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Abstract 
In this work, a discontinuous boundary value problem with retarded argument is studied. At the discontinuity point 

there is a transmission condition that contains a parameter.  Asymptotic properties of eigenvalues and corresponding 

eigenfunctions of the boundary value problem are studied. 

 

Keywords: Retarded argument, transmission condition, eigenvalue, eigenfunction, boundary value problem    

 

Geçiş koşulunda Özdeğer Parametresi İçeren Geç Kalan Argümanlı Bir 

Sınır Değer Problemi 

 
Öz 

Bu çalışmada, süreksizlik içeren geç kalan argümanlı bir sınır değer problemi ele alınmıştır. Süreksizlik noktasında 

parametre içeren bir geçiş koşulu vardır. Ele alınan sınır değer probleminin özdeğer ve özfonksiyonlarının asimptotik 

özellikleri incelenecektir. 

Anahtar Kelimeler: Geç kalan argüman, geçiş koşulu, özdeğer, özfonksiyon, sınır değer problemi

INTRODUCTION 

Differential equations with retarded argument 

becomes the popular branches of functional 

differential equations. After the development of 

control systems in engineering retarded equations 

become important. Before that scientists were aware 

of this type of delays in the control systems but there 

was not enough theory about this subject. Because of 

that this type of affects were ignored in the models. 

Delays have an important role to explain complex 

models mathematically and it also has important 

affects. 

Standart problem in this area was given in 1956 

by Norkin (Norkin,1956). And in 1958 Norkin 

studied the same equation with more general 

boundary conditions(Norkin, 1958).  Most of the 

work done in this area is seperated into two parts as 

continuous and discontinuous problems. Continuous 

problems have either standart boundary conditions or  

eigenparameters at the boundary conditions (Norkin, 

1972; Bayramoğlu, Köklü, Baykal 2002; Koparan 

2019)  Discontinuous problems varries as having 

eigenparameter at the boundary condition and having  

transmission conditions at the discontinuity points 

(Şen, Bayramov 2011; Şen, Bayramov 2011b; Yang 

2012; Aydin Akgun, Bayramov, Bayramoğlu 2013; 

Şen, Seo, Araci 2013, Hira 20017). There is only one 

work done about the problem that has eigenparameter 

at the transmission condition (Şen, Bayramov 2013). 

Applications of differential equations with retarded 

argument is given in the book by Kolmanovskii, and 

Myshkis (Kolmanovskii and Myshkis, 1999). 

In this work, below differential equation with 

retarded argument will be studied. Here the problem 

has discontinuity and at the discontinuity point 

transmission conditions have eigenparameter.  

 

𝑦′′(𝑥) + λ2𝑦(𝑥) + 𝑞(𝑥)𝑦(𝑥 − Δ(𝑥)) = 0,  𝑥 ∈

[0,
π

2
) ⋃ (

π

2
, π]                                                               (1)   

𝑦(0) + α𝑦′(0) = 0,                     (2) 

𝑦(π) = 0,                   (3) 
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and the transmission conditions 

 

𝑦 (
π

2
+ 0) =

δ

λ
𝑦 (

π

2
− 0),                                          (4) 

𝑦′ (
π

2
+ 0) =

δ

λ
𝑦′ (

π

2
− 0),                                       (5) 

where 𝑞(𝑥) and Δ(𝑥) ≥ 0 are real valued functions 

continuous in [0,
π

2
) ⋃ (

π

2
, π] and have finite left and 

right limits at each side of 
π

2
, if 𝑥 ∈ [0,

π

2
) then  𝑥 −

Δ𝑥 ≥ 0, if 𝑥 ∈ (
π

2
, π] then 𝑥 − Δ𝑥 ≥

π

2
,  λ  is an 

eigenparameter and α, δ ≠ 0 are arbitrary real 

numbers.    

Consider the solution of equation (1) on [0,
π

2
) 

such that it satisfies the initial conditions 

 

𝜔1(0, 𝜆) = 𝛼,       𝜔′1(0, 𝜆) = −1.                  (6) 

 

These initial conditions (6) define a unique solution 

of equation (1) on [0,
π

2
) (Norkin,1972). By 

transmission conditions, solution of equation (1) on 

(
π

2
, π] can be defined in terms of 𝜔1(𝑥, 𝜆). 𝜔2(𝑥, 𝜆) 

can be written as 

 

𝜔2 (
π

2
, 𝜆) =

δ

λ
𝜔1 (

π

2
, 𝜆),                                         (7) 

 𝜔′2 (
π

2
, 𝜆) =

δ

λ
𝜔′1 (

π

2
, 𝜆).                                      (8)

 

These initial contions (7) define a unique solution of 

equation (1) on (
π

2
, π].  

Now, we can define the function 𝜔(𝑥, 𝜆) on 

[0,
π

2
) ⋃ (

π

2
, π] such that 

 

𝜔(𝑥, λ) = {
𝜔1(𝑥,𝜆),      𝑥∈[0

𝜋

2
)  

𝜔2(𝑥,𝜆),     𝑥∈(
𝜋

2
𝜋]

.                                   (9) 

 

This function is a solution of equation (1) on  

[0,
π

2
) ⋃ (

π

2
, π], that satisfies left boundary condition 

(2) and both transmission conditions (4) and (5).  

Lemma 1: Let 𝜔(𝑥, 𝜆) be a solution of equation (1) 

and 𝜆 > 0. Then 𝜔1(𝑥, 𝜆) and 𝜔2(𝑥, 𝜆) have the 

following forms: 

𝜔1(𝑥, λ) = α𝑐𝑜𝑠λ𝑥 −
𝑠𝑖𝑛λ𝑥

λ
 + 

       +
1

λ
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝑥

0
𝜆(𝑥 − 𝜏)𝜔1(𝜏 − ∆(𝜏), 𝜆)𝑑τ, 

(10) 

𝜔2(𝑥, λ) =
𝛿

λ 
𝜔1 (

𝜋

2
, λ) 𝑐𝑜𝑠λ (𝑥 −

𝜋

2
) + 

+ 
𝛿

λ2 
𝜔1

′  (
𝜋

2
, λ) 𝑠𝑖𝑛𝜆(𝑥 −

𝜋

2
) + 

+  
1

λ
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝑥
𝜋

2

𝜆(𝑥 − 𝜏)ω2(𝜏 − ∆(𝜏), 𝜆)𝑑τ.                               

(11) 

Proof: By differentiating 𝜔1(𝑥, 𝜆) and 𝜔2(𝑥, 𝜆) 

twice and applying integration by parts we see that 

(10) and (11) satisfy equation (1). 

Theorem 1: The eigenvalue problem (1)-(5) have 

only simple eigenvalues.  

Proof: Let  �̃� be an eigenvalue of the problem (1)-(5) 

and  

�̃�(𝑥, �̃�) = {
�̃�1(𝑥, �̃�),      𝑥 ∈ [0

𝜋

2
)  

�̃�2(𝑥, �̃�),     𝑥 ∈ (
𝜋

2
𝜋]

 

be a corresponding eigenfunction. Then from (2) 

and (6) it follows that the Wronskian  

W[�̃�1(0, �̃�), �̃�1(0, �̃�)]= |
𝑢1̃(0, �̃�)  𝛼 

�̃�′1(0, �̃�) −1
| = 0.   

Then it means that �̃�1(𝑥, �̃�) and �̃�1(0, �̃�) are 

linearly dependent on [0
𝜋

2
).  Similarly it can be 

proved that �̃�2(𝑥, �̃�) and �̃�2(0, �̃�) are linearly 

dependent. Consequently, it follows that ω(𝑥, �̃�) is an 

eigenfunction for the boundary value problem (1)-(5) 

and all the eigenfunctions to this problem 

corresponding to  �̃� are linearly dependent. Hence 

eigenvalues of the problem are simple. 
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MATERIAL AND METHODS 

The function 𝜔(𝑥, 𝜆) defined by (10) is a 

solution of equation (1) satisfying left boundary 

condition (2) and transmission conditions (4) and (5). 

Writing 𝜔(𝑥, 𝜆) into (3), characteristic equation is 

obtained. 

 

𝐹(𝜆) = 𝜔(𝜋, 𝜆) = 𝜔2(𝜋, 𝜆) = 0.                          

          (12) 

 

Theorem 1 guarantees that the set of eigenvalues 

of the boundary value problem (1)-(5) coincides with 

the set of real roots of equation (12). 

 

Lemma 2:  

1. Let λ ≥ 2𝑞1. Then  𝜔1(𝑥, 𝜆) given by 

equation (10) satisfy the following 

inequality: 

 

|𝜔1(𝑥, 𝜆)| ≤
1

𝑞1
√4𝑞1

2𝛼2 + 1.                   

(13) 

2. Let λ ≥ 𝑚𝑎𝑥{2𝑞1, 2𝑞2}. Then 

𝜔2(𝑥, 𝜆) given by equation (10) satisfies the 

following inequality: 

 

|𝜔2(𝑥, 𝜆)| ≤
4|δ|

λ𝑞1
√4𝑞1

2𝛼2 + 1.                              (14) 

 

Proof: Let 𝐵1𝜆 = 𝑚𝑎𝑥
[0,

π

2
] 

|𝜔1(𝑥, 𝜆)|. Then from 

(10), it follows that for every 𝜆 > 0, the following 

inequality holds: 

  

𝐵1𝜆 ≤ √𝛼2 +
1

λ2 +
1

λ
𝑞1𝐵1𝜆.                                  (15)  

For    λ ≥ 2𝑞1, (13) is obtained. Differentiating 

(10) with respect to 𝑥, 

 

𝜔1′(𝑥, λ) = −αλ𝑠𝑖𝑛λ𝑥 − cosλx − 

− ∫ 𝑞(𝜏)𝑐𝑜𝑠
𝑥

0
𝜆(𝑥 − 𝜏)𝜔1(𝜏 − ∆(𝜏), 𝜆)𝑑τ    (16) 

 

is obtained. From (13) and (16), for λ ≥ 2𝑞1, we have 

|𝜔1
′ (𝑥, λ)| ≤ √𝛼2λ2 + 1 + √4𝑞1

2𝛼2 + 1. 

Hence for λ ≥ 2𝑞1,  and 𝑥 ∈ [0
𝜋

2
),  

   
|𝜔1′(𝑥,λ)|

λ
≤

1

𝑞1
√4𝑞1

2𝛼2 + 1.                                  (17) 

Let 𝐵2𝜆 = 𝑚𝑎𝑥
[

π

2
,𝜋] 

|𝜔2(𝑥, 𝜆)|, then from (10), 

(13) and (17), for λ ≥ 2𝑞1,  the following inequality 

holds: 

𝐵2𝜆 ≤
2|𝛿|

λ𝑞1
√4𝑞1

2𝛼2 + 1 +
1

𝜆
𝑞2𝐵2𝜆. 

Hence for λ ≥ 𝑚𝑎𝑥{2𝑞1, 2𝑞2}, (14) is obtained. 

 

Theorem 2: Eigenvalues of the problem (1)-(5) form 

an infinite set of positive real numbers.  

 

Proof: Differentiating (10) with respect to 𝑥, 

  

𝜔2
′ (𝑥, 𝜆) = −𝛿𝜔1 (

𝜋

2
, λ) 𝑠𝑖𝑛λ (𝑥 −

𝜋

2
) +

 
𝛿

λ 
𝜔1

′  (
𝜋

2
, λ) 𝑐𝑜𝑠𝜆 (𝑥 −

𝜋

2
) +   

+ 
1

λ
∫ 𝑞(𝜏)𝑐𝑜𝑠

𝑥
𝜋

2

𝜆(𝑥 − 𝜏)ω2(𝜏 − ∆(𝜏), 𝜆)𝑑τ.      

(18) 

Writing (10), (11), (16) and (18) into the 

characteristic equation (12), we obtain,  

 
𝛼𝛿

𝜆
𝑐𝑜𝑠𝜆𝜋 −

𝛿

𝜆2
𝑠𝑖𝑛𝜆𝜋 + 

+
𝛿

𝜆2
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝜋

2

0

𝜆(𝜋 − 𝜏)𝜔1(𝜏 − ∆(𝜏), 𝜆)𝑑τ 

+
1

𝜆
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝜋

𝜋

2

𝜆(𝜋 − 𝜏)ω2(𝜏 − ∆(𝜏), 𝜆)𝑑τ = 0. 

(19) 

 

For 𝛼 ≠ 0 and sufficiently large 𝜆, by (13) and 

(14) equation (19) may be written as  

 

𝜆𝑐𝑜𝑠𝜆𝜋 +  𝑂(1) = 0.                                           (20) 

Clearly there are infinitely many real numbers 𝜆 

that satisfy (20).  

 

Asymptotic Formulas for Eigenvalues and 

Eigenfunctions 

Now we will study the asymptotic behavior of 

eigenvalues and eigenfunctions. From now on we will 

assume 𝜆 is sufficienly large. On [0
𝜋

2
), from (9) and 

(13) 

 

𝜔1(𝑥, 𝜆) = 𝑂(1).                                                 (21) 

On (
𝜋

2
𝜋], from (10) and (14)  
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𝜔2(𝑥, 𝜆) = 𝑂 (
1

λ
).                                                      (22) 

 

Derivatives of of 𝜔1(𝑥, 𝜆) and 𝜔2(𝑥, 𝜆) with 

respect to 𝜆 on 𝑥 ∈ [0
𝜋

2
), and 𝑥 ∈ (

𝜋

2
𝜋] respectively, 

exist and are continuous for |𝜆| < ∞ by Norkin 

(Norkin, 1972).    

 

Lemma 3:  

 

𝜔′1𝜆(𝑥, 𝜆) = 𝑂(1), 𝑓𝑜𝑟 𝑥 ∈ [0,
π

2
],                      (23)            

𝜔′2𝜆(𝑥, 𝜆) = 𝑂 (
1

λ
), for 𝑥 ∈ [𝜋,

π

2
],                        (24) 

Proof: Differentiating (9) with respect to 𝜆 and by 

(21), 

𝜔′
1𝜆(𝑥, 𝜆) =  

1

𝜆
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝑥

0
𝜆(𝑥 − 𝜏)𝜔′

1𝜆(𝜏 −

∆(𝜏), 𝜆)𝑑𝜏 +  𝐾(𝑥, 𝜆),  (|𝐾(𝑥, 𝜆)| ≤ 𝐾0).            (25) 

Let 𝐶1𝜆 = 𝑚𝑎𝑥
[0,

π

2
]
|𝜔′

1𝜆(𝑥, 𝜆)|. The existence 

of 𝐶1𝜆 follows from the continuity of derivative for 

𝑥 ∈ [0,
π

2
]. From (25)  

𝐶1𝜆 =
1

𝜆
𝑞1𝐶1𝜆  + 𝐾0 

is obtained. So for λ ≥ 2𝑞1, 𝐶1𝜆 ≤2𝐾0. Therefore 

(23) is proved. Similarly (24) may be proved.  

Theorem 3: Let 𝑛 be a sufficiently large natural 

number. Then there is only one eigevalue of the 

problem (1)-(5) around 𝑛 +
1

2
 .                          

Proof: First consider the 𝑂(1) term in equation (20)  

−
𝜆

𝛼
𝑠𝑖𝑛𝜆𝜋 + 

+
1

𝛼
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝜋

2

0

𝜆(𝜋 − 𝜏)𝜔1(𝜏 − ∆(𝜏), 𝜆)𝑑τ + 

+
𝜆

𝛼
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝜋
𝜋

2

𝜆(𝜋 − 𝜏)ω2(𝜏 − ∆(𝜏), 𝜆)𝑑τ                                                                                                                                                                                                                                                                                                                                                                                         

From (21)-(24), this expression has bounded 

derivative with respect to 𝜆. It is clear that for 𝜆 big 

enough roots of equation (20) are located close to 𝑛 +

1

2
. We need to show that there is only one solution of  

(20) around each 𝑛 +
1

2
.  

Consider the function   𝐹(𝜆) = 𝜆𝑐𝑜𝑠𝜆𝜋 +  𝑂(1). 

Its derivative 𝐹′(𝜆) = cos 𝜆𝜋 − 𝜆𝜋 sin 𝜆𝜋 + 𝑂(1) is 

equal to zero for 𝜆 close to 𝑛 +
1

2
  for sufficiently large 

𝑛. Consequently by Rolle’s Theorem proof is 

completed. 

From equation (20) eigenvalues of the 

boundary value problem (1)-(5) are obtained as: 

𝜆𝑛 = 𝑛 +
1

2
+ 𝑂 (

1

𝑛
),                                             (26) 

 From equation (10), (16) and (21) 

𝜔1(𝑥, 𝜆) = α𝑐𝑜𝑠λ𝑥 +   𝑂 (
1

𝜆
),                              (27) 

𝜔′1(𝑥, 𝜆) = −𝛼𝜆 sin 𝜆𝑥 + 𝑂(1),                           (28) 

 

From equation (11), (22), (27) and (28), 

 

𝜔2(𝑥, 𝜆) =
𝛼𝛿

𝜆
𝑐𝑜𝑠 𝜆 𝑥 +𝑂 (

1

𝜆2).                           (29) 

 

Hence eigenfunctions 𝑢𝑛(𝑥) have the following 

asymptotic representation. 

𝑢𝑛(𝑥) = {
𝛼 𝑐𝑜𝑠 (𝑛 +

1

2
) 𝑥 + 𝑂 (

1

𝑛
) , 𝑥 ∈  [0,

𝜋

2
)  

𝛿

𝑛
𝛼 𝑐𝑜𝑠 (𝑛 +

1

2
) 𝑥 +𝑂 (

1

𝑛2) , 𝑥 ∈ (
𝜋

2
, 𝜋] 

 

  

RESULTS AND DISCUSSION (Main title) 

Under additional assumptions we can improve 

these formulas for the eigenvalues and the 

eigenfunctions.   

 

Improved Asymptotic Representations for the 

Eigenvalues and Eigenfunctions  

 

Theorem 4:  Assume that 𝑞′(𝑥) and ∆′′(𝑥) exist, are 

bounded on [0,
𝜋

2
)  ∪ (

𝜋

2
, 𝜋] and have left and right 

limits at 
𝜋

2
, on [0,

𝜋

2
) ∪ (

𝜋

2
 , 𝜋], ∆′(𝑥) ≤ 1, ∆(0) = 0 

and lim
𝑥→

𝜋

2
∓0

∆(𝑥) = 0. Then for 𝑛 → ∞, eigenvalues of 

the problem (1)-(5) are as follows: 

 

𝜆𝑛 = 𝑛 + 
1

2
+

𝛼𝐵(𝜋,𝑛,∆(𝜏))−1

𝛼𝑛𝜋
+ 𝑂 (

1

𝑛2)                 (30) 
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Proof: It is clear that from (27) and (29) 

 

𝜔1(𝜏 − ∆(𝜏), 𝜆) =  𝛼 cos 𝜆(𝜏 − ∆(𝜏)) +   𝑂 (
1

𝜆
) (31) 

𝜔2(𝜏 − ∆(𝜏), 𝜆) =
𝛼𝛿

𝜆
cos 𝜆(𝜏 − ∆(𝜏)) + 𝑂 (

1

𝜆2) (32) 

 

Writing these expressions into the equation (19) 

we obtain 

 

𝜆𝛼𝛿 cos 𝜆𝜋 − 𝛿 sin 𝜆𝜋+ 

+𝛼𝛿 ∫ 𝑞(𝜏)𝑠𝑖𝑛
𝜋

0

𝜆𝜋
1

2
[cos λ∆(τ)

+ cos λ(2τ − ∆(τ))]𝑑τ           

−𝛿 ∫ 𝑞(𝜏)𝑠𝑖𝑛
𝜋

0
𝜆𝜏

1

2
[𝑠𝑖𝑛 𝜆∆(𝜏) +𝑠𝑖𝑛 𝜆(2𝜏 −

∆(𝜏))]𝑑τ + 𝑂 (
1

𝜆
) = 0.                                        (33) 

 

Defining  

 

𝐴(𝑥, 𝜆, ∆(τ)) =
1

2
∫ 𝑞(𝜏)𝑠𝑖𝑛𝜆

𝑥

0
∆(τ)𝑑τ,

𝐵(𝑥, 𝜆, ∆(τ)) =
1

2
∫ 𝑞(𝜏) cos 𝜆

𝑥

0
∆(τ)𝑑𝜏,

              (34) 

 

and the Lemma III.3.3 in (Norkin,1972),  

 

∫ 𝑞(𝜏) cos λ(2τ − ∆(τ))
𝑥

0
𝑑𝜏 = 𝑂 (

1

𝜆
) ,

∫ 𝑞(𝜏) 𝑠𝑖𝑛 𝜆 (2𝜏 − ∆(𝜏))𝑑τ = 𝑂 (
1

𝜆
) .

𝑥

0

                (35) 

 

Using (34) and (35), equation (33) can be written 

as 

 

𝜆𝛼𝛿 cos 𝜆𝜋 − 𝛿 sin 𝜆𝜋 +  

𝛼𝛿 sin 𝜆𝜋𝐵(𝜋, 𝜆, ∆(τ)) − 𝛼𝛿 cos 𝜆𝜋 𝐴(𝜋, 𝜆, ∆(τ))

+ 𝑂 (
1

𝜆
) = 0 . 

Hence  

cot 𝜆𝜋 =
1 − 𝛼𝐵(𝜋, 𝜆, ∆(τ))

𝛼𝜆
+  𝑂 (

1

𝜆2
). 

Writing 𝜆 = 𝜆𝑛 = 𝑛 +
1

2
+ 𝛿𝑛 into above 

equation 

𝛿𝑛 =
𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) − 1

𝛼𝑛𝜋
+ 𝑂 (

1

𝑛2
) 

and  

𝜆𝑛 = 𝑛 + 
1

2
+

𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) − 1

𝛼𝑛𝜋
+ 𝑂 (

1

𝑛2
) 

are obtained. 

  

Theorem 5: Under the same hypothesis of Theorem 

4 eigenfunctions of the boundary value problem (1)-

(5) are as follows: 

  

𝑢1𝑛(𝑥) = 𝛼 (1 −
𝐴(𝑥, 𝑛, ∆(𝜏))

𝑛
) cos (𝑛 +

1

2
) 𝑥 

−
(𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) −  1)𝑥

𝑛𝜋
sin (𝑛 +

1

2
) 𝑥 

+ (
𝛼𝐵(𝑥,𝑛,∆(𝜏)− 1

𝑛
) sin (𝑛 +

1

2
) 𝑥 +  𝑂 (

1

𝑛2),           (36) 

                  

𝑢2𝑛(𝑥) =
𝛼𝛿

𝑛
(1 −

𝐴(𝑥, 𝑛, ∆(𝜏)1

𝑛
) cos (𝑛 +

1

2
) 𝑥 

−
𝛿(𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) −  1)𝑥

𝑛2𝜋
sin (𝑛 +

1

2
) 𝑥 

+
𝛿(𝛼𝐵(𝑥,𝑛,∆(𝜏))− 1)

𝑛2 sin (𝑛 +
1

2
) 𝑥 +  𝑂 (

1

𝑛3).         (37) 

 

Proof: From (10) and (31) we obtain 

 

𝜔1(𝑥, λ) = α𝑐𝑜𝑠λ𝑥 −
𝑠𝑖𝑛λ𝑥

λ
 + 

+
𝛼

λ
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝑥

0
𝜆(𝑥 − 𝜏) cos 𝜆(𝜏 − ∆(𝜏)) 𝑑τ +

+𝑂 (
1

𝜆2).                      

 

Using (34) and (35), 

 

𝜔1(𝑥, λ) = α (1 −
𝐴(𝑥,𝜆,∆(𝜏))

𝜆
) 𝑐𝑜𝑠λ𝑥 +

+ (
𝛼𝐵(𝑥,𝜆,∆(𝜏))−1

𝜆
) sin 𝜆𝑥  + 𝑂 (

1

𝜆2) .                    (38)                     

Replacing 𝜆 with 𝜆𝑛 and using (30), 

𝑢1𝑛(𝑥) = 𝛼 (1 −
𝐴(𝑥, 𝑛, ∆(𝜏))

𝑛
) cos (𝑛 +

1

2
) 𝑥 

−
(𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) −  1)𝑥

𝑛𝜋
sin (𝑛 +

1

2
) 𝑥 

+ (
𝛼𝐵(𝑥,𝑛,∆(𝜏)− 1

𝑛
) sin (𝑛 +

1

2
) 𝑥 +  𝑂 (

1

𝑛2) .    
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Writing (10), (16), (31) and (32) into the 

equation (11), we have 

 

𝜔2(𝑥, λ) =
𝛼𝛿

λ
𝑐𝑜𝑠λ𝑥 −

𝑠𝑖𝑛λ𝑥

λ2
 

+
𝛼𝛿

λ2
∫ 𝑞(𝜏)𝑠𝑖𝑛

𝑥

0

𝜆(𝑥 − 𝜏) cos 𝜆(𝜏

− ∆(𝜏)) 𝑑τ + +𝑂 (
1

𝜆3
). 

Using (34) and (35), 

𝜔2(𝑥, λ) =
𝛼𝛿

λ
(1 −

𝐴(𝑥,𝜆,∆(𝜏))

𝜆
) 𝑐𝑜𝑠λ𝑥 +

+𝛿 (
𝛼𝐵(𝑥,𝜆,∆(𝜏))−1

𝜆2 ) sin 𝜆𝑥  + 𝑂 (
1

𝜆3).                     (39)   

 

Replacing 𝜆 with 𝜆𝑛 and using (30), 

      

𝑢2𝑛(𝑥) =
𝛼𝛿

𝑛
(1 −

𝐴(𝑥, 𝑛, ∆(𝜏)1

𝑛
) cos (𝑛 +

1

2
) 𝑥 

−
𝛿(𝛼𝐵(𝜋, 𝑛, ∆(𝜏)) −  1)𝑥

𝑛2𝜋
sin (𝑛 +

1

2
) 𝑥 

+
𝛿(𝛼𝐵(𝑥, 𝑛, ∆(𝜏)) −  1)

𝑛2
sin (𝑛 +

1

2
) 𝑥 +  𝑂 (

1

𝑛3
) 

 

is obtained. 

 

CONCLUSION 

Eigenvalues and eigenfunctions of the (1)-(5) 

boundary value problem have the following 

asymptotic representation: 

 

𝜆𝑛 = 𝑛 + 
1

2
+

𝛼𝐵(𝜋,𝑛,∆(𝜏))−1

𝛼𝑛𝜋
+ 𝑂 (

1

𝑛2)                  

𝑢𝑛(𝑥) = {
𝑢1𝑛(𝑥),             𝑥 ∈  [0,

𝜋

2
)  

𝑢2𝑛(𝑥),            𝑥 ∈ (
𝜋

2
, 𝜋] 

 

 

here  𝑢1𝑛(𝑥) and 𝑢2𝑛(𝑥) are given by the equation 

(36) and (37) respectively. 
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