is not nilpotent since a generalized Frattini ideal is a proper ideal. If A

is solvable, then it is nilpotent by Proposition 2.10, a contradiction. �

Example 2.12. Continuing Example 2.8, Nil(A) = H+K is again seen to be not

generalized Frattini since A is solvable.

Proposition 2.13. If H is generalized Frattini in A, then Nil(A/H) = Nil(A)/H.

Proof. Since H is nilpotent, H ⊆ Nil(A). Nil(A)/H is clearly contained in

Nil(A/H). Suppose that B is an ideal of A such that B/H = Nil(A/H). Then B

is nilpotent by Theorem 2.4. Hence B is contained in Nil(A) and B/H is contained

in Nil(A)/H. �

Corollary 2.14. Let A be a non-nilpotent Leibniz algebra. Then Nil(A) is gener-

alized Frattini in A if and only if Nil(A) = Rad(A), where Rad(A) is the maximal

solvable ideal of A.

Proof. Suppose that Nil(A) = Rad(A). Let N be an ideal in A containing Nil(A)

such that N/Nil(A) is nilpotent. Then N is solvable and Nil(A) ⊆ N ⊆ Rad(A) =

Nil(A). Hence N is nilpotent and Nil(A) is generalized Frattini in A by Theorem

2.7. Conversely, suppose that Nil(A) is generalized Frattini in A. Then Rad(A) is

nilpotent by Proposition 2.10 and Nil(A) = Rad(A). �

Example 2.15. Let A = gl(n, F ). Then Nil(A) = Rad(A) = Z(A) is generalized

Frattini in A.

In [2] and [3] Barnes extends his theory of Engel subalgebras from Lie to Leibniz

algebras. For a ∈ A, set EA(a) be the Fitting null component of left multiplication

by a on A. This space is a subalgebra called the Engel subalgebra for a. He notes

that although amay not be in EA(a), there is a b in EA(a) such that EA(a) = EA(b).

Hence when working with these subalgebras, we usually can assume that a is in

EA(a). For a subalgebra U of A, if the Engel subalgebra for u in U both contains

U and is minimal in the set of Engel subalgebras for all elements in U , then the

Engel subalgebras for all elements in U contain U . He then shows C is a Cartan

subalgebra of A if and only if C is minimal in the set of Engel subalgebras of A.

Theorem 2.16. Let H be an ideal in A. Then H is generalized Frattini in A if

and only if for each ideal K of A and each Cartan subalgebra C of K, A = EA(c)

whenever A = H + EA(c), for all c ∈ C.

Proof. Let H be generalized Frattini in A. Let K,C be as in the theorem such

that for each c ∈ C, A = H + EA(c).
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As H and K are ideals in L and C is a Cartan subalgebra of K, by Corollary

6.3 of [2], C+ (K ∩H)/(K ∩H) is Cartan in K/(K ∩H). By the first isomorphism

theorem, C+H/H is Cartan inK+H/H. By Engel’s theorem [8], C acts nilpotently

on A/H since A = H+EA(c) for all c, hence also on (K+H)/H. Then there exist

a flag of (C +H)/H-modules in (K +H)/H on which (C +H)/H acts nilpotently.

Hence, if (C+H)/H is properly contained in (K+H)/H, then there is an element

in (C + H)/H which is in the normalizer of (C + H)/H. This contradicts that

(C+H)/H is a Cartan sublagebra of (K+H)/H. Hence (C+H)/H = (K+H)/H.

Therefore (K+H)/H is nilpotent, as is K+H since H is generalized Frattini in A.

Hence K is nilpotent and K = C. Since c ∈ C = K and K is an ideal, A = EA(c).

Conversely, suppose that H satisfies the conditions in the theorem. Let K be an

ideal with H ⊆ K with K/H nilpotent. Let C be a Cartan subalgebra of K and

let c ∈ C be an element such that EA(c) is minimal in the set of Engel subalgebras

for c ∈ C. From Theorem 6.5 in [2], C = EK(c). Since K/H was chosen to be

nilpotent, K = C+H = EK(c)+H. Thus A = EA(c)+H since K is an ideal in A.

Hence A = EA(c) by hypothesis. Therefore, K = EK(c) = C which is nilpotent.

Hence H is generalized Frattini by Theorem 2.7. �

3. Primitive ideals

Definition 3.1. An ideal K of A is primitive if

(1) Φ(A/K) = 0,

(2) A/K contains a unique minimal ideal,

(3) and dim(A/K) > 1.

Example 3.2. Let A be the three dimensional cyclic Leibniz algebra generated by a

with aa3 = a2. Let K be the ideal with basis a2+a3. Then A/K has basis a, a2 where

we delete K from the notation. A/K is cyclic with generator a and aa2 = −a2.

The minimum polynomial for La is x(x+ 1). Thus A/K has 2 maximal subalgeras

and Φ(A/K) = 0 using section 4 of [5] and has a unique minimal ideal. Hence K

is a primitive ideal in A.

Lemma 3.3. Let K be a primitive ideal in A. Then K contains Φ(A) and A/K

is non-nilpotent. Hence A is non-nilpotent.

Proof. Since Φ(A/K)=0, Φ(A) ⊆ K. Suppose that A/K is nilpotent and let B/K

be the unique minimal ideal of A/K. Now A/K = Nil(A/K) = B/K by Theorem

2.4 of [4] and dim(A/K) = 1, a contradiction. Thus A/K is not nilpotent. �
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Proposition 3.4. Let A be a solvable Leibniz algebra and let K be a primitive ideal

in A. Then K is generalized Frattini in A if and only if K is a proper subalgebra

of Nil(A).

Proof. Suppose that K is generalized Frattini in A and let B/K be the unique

minimal ideal of A/K. Since A is solvable, B/K = Nil(A/K) using Theorem 2.4 of

[4]. Then B/K = Nil(A/K) = Nil(A)/K by Proposition 2.13. Hence Nil(A) = B

and K is a proper subalgebra of Nil(A).

Conversely, let K be a primitive ideal in the solvable Leibniz algebra A and K be

properly contained in Nil(A). Then A/K contains a unique minimal ideal, B/K,

and Nil(A)/K is an ideal. Therefore B is contained in Nil(A). Since φ(A/K) =

0, B/K is complemented by a maximal subalgebra M/K in L/K. Furthermore

Nil(A/K) = the sum of all minimal ideals which is B/K. By assumption, K

is properly contained in Nil(A), hence B is contained in Nil(A). Since B/K =

Nil(A/K), B = Nil(A). Let H be an ideal in A and let K be contained in H.

If H/K is nilpotent, then H is contained in B and H is nilpotent. Hence K is

generalized Frattini in A. �

Theorem 3.5. Let A be a solvable Leibniz algebra and let K be a primitive ideal in

A. Let B/K be the unique minimal ideal in A/K. Then K is generalized Frattini

in A if and only if B = Nil(A).

Proof. Suppose that K is generalized Frattini in A. Then Nil(A/K) = Nil(A)/K

by Theorem 2.7. Since A is solvable, B/K = Nil(A/K) = Nil(A)/K and B =

Nil(A).

Conversely, suppose that B = Nil(A). Since A is solvable, Nil(A/K) = B/K =

Nil(A)/K and K is a proper subalgebra of Nil(A). If N is any ideal of A with N/K

nilpotent, then N is nilpotent. Hence K is generalized Frattini in A by Theorem

2.7. �

Corollary 3.6. Let K be a primitive ideal of a solvable Leibniz algebra A. If K is

generalized Frattini in A, then K is maximal with respect to the generalized Frattini

property in A.

Proof. Suppose that H is generalized Frattini ideal in A such that K ⊆ H. Then

H is nilpotent by Proposition 2.1 and, hence, H is contained in Nil(A). Let B/K

be the unique minimal ideal in A/K. By Theorem 3.5, B = Nil(A). Hence, either

H = K or H = Nil(A) since K ⊆ H ⊆ Nil(A). Suppose that H = Nil(A).

Then, by Proposition 2.10, every solvable ideal of A is nilpotent. In particular, A
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is nilpotent. This contradicts Lemma 3.3. Thus H = K and K is maximal with

respect to the generalized Frattini property. �

4. Intersections of certain maximal subalgebras

Let R(A) be the intersection of all maximal subalgebras that are ideals in A and

T (A) be the intersection of all maximal subalgebras that are not ideals in A. As for

F (A), T (A) may not be an ideal and we let τ(A) be the largest ideal of A contained

in T (A). Of course Φ(A) = R(A) ∩ τ(A).

Definition 4.1. An algebra is power solvable if all subalgebras generated by a

single element are solvable.

For Leibniz algebras, these subalgebras are cyclic subalgebras in which A2 =

Leib(A) is abelian (Section 4 of [5]). Hence Leibniz algebras are power solvable and

the following result, Theorem 2.8 of [15] holds.

Lemma 4.2. If Φ(A) = 0, then τ(A) = Z(A) = Z∗(A) where Z∗(A) is the final

term in the upper central series of A.

Proposition 4.3. τ(A) is generalized Frattini in A.

Proof. By the last lemma, τ(A)/Φ(A) = Z(A)/Φ(A) = Z(A/Φ(A)). By Proposi-

tion 2.1, Z(A/Φ(A)) is generalized Frattini in A/Φ(A). Thus τ(A) is generalized

Frattini in A. �

Proposition 4.4. Let A be a non-nilpotent Leibniz algebra with Φ(A) = 0. Then

any ideal H that is a maximal generalized Frattini ideal in A contains τ(A).

Proof. By Lemma 4.2 H + Z(A) = H + τ(A) which is generalized Frattini by

Proposition 2.1. Using maximality of H, H = H + τ(A). Hence τ(A) ⊆ H. �

Theorem 4.5. A is nilpotent if and only if R(A) ⊆ τ(A).

Proof. If A is nilpotent, then all maximal subalgebras are ideals in A Theorem

4.16 of [10]. Hence τ(A) = A and R(A) ⊆ τ(A). Conversely, if R(A) ⊆ τ(A),

then Φ(A) = R(A) which contains A2 by Lemma 2.3 of [15]. Hence all maximal

subalgebras are ideals and A is nilpotent. �

Corollary 4.6. A is nilpotent if and only if Φ(A) = A2.

Proof. If A is nilpotent, then all maximal subalgebras are ideals by Theorem 4.16

of [10]. Then A2 is contained in every maximal subalgebra. Hence A2 is contained
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in F (A) = Φ(A). The reverse inclusion always holds. Conversely, if the condition

holds, then all maximal subalgbras are ideals and A is nilpotent by Theorem 4.16

of [10]. �

Lemma 4.7. Let N be an ideal in A.

(1) F (A) +N/N ⊆ F (A/N).

(2) If N ⊆ F (A), then F (A)/N = F (A/N).

Proof. (1) If M/N is a maximal subalgebra of A/N , then M is a maximal sub-

algebra of A. Thus F (A) ⊆ ∩M/N,M/N maximal in A/NM . Hence F (A) + N/N ⊆
F (A/N).

(2)N is contained in all maximal subalgebras of A. M/N is a maximal subalgebra of

A/N if and only if M is a maximal subalgebra of A.Then F (A)/N = F (A/N). �

Let nFrat(A) be the intersection of all maximal ideals of A. Then following the

same arguments as in the last lemma, we obtain:

Lemma 4.8. Let N be an ideal in A.

(1) nFrat(A) +N/N ⊆ nFrat(A/N).

(2) If N ⊆ nFrat(A), then nFrat(A)/N = nFrat(A/N).

In Lie algebras, the Frattini ideal is nilpotent. However, nFrat(A) and R(A)

need not be nilpotent. The same results hold for Leibniz algebras also. For x in

A, Lx denotes left multiplication by x and A0(x) and A1(x) are the corresponding

Fitting components for Lx. A0(x) is the Engel subalgebra from Section 2.

Proposition 4.9. Φ(A) is nilpotent, but nFrat(A) and R(A) need not be nilpotent.

Proof. Using Proposition 2.1, Φ(A) is nilpotent. For the examples, let A = gl(p, F )

where F has characteristic p. The Z(A) ⊂ A2 = sl(p, F ) which is the only maximal

ideal of A and nFrat(A) is not nilpotent. Since sl(p, F ) is the only maximal

subalgebra that is an ideal, R(A) = sl(p, F ) is not nilpotent. �

Both Φ(A) and nFrat(A) are contained in R(A). We find other results of this

type.

Proposition 4.10. Φ(A) ⊆ nFrat(A) ⊆ R(A).

Proof. If N is a maximal ideal of A, then Φ(A) + N can not equal A, hence

Φ(A) ⊆ N . Hence Φ(A) ⊆ nFrat(A). The other inclusion is clear. �

Proposition 4.11. If A is solvable, then R(A) = nFrat(A).



FRATTINI PROPERTIES AND NILPOTENCY IN LEIBNIZ ALGEBRAS 73

Proof. Let N be a maximal ideal of a solvable Leibniz algebra A. Then (A/N)2=0

and A2 is contained in N. Hence dim (A/N)=1. Thus every maximal ideal is a

maximal subalgebra that is an ideal. The converse also holds. Hence the result

holds. �

If A is not solvable, then Proposition 4.11 does not hold.

Example 4.12. Let A = sl(2, F ). Since A is simple, nFrat(A) = 0. Since A

contains no maximal subalgebras that are ideals, A = R(A).

Theorem 4.13. A is nilpotent if and only if Φ(A) = nFrat(A) = R(A).

Proof. If A is nilpotent, then all maximal subalgebras are ideals and R(A) = Φ(A)

and Proposition 4.10 gives the result.

Now suppose that the three ideals are equal. Since τ(A) always contains Φ(A),

R(A) ⊆ τ(A). Then A is nilpotent by Theorem 4.5. �

5. Generators

In groups and Lie algebras, the Frattini subgroup and Frattini subalgebra, are

the sets of non-generators in the group and Lie algebra respectively. It has also been

shown these concepts carry over to R(G) and nFrat(G) in a group G and also to

R(L) and nFrat(L) in a Lie algebra L [13]. Following the results in groups and Lie

algebras, we give Leibniz algebra characterizations of F (A), R(A) and nFrat(A)

in terms of non-generators.

Definition 5.1. An element x ∈ A is a non-generator in A if whenever A = 〈x, S〉
it follows that A = 〈S〉 for each subset S of A.

Definition 5.2. A subset S of A that is closed under multiplications by elements

of A is called a normal set in A.

Definition 5.3. An element x ∈ A is a normal non-generator in A if whenever

A = 〈x, T 〉 it follows that A = 〈T 〉 for each normal subset T of A.

Proposition 5.4. F (A) consists of the non-generators of A.

Proof. Let x ∈ F (A) and let A = 〈x,H〉 where H is a subalgebra of A. If H 6= A,

then H ⊆M for some maximal subalgebra of A. Then 〈H,x〉 ⊆M , a contradiction.

Hence A = H and x is a non-generator of A. Suppose that x is not in F (A). Let M

be a maximal subalgebra of A which does not contain x. Then M ⊂ 〈x,M〉 = A.

But M 6= A, so x is a not a non-generator of A. �
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Proposition 5.5. R(A) equals the set of normal non-generators of A.

Proof. Suppose that x ∈ R(A) and A = 〈x, S〉 where S is a normal subset of A.

Suppose that A 6= 〈S〉. Then B = A/〈S〉 is generated by one element, the image

of x in B. Hence B is cyclic and, therefore, solvable. B is generated by the image

of x in B. The derived algebra, B2 of B has codimension 1 in B and is an ideal

in B. Hence, the preimage, C, of B2 in A is a maximal subalgebra of A that is an

ideal in A. Hence, by assumption x ∈ C and the image of x in B is in B2. This

contradicts that the image of x in B generates B. Therefore, A = 〈S〉 and x is a

normal non-generator of A

Conversely, suppose that x /∈ R(A). Then x is not in a maximal subalgebra, M ,

that is an ideal in A. M is a normal subset of A and A = 〈x,M〉 but A 6= M .

Hence x is not a normal non-generator in A. �

Definition 5.6. Let X be a subset of A. Let XA be the smallest ideal in A that

contains X. An element x ∈ A is called an n-nongenerator if for every subset X of

A, A = XA whenever A = 〈x,X〉A.

Lemma 5.7. For any x ∈ A and any subset X of A, 〈x,X〉A = 〈xA, XA〉 =

xA +XA.

Proof. Both xA and XA are contained in < x,X >A. Therefore < xA, XA >⊆<
x,X >A and xA + XA ⊆< x,X >A. Since < x,X >⊆< xA, XA >, it follows

that < x,X >A⊆< xA, XA >. Also xA, XA ⊆ xA + XA. Thus < xA, XA >⊆
xA +XA. �

Proposition 5.8. nFrat(A) is the set of n-nongenerators for A.

Proof. Let T be the collection of all n-nongenerators of A. Suppose x is in T

but not in nFrat(A). Let N be a maximal ideal such that x is not in N . Then

xA + N = A. Hence 〈x,N〉A = A. Thus N = NA = A, a contradiction. Hence

T ⊆ nFrat(A).

Conversely, let x is in nFrat(A) but not in T . There exists a subset S of A such

that A = 〈x, S〉A but SA is properly contained in A. Therefore SA is a proper

ideal of A and x is not in SA. By Lemma 5.7, A = 〈x, S〉A = xA + SA. Let M

be maximal with respect to the properties for SA: x is not in M , M is an ideal

of A, SA ⊆ M and A = xA + M . We claim that M is a maximal ideal of A. If

not, let N be an ideal properly between M and A. Then A = xA +M = xA +N .

By the maximality conditions on M , x ∈ N . Therefore, xA ⊆ N and A = N , a

contradiction. Thus M is a maximal ideal in A. Since x is not in M , it follows that
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x is not in nFrat(A), a contradiction. Hence, whenever A = 〈x, S〉A, it follows

that A = SA and x is an n-nongenerator of A. Hence nFrat(A) ⊆ T and the result

holds. �
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