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1. Introduction

Important quantum groups and associative algebras have presentations with de-

formed commutation relations, by which we mean defining relations that involve

expressions of the form c1UV − c2V U where U, V are elements of the associa-

tive algebra, and the scalar parameters c1, c2 are not necessarily both 1. These

expressions resemble the usual Lie bracket in the associative algebra, which is

[U, V ] := UV − V U . Some specific examples are the quantum group Uq (sl2) in

its “equitable presentation” [16], the Fairlie-Odesskii algebra U ′q(so3) in its usual

presentation [10,11,12,15], the parametric family of Askey-Wilson algebras [18,19],

and the parametric family of q-deformed Heisenberg algebras [13,14] whose defining

relations are q-deformations of the Heisenberg-Weyl relation.

However, the existence of an associative algebra structure in some vector space

implies the existence of a Lie algebra structure in the same vector space. Thus,

even if the defining relations of an associative algebra involve deformed commu-

tation relations, it is still possible to compute Lie polynomials in the generators

of the algebra. This notion first appeared in [18, Problem 12.14] for the universal

Askey-Wilson algebra. It was found that the defining relations in this algebra and
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the related family of Askey-Wilson algebras are not Lie polynomials in the gener-

ators [2], and so the usual algebraic machinery for finitely generated and finitely

presented Lie algebras is not directly applicable, but it was further shown that the

Lie subalgebra generated by the generators of the algebra is not free [2]. Simi-

lar studies were done for q-deformed Heisenberg algebras [3,4]. In all such studies

[2,3,4] the focus was on the consequences of the non-Lie polynomial, deformed com-

mutation relations on the Lie polynomials in the same algebra. The studies [2,3,4]

have motivated further progress as reported in [5,6], in which central extensions

and torsion-type deformation parameters were considered, respectively. A survey

of the particular type of Lie structure, in associative algebras being described here,

can be found in [7].

For this paper, we study the Fairlie-Odesskii algebra U ′q(so3), and the conse-

quences of its deformed commutation relation on the Lie polynomials in relation

to the Casimir element, an element which is significant in studying representations

and central elements of the algebra [10,11,12]. More specifically, we show that any

nonzero polynomial in the Casimir element of the Fairlie-Odesskii algebra is not a

Lie polynomial in the generators of the algebra.

2. Preliminaries

Denote the set of all nonnegative integers by N, and the set of all positive integers

by Z+. Let F denote a fixed but arbitrary field. Throughout, by an algebra we mean

a unital associative algebra A over F with unity element IA. We use the convention

that U0 = IA for any U ∈ A, and we denote IA simply by I if no confusion

shall arise. Any subalgebra is assumed to contain the unity element. We also note

that every algebra A has a Lie algebra structure induced by [U, V ] := UV − V U
for all U, V ∈ A. Throughout, whenever we refer to a Lie algebra structure on an

algebra A, we shall always mean that which is induced by the Lie bracket operation

[·, ·] just mentioned. Let X1, X2, . . . , Xn ∈ A. If K is the Lie subalgebra of A
generated by X1, X2, . . . , Xn, then we call the elements of K the Lie polynomials in

X1, X2, . . . , Xn. Given U ∈ A, the linear map ad U : A → A is defined by the rule

V 7→ [U, V ]. Also, for any linear map ϕ whose domain and codomain are equal,

and for any n ∈ N, by ϕn we mean composition of ϕ with itself n times, where ϕ0

is interpreted as the identity linear map.

2.1. The Fairlie-Odeskii algebra. Fix a nonzero q ∈ F. The Fairlie-Odeskii

algebra is the algebra U ′q(so3) that has a presentation by generators I1, I2, I3 and
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relations

q
1
2 I1I2 − q−

1
2 I2I1 = I3,

q
1
2 I2I3 − q−

1
2 I3I2 = I1,

q
1
2 I3I1 − q−

1
2 I1I3 = I2.

By Bergman’s Diamond Lemma [1, Theorem 1.2], a basis for U ′q(so3) consists of

the vectors Ih1 I
m
2 I

n
3 for all h,m, n ∈ N. If q 6= 1, then the element

C := −q 1
2 (q − q−1)I1I2I3 + qI2

1 + q−1I2
2 + qI2

3 (1)

of U ′q(so3) is called the Casimir element of U ′q(so3). If q is not a root of unity, it

is known that C generates the center of U ′q(so3) [12, Theorem II]. Denote by L the

Lie subalgebra of U ′q(so3) generated by I1, I2, I3.

2.2. A torus algebra related to U ′q(so3). The algebra U ′q(so3) can be interpreted

as an algebra of quantum geodesics or an algebra of quantized geodesic functions

on a coordinate algebra of a torus, which is related to quantum gravity [8,9,15,17].

More precisely, U ′q(so3) is a subalgebra of some other algebra related to a torus,

which we describe in the following. Denote by Aq the algebra with a presentation

given by six generators z±1
1 , z±1

2 , z±1
3 that satisfy the relations

z1z2 = qz2z1, z2z3 = qz3z2, z3z1 = qz1z3, zkz
−1
k = I = z−1

k zk, (2)

for all k ∈ {1, 2, 3}. An immediate consequence of Aq having the above presenta-

tion is that there exists an algebra isomorphism Φ : Aq → Aq that performs the

assignments

Φ : z1 7→ z2 7→ z3 7→ z1,

z−1
1 7→ z−1

2 7→ z−1
3 7→ z−1

1 .

Also by [1, Theorem 1.2], a basis for Aq consists of

zh3 z
m
2 z

n
1 , (h,m, n ∈ Z.) (3)

The elements

G1 := q−
1
2 z−1

3 z−1
1 + q

1
2 z−1

3 z1 + q−
1
2 z3z1,

G2 := q−
1
2 z−1

2 z−1
3 + q

1
2 z−1

2 z3 + q−
1
2 z2z3,

G3 := q−
1
2 z−1

1 z−1
2 + q

1
2 z−1

1 z2 + q−
1
2 z1z2,

of Aq are of significance as shall be evident in the results that follow. Initially, we

have the following.
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Proposition 2.1 ([15, Proposition 3.1]). If q 6= 1, then there exists an injective

algebra homomorphism U ′q(so3)→ Aq such that

Ik 7→
Gk

q − q−1

for all k ∈ {1, 2, 3}.

Assumption 2.2. From this point onward, we assume q 6= 1, and thus, we identify

U ′q(so3) as the subalgebra of Aq as described by Proposition 2.1 above.

3. Reordering formula in Aq

Since the fact that the vectors (3) form a basis for Aq can be shown using the

Diamond Lemma, this means that in a finite number of steps, any element of Aq

can be written uniquely as a linear combination of (3). As an example, by simple

use of the relations (2), the elements G1, G2, G3 can be rewritten as

G1 = q−
1
2 z−1

3 z−1
1 + q

1
2 z−1

3 z1 + q−
1
2 z3z1, (4)

G2 = q
1
2 z−1

3 z−1
2 + q−

1
2 z−1

3 z2 + q
1
2 z3z2, (5)

G3 = q
1
2 z−1

2 z−1
1 + q−

1
2 z−1

2 z1 + q
1
2 z2z1, (6)

in terms of the basis (3) of Aq. In the theorems that follow, we show explicitly

some reordering formula for Aq.

Proposition 3.1. The relations

zm1 z
n
2 = qmnzn2 z

m
1 , (7)

zm2 z
n
3 = qmnzn3 z

m
2 , (8)

zm1 z
n
3 = q−mnzn3 z

m
1 , (9)

hold in Aq for any m,n ∈ Z.

Proof. We first prove (7). For the case m,n ∈ Z+, using the first relation in (2)

and double induction on m,n it is routine to show that

zm1 z
n
2 = qmnzn2 z

m
1 , (m,n ∈ Z+.) (10)

Multiply the left-hand side of (10) by z−m1 both from the left and the right. Do

similarly for the right-hand side of (10), and then solve for z−m1 zn2 . The result is

z−m1 zn2 = q−mnzn2 z
−m
1 , (m,n ∈ Z+.) (11)

Similarly, multiply the left-hand side of (11) by z−n2 both from the left and the

right, and do similarly for the right-hand side of (11), and then solve for z−m1 z−n2 .

This results to

z−m1 z−n2 = qmnz−n2 z−m1 , (m,n ∈ Z+.) (12)
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Thus, (7) holds for the cases covered in (10), (11), (12). We now consider arbitrary

m,n ∈ Z. If one of m,n is zero, then we are left with the trivial equation u = q0u

where u is either I or a power of one generator. In this case, (7) still holds. Consider

the case that both m,n are nonzero. Given h ∈ {m,n} such that h is negative,

there exists k ∈ Z+ such that h = −k. This implies that one of the three cases

(10), (11), (12) is applicable, and so (7) holds for any m,n ∈ Z. Apply Φ to both

sides of (7) to get (8). To get (9), observe that since m,n are arbitrary, (8) can

be written as zn2 z
m
3 = qmnzm3 z

n
2 . Apply Φ to both sides of this equation, and then

solve for zm1 z
n
3 . From this, we get (9). �

The reordering formula from Proposition 3.1 may be easily used to rewrite the

product or Lie bracket of any two basis elements from (3) into a linear combination

of (3).

Corollary 3.2. Given any integers h,m, n, u, v, w, the relations

zh3 z
m
2 z

n
1 · zu3 zv2zw1 = qmu+nv−nuzh+u

3 zm+v
2 zn+w

1 , (13)[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
= (qmu+nv−nu−qhv−hw+mw)z

h+u
3 zm+v

2 zn+w
1 , (14)

hold in Aq.

Proof. Reorder zh3 z
m
2 z

n
1 · zu3 zv2zw1 using (7), (8), (9). From this, we get (13). The

relation (14) is a routine application of (13). �

Corollary 3.3. Given any integers h,m, n, u, v, w, the relation[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
=
(
1− qH

)
zh3 z

m
2 z

n
1 · zu3 zv2zw1 , (15)

where H = h(v − w) +m(w − u) + n(u− v), holds in Aq.

Proof. Use (13) and (14). �

Remark 3.4. With reference to Corollaries 3.2 and 3.3, we have the following

observations.

(i) Denote by A(h,m,n) the span of the basis element zh3 z
m
2 z

n
1 of Aq. The

relation (13) implies that the collection {A(h,m,n) : (h,m, n) ∈ Z3} of

one-dimensional vector subspaces of Aq is a Z3-gradation of Aq.

(ii) If q is not a root of unity and if H 6= 0, then the identity (15) implies that

scalar multiplication can be used to “convert” the product of two basis

vectors from (3) into the Lie bracket of the same two vectors.
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4. The Lie subalgebra of Aq generated by z±1
1 , z±1

2 , z±1
3

Denote by Lq the Lie subalgebra of Aq generated by z±1
1 , z±1

2 , z±1
3 . Our initial

goal in this section is to identify basis vectors of Aq from (3) that are elements of

Lq. In accordance with what has been discussed in Remark 3.43.4, we assert the

following.

Assumption 4.1. From this point onward, we assume that q is not a root of unity.

As an initial example, observe that by some routine computations involving the

use of the reordering formula (7),(8),(9), we have

z3z
2
2z1 = (1− q)−3 [z3, [z2, [z2, z1]]] , (16)

which proves that z3z
2
2z1 ∈ Lq since the nonzero scalar (1 − q)−3 exists in the

field F because of the assumption that q is not a root of unity. We proceed in a

rather constructive fashion until we get more basis elements from (3) that are also

elements of Lq. Our next step is the following.

Proposition 4.2. For any T ∈ Z, the relation

z−1
3 z−2

2 zT
1 =

{
qT (1−q)−T−2 (ad z1)T ([[z−1

3 ,z−1
2 ],z−1

2 ]), T∈N,

(−1)T (1−q)T−2 (ad z−1
1 )

−T
([[z−1

3 ,z−1
2 ],z−1

2 ]), T∈Z\N,
(17)

holds in Aq.

Proof. We first consider the case T ∈ N, and we use induction on T . By routine

calculations using the reordering formula (7), (8), (9), we have[[
z−1

3 , z−1
2

]
, z−1

2

]
= (1− q)2z−1

3 z−2
2 ,

which proves that (17) holds for T = 0. Suppose (17) holds for some T ∈ N. That

is,

(ad z1)
T ([[

z−1
3 , z−1

2

]
, z−1

2

])
= q−T (1− q)T+2z−1

3 z−2
2 zT1 . (18)

Applying the map ad z1 on both sides of (18) and using the reordering formula (7),

(8), (9), we get

(ad z1)
T+1 ([[

z−1
3 , z−1

2

]
, z−1

2

])
= q−T (1− q)T+2(q−1 − 1)z−1

3 z−2
2 zT+1

1 ,

= q−(T+1)(1− q)(T+1)+2z−1
3 z−2

2 zT+1
1 ,

which completes the induction for T ∈ N. For the case T ∈ Z\N, we perform

induction with decreasing values of T : we prove that (17) holds for T = −1, and

prove its validity at T − 1 given that it holds for some T ∈ Z\N. Proceeding as
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such, by routine calculations involving evaluation of Lie brackets and the reordering

formula (7), (8), (9), we find that(
ad z−1

1

) ([[
z−1

3 , z−1
2

]
, z−1

2

])
= (1− q)2(q−1 · q2 − 1)z−1

3 z−2
2 z−1

1 ,

which implies that

z−1
3 z−2

2 z−1
1 = (−1)(1− q)−3

(
ad z−1

1

) ([[
z−1

3 , z−1
2

]
, z−1

2

])
,

which proves (17) for the case T = −1. Suppose that (17) holds for some T ∈ Z\N.

That is,(
ad z−1

1

)−T ([[
z−1

3 , z−1
2

]
, z−1

2

])
= (−1)−T (1− q)2−T z−1

3 z−2
2 zT1 . (19)

We emphasize here that in (19), the exponent of ad z−1
1 is −T > 0, and so(

ad z−1
1

)−T
is a valid composition of mappings. We then apply the map ad z−1

1 on

both sides of (19) and use the reordering formula (7), (8), (9). From this, we get(
ad z−1

1

)−T+1 ([[
z−1

3 , z−1
2

]
, z−1

2

])
= (−1)−T (1−q)2−T (q−1·q2−1) z−1

3 z−2
2 zT−1

1 ,

= (−1)−T+1(1−q)3−T z−1
3 z−2

2 zT−1
1 ,

which further implies that

z−1
3 z−2

2 zT−1
1 = (−1)T−1(1− q)(T−1)−2

(
ad z−1

1

)−(T−1) ([[
z−1

3 , z−1
2

]
, z−1

2

])
.

By induction (17) holds for all T ∈ Z\N, and this completes the proof. �

The relevance of (16) and (17) will now be apparent in the proof of the following.

Lemma 4.3. For any h ∈ Z\{0}, we have

zh3 , zh2 , zh1 ∈ Lq.

Proof. By (16) and (17), both z3z
2
2z1 and z−1

3 z−2
2 zh−1

1 are elements of Lq. But by

(14), we have

zh1 = q3(1− qh)−1
[
z3z

2
2z1, z

−1
3 z−2

2 zh−1
1

]
, (20)

where the existence of (1− qh)−1 follows from the assumption that q is not a root

of unity. Thus, zh1 ∈ Lq. We now show zh2 ∈ Lq. Apply Φ on both sides of (20),

and we obtain

zh2 = q3(1− qh)−1
[
Φ
(
z3z

2
2z1

)
,Φ
(
z−1

3 z−2
2 zh−1

1

)]
, (21)

where the left-hand side was obtained by using the fact that Φ is an algebra homo-

morphism, while the right-hand side was obtained using the fact that Φ, being an

algebra homomorphism, is necessarily a Lie algebra homomorphism. To evaluate

Φ
(
z3z

2
2z1

)
and Φ

(
z−1

3 z−2
2 zh−1

1

)
, we use (16) and (17), and we use the property of
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Φ that it is a Lie algebra homomorphism to evaluate the resulting right-hand sides.

This gives us

Φ(z3z2
2z1) = (1−q)−3 [z1,[z3,[z3,z2]]], (22)

Φ(z−1
3 z−2

2 zh−1
1 ) =

{
uh(ad z2)h−1([[z−1

1 ,z−1
3 ],z−1

3 ]), h∈Z+,

vh(ad z−1
2 )

1−h
([[z−1

1 ,z−1
3 ],z−1

3 ]), h∈Z\Z+,
(23)

where uh = qh−1(1− q)−h−1 and vh = (−1)h−1(1− q)h−3. We note that the scalar

coefficients in (21), (22), (23) are all defined in the field because q is assumed to be

nonzero and not a root of unity. By inspecting the right-hand sides in (22), (23),

we find that both Φ
(
z3z

2
2z1

)
and Φ

(
z−1

3 z−2
2 zh−1

1

)
are in Lq, and so by (21), we

have zh2 ∈ Lq. A similar argument can be made to prove that zh3 ∈ Lq, and this

should start by applying Φ2 on both sides of (20). �

We now look for more basis elements from (3) that are in Lq. But first, we need

the following.

Proposition 4.4. For any h,m, n ∈ Z, the relations[
zh3 , z

m
2

]
=

(
1− qhm

)
zh3 z

m
2 , (24)[

zh3 z
m
2 , z

n
1

]
=

(
1− qn(m−h)

)
zh3 z

m
2 z

n
1 , (25)[

zh3 , z
h
2 z

n
1

]
=

(
1− qh(h−n)

)
zh3 z

m
2 z

n
1 , (26)

hold in Aq.

Proof. Use (14). �

Lemma 4.5. For any h,m, n ∈ Z\{0}, basis vectors of Aq from (3) of the form

zh3 z
m
2 , zh3 z

m
1 , zh2 z

m
1 , (27)

zh3 z
m
2 z

n
1 , (h 6= m), (28)

zh3 z
h
2 z

n
1 , (h 6= n), (29)

are elements of Lq.

Proof. By Lemma 4.3 and (24), we find that zh3 z
m
2 ∈ Lq. Rewrite (24) as

zm3 z
h
2 = (1− qhm)−1

[
zm3 , z

h
2

]
. (30)

Apply Φ to both sides of (30). Reorder the resulting left-hand side, and by making

some adjustments in the scalar coefficients, we get

zh3 z
m
1 = qhm(1− qhm)−1

[
zm1 , z

h
3

]
,

where zm1 , z
h
3 ∈ Lq by Lemma 4.3, and so we deduce that zh3 z

m
1 ∈ Lq. By a similar

argument, we also have zh2 z
m
1 ∈ Lq. Since it has now been established that zh3 z

m
2
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and zn1 are both in Lq, by (25), we find that the vectors (28) are in Lq. The

significance of the restriction h 6= m is evident from the appearance of the scalar

coefficient in (25). By a similar argument, we find that the vectors (29) are also in

Lq. �

Lemma 4.6. If h,m, n, u, v, w ∈ Z such that h + u = m + v = n + w, then[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
= 0.

Proof. Set u = −h, v = −m, w = −n in (14). �

Lemma 4.7. A basis for the Lie algebra Lq consists of the vectors

zh3 z
m
2 z

n
1 , (31)

where at least one of the conditions h 6= m, h 6= n, or m 6= n is true.

Proof. Denote the span of the vectors in the statement by K. Since such vectors

are taken from the basis (3) of Aq, these vectors are linearly independent, and so

they form a basis for their span, which is K. Thus, we are done if we show K = Lq.

We first prove that K is a Lie subalgebra of Aq. What would suffice is to show

that the Lie bracket of any two of the basis elements of K from the statement,

say zh3 z
m
2 z

n
1 and zu3 z

v
2z

w
1 , is a linear combination of the same basis elements in

the statement. In view of Remark 3.43.4,
[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
is in the Z3-gradation

subspace A(h+u,m+v,n+w), and is hence a scalar multiple of zh+u
3 zm+v

2 zn+w
1 . But

by considering the property of the basis elements of K in the statement, the only

possibility for
[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
= czh+u

3 zm+v
2 zn+w

1 (for some scalar c) to be not in

K is when c 6= 0 and h+ u = m+ v = n+w. But this is impossible by Lemma 4.6.

Hence,
[
zh3 z

m
2 z

n
1 , z

u
3 z

v
2z

w
1

]
∈ K, and so K is a Lie subalgebra of Aq. Observe that

the basis vectors of K in the statement include all the generators of Aq. Since the

smallest Lie subalgebra of Aq that contains all the generators of Aq is Lq, we have

Lq ⊆ K. To get the other set inclusion, we simply make use of Lemmas 4.3 and

4.5, which imply that all the basis vectors of K are in Lq. Therefore, K = Lq. �

By Lemma 4.7 we are able to identify which vector subspace of Aq is precisely

Lq. What remains of the vector space Aq can be easily described by the conditions

on the exponents of the generators imposed on the basis elements of Lq indicated

in Lemma 4.7, and so we have the following.

Corollary 4.8. A direct sum decomposition (of vector spaces) for Aq is given by

Aq = Lq ⊕
⊕
h∈Z

A(h,h,h). (32)

Define π as the vector space projection of Aq onto
⊕

h∈ZA(h,h,h). Equivalently, π

is the canonical map Aq → Aq/Lq if Aq/Lq is viewed as a quotient of vector spaces.
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Corollary 4.9. The Lie algebra L is a Lie subalgebra of Lq.

Proof. For any k ∈ {1, 2, 3}, the generator Ik of the Lie algebra L has the property

π (Ik) = π
(

Gk

q−q−1

)
= 0 in view of the equations (4), (5), (6). Thus, L is a Lie

algebra contained in Lq. �

5. Nonzero polynomials in C are not Lie polynomials in I1, I2, I3

Define the family {ΛN : N ∈ Z} of vector subspaces of Aq by the property that

for each N ∈ Z, a basis for ΛN consists of the vectors

zh3 z
m
2 z

n
1 , (h+m+ n = N.) (33)

We immediately find that {ΛN : N ∈ Z} is a Z-gradation of Aq.

Proposition 5.1. The elements G1, G2, G3 satisfy the properties

q
1
2G2

1 + q−
3
2G2

2 + q
1
2G2

3 ∈
2⊕

i=−2

Λ2i, (34)

−G1G2G3 + q
3
2 z2

3z
2
2z

2
1 ∈

2⊕
i=−3

Λ2i. (35)

Proof. We first prove (34). Let H ∈ {G1, G2, G3}. From (4), (5), (6), there exist

λ−2 ∈ Λ−2, λ0 ∈ Λ0, λ2 ∈ Λ2, (36)

such that

H = λ−2 + λ0 + λ2. (37)

Consider the following elements of Aq.

µ−4 := λ2
−2, (38)

µ−2 := λ−2λ0 + λ0λ−2, (39)

µ0 := λ−2λ2 + λ2
0 + λ2λ−2, (40)

µ2 := λ0λ2 + λ2λ0, (41)

µ4 := λ2
2. (42)

By (36) and (38) to (42), we find that µj ∈ Λj for any j ∈ {−4,−2, 0, 2, 4}, and so∑2
i=−2 µ2i ∈

⊕2
i=−2 Λ2i. Also, it is routine to show that H2 =

∑2
i=−2 µ2i, and so

we have

H2 ∈
2⊕

i=−2

Λ2i. (43)
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But since H is arbitrary, (43) implies that any linear combination of G2
1, G

2
2, G

2
3 is

an element of
⊕2

i=−2 Λ2i. In particular, so is q
1
2G2

1 + q−
3
2G2

2 + q
1
2G2

3. This proves

(34). We now prove (35). By (4), (5), (6), there exist

α−2, β−2, γ−2 ∈ Λ−2, α0, β0, γ0 ∈ Λ0, (44)

such that

G1 = q−
1
2 z3z1 + α−2 + α0, (45)

G2 = q
1
2 z3z2 + β−2 + β0, (46)

G3 = q
1
2 z2z1 + γ−2 + γ0. (47)

Similar to the technique of using (38) to (42) in the proof of (34), we define the

following elements of Aq.

ν−4 := −α−2β−2, (48)

ν−2 := −α0β−2 − α−2β0, (49)

ν0 := −q− 1
2 z3z1β−2 − α0β0 − q−

1
2α−2z3z2, (50)

ν2 := −q− 1
2 z3z1β0 − q−

1
2α0z3z2. (51)

It is routine to show that

−G1G2 = −z3z1z3z2 +

1∑
i=−2

ν2i, (52)

= −z2
3z2z1 +

1∑
i=−2

ν2i, (53)

where (53) is obtained from (52) by using the reordering formula from Section 3 on

the first term of (52). Now, we use (47) and (53) to compute for −G1G2G3, and

we obtain

−G1G2G3 = −q 1
2 z2

3(z2z1)2 (54)

−z2
3z2z1γ0 − z2

3z2z1γ−2 (55)

+q
1
2

(
1∑

i=−2

ν2i

)
z2z1 (56)

+

(
1∑

i=−2

ν2i

)
γ0 (57)

+

(
1∑

i=−2

ν2i

)
γ−2. (58)
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By (44) and (48) to (51), we find that νj ∈ Λj for all j ∈ {−4,−2, 0, 2}. Then∑1
i=−2 ν2i ∈

⊕1
i=−2 Λ2i. This further implies that the terms (55) to (58) are

elements of

2⊕
i=1

Λ2i,

1⊕
i=−2

Λ2iΛ2,

1⊕
i=−2

Λ2i,

1⊕
i=−2

Λ2iΛ−2, (59)

respectively. By the properties of the gradation subspaces, the second and fourth

vector spaces in (59) can be simplified as

1⊕
i=−2

Λ2iΛ2 =

1⊕
i=−2

Λ2i+2 =

2⊕
i=−1

Λ2i,

1⊕
i=−2

Λ2iΛ−2 =

1⊕
i=−2

Λ2i−2 =

0⊕
i=−3

Λ2i,

and so we deduce that the terms (55) to (58) are elements of

2⊕
i=1

Λ2i,

2⊕
i=−1

Λ2i,

1⊕
i=−2

Λ2i,

0⊕
i=−3

Λ2i, (60)

respectively. Denote by R the sum of (55) to (58). By inspection of the limits of

the indices of the direct sums in (60), we find that R ∈
⊕2

i=−3 Λ2i. We now rewrite

(54) to (58) as −G1G2G3 + q
1
2 z2

3(z2z1)2 = R, in which we further rewrite the term

q
1
2 z2

3(z2z1)2 using the reordering formula for Aq, and by doing this we get

−G1G2G3 + q
3
2 z2

3z
2
2z

2
1 = R ∈

2⊕
i=−3

Λ2i.

�

Lemma 5.2. For any n ∈ Z+, the Casimir element C satisfies the property

Cn − (−1)nq2(n2−n+2)(q2 − 1)−2nz2n
3 z2n

2 z2n
1 ∈

3n−1⊕
i=−3n

Λ2i. (61)

Proof. We use induction on n. By (34), (35), there exists R ∈
⊕2

i=−3 Λ2i such

that

−G1G2G3 + q
1
2G2

1 + q−
3
2G2

2 + q
1
2G2

3 + q
3
2 z2

3z
2
2z

2
1 = R. (62)

Since we are considering U ′q(so3) as the subalgebra of Aq described in Proposi-

tion 2.1, we have Ik = Gk

q−q−1 for any k ∈ {1, 2, 3}, and so we obtain from (1) the

relation

q−
5
2 (q2 − 1)2C = −G1G2G3 + q

1
2G2

1 + q−
3
2G2

2 + q
1
2G2

3. (63)
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Substituting using (63) into (62) and by some adjustments in scalar coefficients

such that C has scalar coefficient 1, we obtain

C + q4(q2 − 1)−2z2
3z

2
2z

2
1 = q

5
2 (q2 − 1)−2R ∈

2⊕
i=−3

Λ2i, (64)

which is precisely (61) when n = 1. Suppose (61) holds for some n ∈ Z+. Thus, for

any i ∈ {−3n,−3n+ 1, . . . , 3n− 1} there exists ν2i ∈ Λ2i such that

Cn − (−1)nq2(n2−n+2)(q2 − 1)−2nz2n
3 z2n

2 z2n
1 =

3n−1∑
i=−3n

ν2i. (65)

Also, observe that in (64), the expression q
5
2 (q2 − 1)−2R is equal to

∑3n−1
i=−3n µ2i

for some elements µ2i of Aq with the property µ2i ∈ Λ2i for all i ∈ {−3n,−3n +

1, . . . , 3n− 1}. Thus, we can rewrite (64) and (65) as

C = −q4(q2 − 1)−2z2
3z

2
2z

2
1 +

2∑
i=−3

µ2i, (66)

Cn = (−1)nq2(n2−n+2)(q2 − 1)−2nz2n
3 z2n

2 z2n
1 +

3n−1∑
i=−3n

ν2i. (67)

Use (66) and (67) to solve for Cn+1. More precisely, one way is to multiply the

left-hand sides as Cn · C, and we describe in the following some characteristics of

the resulting right-hand side, which can be verified by some routine calculations.

First, there is one and only one term that is a scalar multiple of precisely the

vector z2n
3 z2n

2 z2n
1 z2

3z
2
2z

2
1 . It is routine to show that all other terms are elements

of
⊕3(n+1)−1

i=−3(n+1) Λ2i. Use the reordering formula to get z
2(n+1)
3 z

2(n+1)
2 z

2(n+1)
1 from

z2n
3 z2n

2 z2n
1 z2

3z
2
2z

2
1 . The resulting scalar coefficient is equal to

(−1)(n+1)q2((n+1)2−(n+1)+2)(q2 − 1)−2(n+1).

By these observations, (61) holds for n+ 1. This completes the proof. �

Theorem 5.3. The sum of the vector spaces L and Z
(
U ′q(so3)

)
is direct. i.e., Since

C generates Z
(
U ′q(so3)

)
, any nonzero polynomial in C is not a Lie polynomial in

I1, I2, I3.

Proof. Let U ∈ Z
(
U ′q(so3)

)
. We have already established in (32) that if U = I ∈

A(0,0,0), then U /∈ Lq, and hence by Corollary 4.9, we further have U /∈ L. Thus,

without loss of generality, suppose that U has polynomial degree n ∈ Z+, and that

the coefficient of Cn in U is 1. By Lemma 5.2, there exists a nonzero L ∈ A(2n,2n,2n)

and some R ∈
⊕3n−1

i=−3n Λ2i such that U = L + R. The condition L ∈ A(2n,2n,2n)

implies that

π(U) = L+ π(R). (68)
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In view of the properties of the defining bases of the Z3-gradation subspaces A(h,m,n)

and those of the Z-gradation subspaces ΛN of Aq, we find that the conditions

L ∈ A(2n,2n,2n) and R ∈
⊕3n−1

i=−3n Λ2i imply R /∈ A(2n,2n,2n), and so in the right-

hand side of (68), no summand in the linear combination for π(R) serves as the

additive inverse of L, which further implies that π(U) 6= 0. Thus, U /∈ Lq, and

therefore U /∈ L. �
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