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Abstract. In this paper, we introduce and study HY -s.m.c. and strong HY -

s.m.c. sets and give some connections between them and lattice ideals of HY .

Also, we introduce an ideal RS , for each subset set S of a ring R. We prove a

ring R is a Gelfand ring if and only if RS is an intersection of maximal ideals,

for every s.m.c. set S of R.
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1. Introduction

The concept of HY -ideals as an extension of z-ideals and z◦-ideals is introduced

and studied in [1] and [4]. In Section 2, we introduce (strong) HY -s.m.c. sets, study

lattice ideals of HY , and give some connections between these concepts. We show

that in each ring with the hY -property a subset I of HY is an ideal if and only if

there is an HY -s.m.c. set S such that I = HY (S). Also, we prove that every prime

ideal of a ring R is anHY -ideal if and only if every s.m.c. subset of R is anHY -s.m.c.

set. In Section 2 of paper [3], the concept of lattice ideal of Z(X) (is called co-ideal)

is studied, and the authors use this concept to give a new representation of closed

ideals in the context of rings of real valued continuous functions. In Section 3,

we generalize these concepts and improve some facts and proofs mentioned in that

paper. The remainder of the current section is devoted to recalling some pertinent

definitions.

Throughout this paper R, Spec(R), Max(R) and Y denotes a unitary commuta-

tive ring, the family of all prime ideals of R, the family of all maximal ideals of R

and a family of prime ideals, respectively. For any subset P of Y and S of R, we

denote the kernel of P by k(P) =
⋂
P∈P P and the hull of S by hY (S) = {P ∈ Y :

S ⊆ P}. By HY , we mean the family {hY (F ) : F is a finite subset of R}. For each

S ⊆ R and I ⊆ HY , we denote {hY (F ) : F is a nonempty finite subset of S} and

{a ∈ R : hY (a) ∈ I} by HY (S) and H−1Y (I), respectively. An ideal I of a ring is
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called a (resp., strong) HY -ideal if for each (resp., finite subset F ) element a of I

we have (resp., khY (F ) ⊆ I) khY (a) ⊆ I. A ring R is said to have the hY -property

if for every a, b ∈ R, there is some c ∈ R such that hY (a)∩hY (b) = hY (c). Clearly,

this is equivalent to say that for any finite subset F of R, there is some c ∈ R

such that hY (F ) = hY (c). It is easy to see that if R has the hY -property, then

HYH−1Y (I) = I, for each subset I of HY .

Suppose that S is a multiplicatively closed (for short “m.c.”) set of R. By [6,

Theorem 3.44], the family {I ⊆ R : I is an ideal of R and I∩S = ∅} has a maximal

element and each maximal element of this family is prime. By A
c

we mean the set

R \ A, for each subset A of R. [6, Exercise 5.7] concludes that if {Pα}α∈A is the

family of all maximal elements of {I ⊆ R : I is an ideal of R and I ∩ S = ∅}, then⋂
α∈A P

c

α is the smallest saturated multiplicative closed (for short “s.m.c.”) set

containing S. Thus if S is an s.m.c. set, then S =
⋂
α∈A P

c

α. It is clear that each

maximal element of {I ⊆ R : I is an ideal of R and I∩S = ∅} is a minimal element

of {Ic ⊆ R : I is an ideal of R and I ∩S = ∅}. We denote the family of all minimal

elements of {Ic ⊆ R : I is an ideal of R and I ∩ S = ∅} by Mim(S). Hence S is an

s.m.c. set if and only if S =
⋂
U∈Mim(S) U .

Suppose that L is a lattice, then an ideal I of L is a nonempty set of L which

satisfies

(a) a ∈ L and a 6 b ∈ I imply that a ∈ I.

(b) a, b ∈ L implies that a ∨ b ∈ L.

Evidently, a nonempty subset I of L is an ideal if and only if for every a, b ∈ R,

we have a ∨ b ∈ I is equivalent to the fact that a, b ∈ I. In [3], an ideal of Z(X) is

called co-ideal.

The reader is referred to [2,5,6,7,8] for undefined terms and notations.

2. HY -s.m.c. and strong HY -s.m.c. sets

In this section, we introduce and study HY -s.m.c. and strong HY -s.m.c. sets and

give some relations between ideals of HY , HY -s.m.c. sets of R and HY -ideals of R.

Proposition 2.1. Let S be an s.m.c. set of R. Then the following are equivalent.

(a) For any a /∈ S and A ⊆ R, hY (a) ⊆ hY (A) implies that A ∩ S = ∅.
(b) For any a /∈ S and A ⊆ R, hY (a) = hY (A) implies that A ∩ S = ∅.
(c) For any a /∈ S and b ∈ R, hY (a) = hY (b) implies that b /∈ S.

(d) For any a /∈ S and b ∈ R, hY (a) ⊆ hY (b) implies that b /∈ S.

(e) For any a /∈ S, khY (a) ∩ S = ∅.
(f) For any a /∈ S and A ⊆ R, khY (a) ⊇ khY (A) implies that A ∩ S = ∅.
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(g) For any a /∈ S and A ⊆ R, khY (a) = khY (A) implies that A ∩ S = ∅.
(h) For any a /∈ S and b ∈ R, khY (a) = khY (b) implies that b /∈ S.

(i) For any a /∈ S and b ∈ R, khY (a) ⊇ khY (b) implies that b /∈ S.

(j) For any a ∈ S and b ∈ R, hY (a) = hY (b) implies that b ∈ S.

(k) For any a ∈ S and b ∈ R, hY (b) ⊆ hY (a) implies that b ∈ S.

(l) For any a ∈ S and b ∈ R, khY (a) = khY (b) implies that b ∈ S.

(m) For any a ∈ S and b ∈ R, khY (b) ⊇ khY (a) implies that b ∈ S.

Proof. (a) ⇒ (b) ⇒ (c) They are evident.

(c) ⇒ (d) It is easy to see that hY (ab) = hY (a) ∪ hY (b) = hY (b). Since S is an

s.m.c. set of R and a /∈ S, it follows that ab /∈ S. From this, we infer that b /∈ S,

by the assumption.

(d) ⇒ (e) If b ∈ khY (a), then hY (a) ⊆ hY (b). It follows that b /∈ S, by the

assumption. Consequently khY (a) ∩ S = ∅.
(e) ⇒ (f) It is clear, by the fact that A ⊆ khY (A).

(f) ⇒ (g) ⇒ (h) They are evident.

(h) ⇒ (i) It is clear that khY (ab) = khY (a) ∩ khY (b) = khY (b). Since S is an

s.m.c. set of R and a /∈ S, it follows that ab /∈ S. From this, we conclude that b /∈ S,

by the assumption.

(i) ⇒ (a) If hY (a) ⊆ hY (A), then hY (a) ⊆ hY (x), for every x ∈ A. Hence

for every x ∈ A, we have khY (a) ⊇ khY (x). This implies that x /∈ S, by the

assumption. From this, we infer that A ∩ S = ∅.
(i) ⇔ (c), (j) ⇔ (k), (h) ⇔ (l) and (i) ⇔ (m) They are clear. �

Definition 2.2. An s.m.c. set S of a ring R is called an HY -s.m.c. set if it satisfies

one of the equivalent conditions of the above proposition.

Inspired by the concept of z-ideals (resp., z◦-ideals) we call an HY -s.m.c. set a

z-s.m.c. (resp., z◦-s.m.c. ) in case of Y = Max(R) (resp., Y = Min(R)). Clearly,

S ⊆ H−1Y HY (S), for each S ⊆ R. Now by the above proposition, an s.m.c. set S is

an HY -s.m.c. set if and only if H−1Y HY (S) = S.

Let A and B be two subsets of a ring R. One can see readily that hY (AB) =

hY (A)∪hY (B) and B ⊆ khY (A) if and only if hY (B) ⊇ hY (A). These results lead

to the following proposition.

Proposition 2.3. Let S be an s.m.c. set of R. Then the following are equivalent.

(a) For every finite subset F of R disjoint from S and A ⊆ R, hY (F ) ⊆ hY (A)

implies that A ∩ S = ∅.
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(b) For every finite subset F of R disjoint from S and A ⊆ R, hY (F ) = hY (A)

implies that A ∩ S = ∅.
(c) For every finite subset F of R disjoint from S and finite subset G of R,

hY (F ) = hY (G) implies that G ∩ S = ∅.
(d) For every finite subset F of R disjoint from S and finite subset G of R,

hY (F ) ⊆ hY (G) implies that G ∩ S = ∅.
(e) For every finite subset F of R disjoint from S, khY (F ) ∩ S = ∅.
(f) For every finite subset F of R disjoint from S and A ⊆ R, khY (F ) ⊇

khY (A) implies that A ∩ S = ∅.
(g) For every finite subset F of R disjoint from S and A ⊆ R, khY (F ) =

khY (A) implies that A ∩ S = ∅.
(h) For every finite subset F of R disjoint from S and finite subset G of R,

khY (F ) = khY (G) implies that G ∩ S = ∅.
(i) For every finite subset F of R disjoint from S and finite subset G of R,

khY (F ) ⊇ khY (G) implies that G ∩ S = ∅.

Definition 2.4. An s.m.c. set S of a ring R is called a strong HY -s.m.c. set if it

satisfies one of the equivalent conditions of the above proposition.

Inspired by the concept of strong z-ideals (resp., z◦-ideals), we call a strong

HY -s.m.c. set a strong z-s.m.c. (resp., z◦-s.m.c. ) in case of Y = Max(R) (resp.,

Y = Min(R)). Clearly, every strong HY -s.m.c. set is an HY -s.m.c. set and if R

satisfies the hY -property, then the family of all HY -s.m.c. sets and the family of

all HY -s.m.c. sets coincide. Evidently, for each prime ideal P of R, P is a (resp.,

strong) HY -ideal if and only if P
c

is a (resp., strong) HY -s.m.c. set. It is easy

to show that the intersection of each family of (resp., strong) HY -s.m.c. sets is a

(resp., strong) HY -s.m.c. set and thus the smallest HY -s.m.c. set and strong HY -

s.m.c. set containing an s.m.c. set exist. Also, the union of a chain of (resp., strong)

HY -s.m.c. sets is a (resp., strong) HY -s.m.c. set and, therefore any family of (resp.,

strong) HY -s.m.c. sets contained in an HY -s.m.c. set has a maximal element.

Lemma 2.5. Suppose that S is a strong HY -s.m.c. set of R and I is an ideal. If

I ∩ S = ∅, then ISH ∩ S = ∅ and IH ∩ S = ∅.

Proof. Suppose that a ∈ ISH, then by [1, Proposition 7.5], a finite subset F of I

exists such that khY (a) ⊆ khY (F ). Thus F ∩S = ∅, since I is a strong HY -ideal, it

follows that khY (F )∩S = ∅. So khY (a)∩S = ∅ and, therefore, a /∈ S. Consequently

ISH ∩ S = ∅. By the fact that IH ⊆ ISH, it is clear that IH ∩ S = ∅. �
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Proposition 2.6. Suppose that S is an s.m.c. set. S is a strong HY -s.m.c. set if

and only if U is a strong HY -s.m.c. set, for each U ∈ Mim(R).

Proof. (⇒) Suppose that P
c ∈ Mim(R). Since P ∩ S = ∅, by Lemma 2.5, it

follows that PSH ∩ S = ∅, since (PSH)
c

⊆ P
c

, by the minimality of P
c

, it follows

that PSH = P . Hence P is a strong HY -ideal and, therefore, P
c

is a strong HY -

ideal.

(⇐) It is clear, by the fact that the intersection of any family of strong HY -s.m.c.

sets is a strong HY -s.m.c. set. �

Theorem 2.7. Suppose that R has the hY -property. Then a subset I of HY is an

ideal if and only if there is an HY -s.m.c. set S of R such that I = HY (S).

Proof. (⇒) For each a, b ∈ R,

ab ∈ H−1Y (I) ⇔ hY (ab) ∈ I ⇔ hY (a) ∪ hY (b) ∈ I

⇔ hY (a), hY (b) ∈ I ⇔ a, b ∈ H−1Y (I)

Thus H−1Y (I) is an s.m.c. set. Now suppose that a /∈ H−1Y (I), then hY (a) /∈ I.

If hY (b) ⊇ hY (a), since I is an ideal of HY , it follows that hY (b) /∈ I and thus

b /∈ H−1Y (I). Therefore S = H−1Y (I) is an HY -s.m.c. set of R. Since R has the

hY -property, it follows that HY (S) = HYH−1Y (I) = I.

(⇐) Suppose that S is an HY -s.m.c. set, H1,H2 ∈ HY (S) and H1 ∈ HY . Then

two finite subsets E and F of S exist such that H1 = hY (E) and HY = hY (F ).

Then EF = {xy : x ∈ E and y ∈ F} is a finite subset of S and, therefore,

H1 ∪H2 = hY (E) ∪ hY (F )

=
[ ⋂
x∈E

hY (x)
]
∪
[ ⋂
y∈F

hY (y)
]

=
⋂
x∈E
y∈F

[
hY (x) ∪ hY (y)

]
=
⋂
x∈E
y∈F

hY (xy) = hY (EF ) ∈ HY (S)

Now suppose that H1 ⊆ H2 ∈ HY (S). Since R has the hY -property, there are

a, b ∈ R such that hY (a) = H1 and hY (b) = H2. Since S is an s.m.c. set, it follows

that b ∈ H−1Y HY (S) = S. Hence hY (ab) = hY (a)∪hY (b) = hY (b), since S is anHY -

s.m.c. set, it follows that ab ∈ S, therefore a ∈ S and thus H1 = hY (a) ∈ HY (S).

Consequently HY (S) is an ideal of HY . �
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Proposition 2.8. The following are equivalent.

(a) Every semiprime ideal of R is a (resp., strong) HY -ideal of R.

(b) Every prime ideal of R is a (resp., strong) HY -ideal of R.

(c) Every s.m.c. set of R is a (resp., strong) HY -s.m.c. set of R.

Proof. (a) ⇒ (b) It is evident.

(b) ⇒ (c) Suppose that S is an s.m.c. set. By the assumption, there is a family

{Pα}α∈A of prime HY -ideals such that S =
⋂
α∈A P

c

α. Now the fact that the

intersection of any family of (resp. strong) HY -s.m.c. sets is a (resp., strong) HY -

s.m.c. set implies that S is a (resp., strong) HY -s.m.c. set.

(c) ⇒ (a) Suppose that I is a semiprime ideal, then there is a family {Pα}α∈A
of prime ideals such that I =

⋂
α∈A Pα. By the assumption, P

c

α is a (resp., strong)

HY -s.m.c. set, for each α ∈ A, and thus Pα is a (resp., strong) HY -ideal, for each

α ∈ A. Since the intersection of any family of (resp., strong) HY -ideals is a (resp.,

strong) HY -ideal, it follows that I is a (resp., strong) HY -ideal. �

Proposition 2.9. Suppose that S is an s.m.c. set of R. If Y is finite, then the

following statements are equivalent.

(a) There is a subset P of Y such that S =
⋂
P∈P P

c

.

(b) S is a strong HY -s.m.c. set of R.

(c) S is an HY -s.m.c. set of R.

Proof. (a) ⇒ (b) and (b) ⇒ (c) They are evident.

(c) ⇒ (a) Set P = {P ∈ Y : S ∩P = ∅}. For each P ∈ P, we have S ⊆ P c

. This

yields S ⊆
⋂
P∈P P

c

. For each P ∈ Pc , we have S ∩ P 6= ∅. From this, we infer

that there exists some a
P
∈ S ∩ P and thus∏

P∈Pc
a
P
∈ S ∩ k(P

c

) 6= ∅ (?)

If a /∈ S, then khY (a) ∩ S = ∅, so we have k(Pc) 6⊆ khY (a), by (?). This implies

that hY (a) 6⊆ Pc and, therefore, hY (a) ∩ P 6= ∅. It follows that P ∈ P exists

such that a ∈ P , so a ∈
⋃
P∈P P . It concludes that a /∈

⋂
P∈P P

c

. From this, we

conclude that
⋂
P∈P P

c ⊆ S and consequently S =
⋂
P∈P P

c

. �

3. An ideal corresponding to a subset

If S is a subset of R, then we denote {a ∈ R : 1 − Ra ⊆ S}, by US . Also,

we denote the ideal generated by US , by RS . In this section, we show that the

intersection of each nonempty family of maximal ideals is of the form RS , for some
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s.m.c. set S, and in Gelfand rings RS is an intersection of maximal ideals. Finally

we improve some facts and simplify some proofs of [3].

Lemma 3.1. The following statements hold.

(a) US 6= ∅ if and only if 1 ∈ S.

(b) If S ⊆ T are two subsets of R, then US ⊆ UT and RS ⊆ RT .

(c) If {Sα}α∈A is a family of subsets of R, then U(
⋂
α∈A Sα) =

⋂
α∈A USα .

(d) If M is a maximal ideal of R, then UMc = M and RMc = M .

(e) Suppose that S is a subset of R. If S
c

is contained in two distinct maximal

ideals of R, then RS = R.

Proof. (a), (b) and (c) They are clear.

(d) It is sufficient to show that UMc = M . For each a ∈ R,

a ∈M ⇔ (1−Ra) ∩M = ∅ ⇔ (1−Ra) ⊆M
c

⇔ a ∈ UMc

Thus M = UMc .

(e) Suppose that S
c

is contained in two distinct maximal ideals M1 and M2,

then S contains M
c

1 and M
c

2 . Hence part (b) implies that RS contains RMc
1

and

RMc
2
. Thus RS contains M1 and M2, by part (d). Consequently, RS = R. �

Theorem 3.2. If I is an ideal of a ring R, then UIc =
⋃
M∈hM (I)M .

Proof. For each M ∈ hM (I), we have M
c ⊆ Ic ; so UMc ⊆ UIc , by Lemma 3.1(b).

From this, Lemma 3.1(d) concludes that
⋃
M∈hM (I)M ⊆ UIc . Now suppose that

a /∈
⋃
M∈hM (I)M . Then we have I+aR = R and thus (1−Ra)∩I 6= ∅. This implies

that (1−Ra) 6⊆ Ic and consequently a /∈ UIc . It concludes that UIc ⊆
⋃
M∈hM (I)M

and, therefore, UIc =
⋃
M∈hM (I)M . �

Suppose thatM is a family of maximal ideals, then S =
⋂
M∈MM

c

is an s.m.c.

set. Hence RS =
⋂
M∈MM , by Lemma 3.1 and Theorem 3.2. In the following

corollary with the help of Lemma 3.1 and Theorem 3.2, we show that in Gelfand

rings, RS is an intersection of maximal ideals. We recall that a ring is called a

Gelfand ring if each prime ideal of R is contained in exactly one maximal ideal.

Corollary 3.3. A ring R is a Gelfand if and only if RS is an intersection of

maximal ideals, for each s.m.c. set S of R. In this case

RS =
⋂
{M ∈ Max(R) : M ⊇ U

c

, for some U ∈ Mim(S)}.
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We recall that in [3] each lattice ideal of Z(X) is called co-ideal and for each

lattice ideal of Z(X) the following set is introduced:

CI(X) = {f ∈ C(X) : Z(1− fg) ∈ I, for all g ∈ C(X)}

For each closed subset A of βX, write S =
⋂
p∈A(Mp)

c

, then S is a z-s.m.c. and

Corollary 3.3 implies that MA = CS(X) = CZ−1(S)(X). Using Theorem 2.7, we

conclude that Z−1(S) is an ideal of Z(X). Consequently almost all the facts in [3,

Section 2] are evident. By Theorem 2.7, for each ideal I of Z(X) there is a z-s.m.c.

set S of C(X) such that I = Z−1(S). Clearly, CI(X) = CS(X). Now Corollary

3.3 concludes that CI(X) = MA, for a closed subset A of βX. Hence the converse

of [3, Theorem 2.4] is also true.
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