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Abstract 

 

In this study, we study 𝛼-cosymplectic manifolds admitting a non-symmetric non-metric connection. 

Moreover, several results about Ricci semi-symmetric and semi-symmetric 𝛼-cosymplectic manifolds 

admitting the non-symmetric non-metric connection are going to be obtained. 
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1. Introduction 
 

One may consider the contact geometry as a basis for several phenomena and also relate it to 

many structures widely seen in mathematical and physical sciences. Contact structures first 

appeared in the work of Sophus Lie [20] on partial differantial equations. The geometry of 

contact Riemmanian manifolds and related issues have also received great attention in recent 

years. In fact, the most outstanding one of those can be considered as the almost cosymplectic 

manifolds presented by Goldberg and Yano [15] in 1969. In 1972, K. Kenmotsu introduced 

and studied a new class of almost contact manifolds called Kenmotsu manifolds [18]. Then, 

Kim and Pak in [19] described a new class of manifolds known as almost 𝛼-cosymplectic 

manifolds when they combined almost cosymplectic and almost 𝛼-Kenmotsu manifolds, in 

which 𝛼 is a real number. Note that almost 𝛼-Kenmotsu structures are related to some special 

conformal deformations of almost cosymplectic structures [28]. One can encounter many 

studies in the literature about almost cosymplectic manifolds ([2], [5], [6], [13], [21], [22]) and 

many others. 

 

On the other side, the concept of semi-symmetric linear connection defined on a differentiable 

manifold has been put forward by Friedmann and Schouten ([14], [26]). Then the concept of 
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symmetric linear connection defined on a differentiable manifold was introduced by Hayden 

[16] and later further investigated by Yano [29]. The main invariants of an affine connection 

are its torsion and curvature. A torsion tensor of a connection ∇ is a mapping  

𝑇: 𝜒(𝑀) × 𝜒(𝑀) ⟶ 𝜒(𝑀) defined as  
 

𝑇(𝑈, 𝑉) = ∇𝑈𝑉 − ∇𝑉𝑈 − [𝑈, 𝑉], 
 

for arbitrary vector fields 𝑈, 𝑉 ∈ 𝜒(𝑀). It is said that the connection ∇ is symmetric when the 

torsion tensor vanishes, otherwise it is known as non-symmetric. A semi-symmetric connection 

∇ is said to be a semi-symmetric metric connection if ∇𝑔 = 0, else it is said to be a semi-

symmetric non-metric connection. The semi-symmetric non-metric connection in a Riemannian 

manifold have been studied by ([1], [4], [8], [9], [11], [12], [17]) and many others. Recently, 

Pankaj et al. and Singh et al. ([23], [24], [27]) have been studied the non-symmetric non-metric 

(abbr. NSNM) connection. In this work, we study an 𝛼-cosymplectic manifolds with respect to 

a (NSNM) connection. 

 

The outline of the present study is as follows: In the second section, some basic definitions and 

results for 𝛼 -cosymplectic manifolds and (NSNM) connection are presented. In the third 

section, some theorems and lemmas on 𝛼-cosymplectic manifolds with respect to a (NSNM) 

connection are given. In the fourth section, we show that a semi-symmetric 𝛼-cosymplectic 

manifold with respect to (NSNM) connection is a cosymplectic manifold. In the fifth section, 

Ricci semi-symmetric 𝛼-cosymplectic manifolds with respect to a (NSNM) connection have 

been studied and it is also proved that on a Ricci semi-symmetric 𝛼-cosymplectic manifold 

with respect to a (NSNM) connection, the Ricci soliton of data (𝑔, 𝜉, 𝜆) is steady, expanding 

as 𝛼 = 0, 𝛼 ≠ 0, respectively. 

 

2. Some basic facts 
 

Let (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) be a (2𝑛 + 1)-dimensional almost contact metric manifold, in which 𝜑 is 

a (1,1)-tensor field, 𝜉 is the structure vector field, 𝜂 is a 1-form and 𝑔 is the Riemannian 

metric. It has been a well established fact that the (𝜑, 𝜉, 𝜂, 𝑔) structure satisfies the following 

the conditions [7].  

 

𝜑𝜉 = 0,   𝜂(𝜑𝜉) = 0,    𝜂(𝜉) = 1,  (2.1) 

 

𝜑2𝑈 = −𝑈 + 𝜂(𝑈)𝜉,   𝑔(𝑈, 𝜉) = 𝜂(𝑈),  (2.2) 

 

𝑔(𝜑𝑈, 𝜑𝑉) = 𝑔(𝑈, 𝑉) − 𝜂(𝑈)𝜂(𝑉),       (2.3) 

 

for all 𝑈, 𝑉 ∈ 𝜒(𝑀); in which 𝜒(𝑀) denotes the collection of all smooth vector fields of 𝑀. 

If  

 

∇𝑈𝜉 = −𝛼𝜑2𝑈,           (2.4) 

 

(∇𝑈𝜑)𝑉 = 𝛼[𝑔(𝜑𝑈, 𝑉)𝜉 − 𝜂(𝑉)𝜑𝑈],  (2.5) 

  

(∇𝑈𝜂)𝑉 = 𝛼𝑔(𝑈, 𝑉) − 𝜂(𝑈)𝜂(𝑉)],   (2.6) 

 

in which ∇  indicates the Riemannian connection of hold and 𝛼  is a real number, then 

(𝑀, 𝜑, 𝜉, 𝜂, 𝑔) is called an 𝛼-cosymplectic manifold [19]. Under this assumption, it is well 
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known that [22]  

 

𝜂(𝑅(𝑈, 𝑉)𝑍) = 𝛼2[𝑔(𝑈, 𝑍)𝜂(𝑉) − 𝑔(𝑉, 𝑍)𝜂(𝑈)], (2.7) 

  

𝑅(𝑈, 𝑉)𝜉 = 𝛼2[𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈],               (2.8) 

 

𝑅(𝜉, 𝑈)𝑉 = 𝛼2[𝜂(𝑉)𝑈 − 𝑔(𝑈, 𝑉)𝜉],  (2.9) 

 

𝑅(𝑈, 𝜉)𝜉 = 𝛼2[𝜂(𝑈)𝜉 − 𝑈],        (2.10) 

  

𝑆(𝑈, 𝜉) = −2𝑛𝛼2𝜂(𝑈),             (2.11) 

  

𝑄𝜉 = −2𝑛𝛼2𝜉,                 (2.12) 

 

for all 𝑈, 𝑉 and 𝑍 ∈ 𝜒(𝑀), in which 𝑅 is the curvature tensor, 𝑆 is the Ricci-curvature and 

𝑄 is the Ricci operator of 𝛼-cosymplectic manifold. 𝑆 and 𝑄 are related to each other by  

 

𝑔(𝑄𝑈, 𝑉) = 𝑆(𝑈, 𝑉).              (2.13) 

 

When the Ricci tensor denoted by 𝑆 satisfies the following condition, the 𝛼-cosymplectic 

manifold is called an 𝜂-Einsten manifold.  

 

𝑆(𝑈, 𝑉) = 𝑚1𝑔(𝑈, 𝑉) + 𝑚2𝜂(𝑈)𝜂(𝑉),  (2.14) 

 

in which 𝑚1, 𝑚2 are certain scalars. In Eq. (2.14), if 𝑚2 = 0, the manifold becomes Einstein.  

 

Definition 2.1 A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by  

 

𝔏Vg + 2S + 2λg = 0,  (2.15) 

 

in which 𝔏Vg is a Lie-derivative of Riemannian metric g with respect to vector field V and λ 

is a real constant. It is said to be shrinking, steady, or expanding according to λ < 0, λ = 0 and 

λ > 0 [3].  

 

The Nijenhuis tensor 𝒩(U, V) of φ in (M, g) is a vector valued bilinear function such that  

 

𝒩(U, V) = (∇φUφ)(V) − (∇φVφ)(U) − φ((∇Uφ)(V)) + φ((∇Vφ)(U)). (2.16) 

 

When the following definition is given  

 

′𝒩(U, V, Z) = g(𝒩(𝑈, 𝑉), 𝑍),  (2.17)  

 

then  

 

′𝒩(𝑈, 𝑉, 𝑍) = 𝑔((∇𝜑𝑈𝜑)(𝑉), 𝑍) − 𝑔((∇𝜑𝑉𝜑)(𝑈), 𝑍) − 𝑔(𝜑((∇𝑈𝜑)(𝑉)), 𝑍)  

    +𝑔(𝜑((∇𝑉𝜑)(𝑈)), 𝑍). (2.18) 

 

Now, let’s define a linear connection ∇
∗

 [24] as  
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∇
∗

𝑈𝑉 = ∇𝑈𝑉 + 𝑔(𝜑𝑈, 𝑉)𝜉              (2.19) 

 

satisfying  

 

𝑇
∗

(𝑈, 𝑉) = 2𝑔(𝜑𝑈, 𝑉)𝜉                       (2.20) 

 

and  

 

(∇
∗

𝑈𝑔)(𝑉, 𝑍) = −𝜂(𝑍)𝑔(𝜑𝑈, 𝑉) − 𝜂(𝑉)𝑔(𝜑𝑈, 𝑍), (2.21) 

 

for any 𝑈, 𝑉, and 𝑍 ∈ 𝜒(𝑀), and call it a (NSNM) connection. It is also known [8]  

 

(∇
∗

𝑈𝜑)(𝑉) = (∇𝑈𝜑)(𝑉) + 𝑔(𝜑𝑈, 𝜑𝑉)𝜉,  (2.22) 

 

(∇
∗

𝑈𝜂)(𝑉) = (∇𝑈𝜂)(𝑉) − 𝑔(𝜑𝑈, 𝑉),  (2.23) 

 

(∇
∗

𝑈𝑔) (𝜑𝑉, 𝑍) = −𝜂(𝑍)𝑔(𝜑𝑈, 𝜑𝑉).                  (2.24) 

 

By using 𝑉 by 𝜉 in (2.19), one has  

 

∇
∗

𝑈𝜉 = ∇𝑈𝜉.   (2.25) 

 

This has been stated by the following result in [23].  

 

Proposition 2.2 The vector field ξ is invariant with respect to Levi-Civita connection ∇ and a 

(NSNM) connection ∇
∗

.  

Putting 𝑈 = 𝜉 in the Eq. (2.21), we obtain  

 

(∇
∗

𝜉𝑔) (𝑉, 𝑍) = 0               (2.26) 

 

This has been stated by the following result in [23].  

 

Proposition 2.3 Covariant differentiation of Riemannian metric g with respect to contravariant 

vector field ξ vanish identically in a contact metric manifold admitting a (NSNM) connection 

∇
∗

.  

The curvature tensor 𝑅
∗

 of ∇
∗

 is described as follows  

 

𝑅
∗

(𝑈, 𝑉)𝑍 = ∇
∗

𝑈∇
∗

𝑉𝑍 − ∇
∗

𝑉∇
∗

𝑈𝑍 − ∇
∗

[𝑈,𝑉]𝑍,           (2.27) 

 

in which 𝑈, 𝑉 and 𝑍 ∈ 𝜒(𝑀). Using Eqs. (2.19), (2.22), (2.23), (2.24) and (2.25), we get  

 

𝑅
∗

(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 + 𝑔((∇𝑈𝜑)𝑉, 𝑍)𝜉 − 𝑔((∇𝑉𝜑)𝑈, 𝑍)𝜉  

  +𝑔(𝜑𝑉, 𝑍)∇𝑈𝜉 − 𝑔(𝜑𝑉, 𝑍)∇𝑈𝜉 − 𝑔(𝜑𝑈, 𝑍)∇𝑉𝜉,      (2.28) 
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in which 𝑅 is the Riemannian curvature tensor of Levi-Civita connection ∇ [7].  

 

Theorem 2.4 A cosymplectic manifold is locally the Riemannian product of an almost Kaehler 

manifold with the real line [21].  

 

𝟑. 𝜶-cosymplectic manifolds with a (NSNM)-connection 

 

In this section, the curvatures of 𝛼-cosymplectic manifolds satisfying a (NSNM) connection 

are going to be examined.  

 

Theorem 3.1 α -cosymplectic manifolds admitting a (NSNM) connection ∇
∗

 satisfy 

𝒩
∗

(U, V) = d
∗

η(U, V)ξ.  

  

Proof. If we define  

 

𝑑
∗

𝜂(𝑈, 𝑉) = (∇
∗

𝑈𝜂)𝑉 − (∇
∗

𝑉𝜂)𝑈.  (3.1) 

 

Using Eqs. (2.6) and (2.23) from (3.1), we get  

 

𝑑
∗

𝜂(𝑈, 𝑉) = 2𝑔(𝜑𝑈, 𝑉).          (3.2) 

 

Let’s define the Nijenhuis tensor 𝒩
∗

(𝑈, 𝑉) admitting a (NSNM) connection as  

 

𝒩
∗

(𝑈, 𝑉) = 𝑔((∇
∗

𝜑𝑈𝜑)(𝑉), 𝑍) − 𝑔((∇
∗

𝜑𝑉𝜑)(𝑈), 𝑍) − 𝑔(𝜑((∇
∗

𝑈𝜑)(𝑉)), 𝑍)  

 +𝑔(𝜑((∇
∗

𝑉𝜑)(𝑈)), 𝑍).       (3.3) 

 

Taking into account of (2.5) and (2.22) in Eq. (3.3), we obtain  

 

𝒩
∗

(𝑈, 𝑉) = 2𝑔(𝜑𝑈, 𝑉)𝜉.  (3.4) 

 

Using Eqs. (3.2) and (3.4), one has  

 

𝒩
∗

(𝑈, 𝑉) − 𝑑
∗

𝜂(𝑈, 𝑉)𝜉 = 0.  (3.5) 

 

The proof comes from (3.5).  

Hence, one has the corollary given below:  

 

Corollary 3.2 α-cosymplectic manifolds admitting a (NSNM) connection ∇
∗

 satisfies the Eq. 

𝒩
∗

(U, V) = T
∗

(U, V).  

  

Lemma 3.3 On an α-cosymplectic manifold with a (NSNM) connection ∇
∗

, scalar curvature is 

invariant for a (NSNM) connection ∇
∗

 and Levi-Civita connection ∇.  

  

Proof. Using Eqs. (2.1), (2.3), (2.4) and (2.5) in (2.28), we get  
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𝑅
∗

(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 + 2𝛼𝑔(𝜑𝑈, 𝑉)𝜂(𝑍)𝜉 + 𝛼𝑔(𝜑𝑉, 𝑍)𝑈 − 𝛼𝑔(𝜑𝑈, 𝑍)𝑉. (3.6) 

 

When Eq. (3.6) is contracted with respect to 𝑈, one has  

 

𝑆
∗

(𝑉, 𝑍) = 𝑆(𝑉, 𝑍) + 2𝑛𝛼𝑔(𝜑𝑉, 𝑍).  (3.7) 

 

With the help of Eq. (2.13), Eq. (3.7) becomes  

 

𝑄
∗

(𝑉) = 𝑄(𝑉) + 2𝑛𝛼(𝜑𝑉).  (3.8) 

 

Again contracting Eq. (3.7), we obtain  

 

𝑟
∗

= 𝑟,              (3.9) 

 

in which 𝑆
∗

; 𝑆, 𝑄
∗

; 𝑄 and 𝑟
∗
; 𝑟 are the Ricci tensors, Ricci operators and scalar curvatures of 

the (NSNM) connection ∇
∗

 and Levi-Civita connection ∇.  

 

By replacing 𝑈 = 𝜉 in the Eq. (3.6) and utilizing Eqs. (2.1), (2.3) together with Eq. (2.9), one 

obtains  

 

𝑅
∗

(𝜉, 𝑉)𝑍 = 𝛼2[𝜂(𝑍)𝑉 − 𝑔(𝑉, 𝑍)𝜉] + 𝛼𝑔(𝜑𝑉, 𝑍)𝜉.       (3.10) 

 

Again by replacing 𝑍 = 𝜉 in the Eq. (3.6) and using Eq. (2.8), we have  

 

𝑅
∗

(𝑈, 𝑉)𝜉 = 𝛼2[𝜂(𝑈)𝑉 − 𝜂(𝑉)𝑈] + 2𝛼𝑔(𝜑𝑈, 𝑉)𝜉.         (3.11) 

 

In view of Eqs. (2.1), (3.6) and 𝑔(𝑅(𝑈, 𝑉, 𝑍), 𝑊)=-g(R(U,V,W),Z), we obtain  

 

𝜂(𝑅
∗

(𝑈, 𝑉)𝑍) = 𝛼2[𝑔(𝑈, 𝑍)𝜂(𝑉) − 𝑔(𝑉, 𝑍)𝜂(𝑈)] − 2𝛼𝑔(𝜑𝑈, 𝑉)𝜂(𝑍). (3.12) 

 

When Eq. (3.11) is contracted with respect to 𝑈, one obtains  

 

𝑆
∗
(𝑉, 𝜉) = −2𝑛𝛼2𝜂(𝑉).               (3.13) 

 

Theorem 3.4 In an α -cosymplectic manifold admitting the (NSNM) connection ∇
∗

, the 

necessary and sufficient condition for the Ricci tensor S
∗

 of ∇
∗

 to be skew-symmetric is that the 

manifold is Ricci-flat.  

  

Proof. When Eqs. (2.3), (3.7) and S(U,V)=S(V,U) are taken into consideration, one has  

 

𝑆
∗
(𝑈, 𝑉) + 𝑆

∗
(𝑉, 𝑈) = 2𝑆(𝑈, 𝑉).             (3.14) 

 

One can prove this theorem in a clear way by the help of Eq. (3.14).  

When Eqs. (2.3), (3.7) together with the equality 𝑆(𝑈, 𝑉) = 𝑆(𝑉, 𝑈), one obtains  
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𝑆
∗
(𝑈, 𝑉) − 𝑆

∗
(𝑉, 𝑈) = 4𝑛𝛼𝑔(𝜑𝑈, 𝑉).          (3.15) 

 

In view of Eq. (3.15), we can state the following corollary.  

 

Corollary 3.5 In an α-cosymplectic manifold of dimension ≥ 3 and with α ≠ 0 admitting the 

(NSNM) connection ∇
∗

, the Ricci tensor S
∗

 of ∇
∗

 is non-symmetric.  

  

Theorem 3.6 Let Riemmanian curvature tensor of ∇
∗

 in an α-cosymplectic manifold admitting 

the (NSNM) connection ∇
∗

 vanishes, then the manifold is an Einstein manifold.  

  

Proof. On taking 𝑅
∗

(𝑈, 𝑉)𝑍 = 0 in Eq. (3.6), we have  

 

𝑅(𝑈, 𝑉)𝑍 = −2𝛼𝑔(𝜑𝑈, 𝑉)𝜂(𝑍)𝜉 − 𝛼𝑔(𝜑𝑉, 𝑍)𝑈 + 𝛼𝑔(𝜑𝑈, 𝑍)𝑉. (3.16) 

 

When Eq. (3.16) is contracted with respect to 𝑈, one obtains  

 

𝑆(𝑉, 𝑍) = −2𝑛𝛼𝑔(𝜑𝑉, 𝑍).  (3.17) 

 

The proof comes from Eq. (3.17).  

Hence, one has the corollary given below:  

 

Corollary 3.7 If Riemmanian curvature tensor of ∇
∗

 in an α-cosymplectic manifold admitting 

the (NSNM) connection ∇
∗

 vanishes and α = 0 in Eq. (3.17), then the manifold is Ricci-flat.  

  

Theorem 3.8 In an α -cosymplectic manifold admitting the (NSNM) connection ∇
∗

, the 

necessary and sufficient conditions for the conformal curvature tensor of ∇
∗

 coincides with 

those of ∇ is that the conharmonic curvature tensore of ∇
∗

 is equal to that of ∇.  

  

Proof. The conformal curvature tensor of ∇
∗

 is defined as [24]  

 

𝐶
∗

(𝑈, 𝑉)𝑍 = 𝑅
∗

(𝑈, 𝑉)𝑍 −
1

(2𝑛−1)
[𝑆

∗

(𝑉, 𝑍)𝑈 − 𝑆
∗

(𝑈, 𝑍)𝑉 + 𝑔(𝑉, 𝑍)𝑄
∗

𝑈 (3.18) 

−𝑔(𝑈, 𝑍)𝑄
∗

𝑉] +
𝑟
∗

2𝑛(2𝑛−1)
[𝑔(𝑉, 𝑍)𝑈 − 𝑔(𝑈, 𝑍)𝑉].          

 

Using (3.6), (3.7), (3.8) and (3.9) in the Eq. (3.18), we get  

 

𝐶
∗

(𝑈, 𝑉)𝑍 − 𝐶(𝑈, 𝑉)𝑍 = 2𝛼𝑔(𝜑𝑈, 𝑉)𝜂(𝑍)𝜉 + 𝛼𝑔(𝜑𝑉, 𝑍) − 𝛼𝑔(𝜑𝑈, 𝑍)𝑉  

      −
1

2𝑛−1
[2𝑛𝛼𝑔(𝜑𝑉, 𝑍)𝑈 − 2𝑛𝛼𝑔(𝜑𝑈, 𝑍)𝑉 (3.19) 

      +2𝑛𝛼𝑔(𝑉, 𝑍)𝜑𝑈 − 2𝑛𝛼𝑔(𝑈, 𝑍)𝜑𝑉] 
where  

 

𝐶(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 −
1

(2𝑛−1)
[𝑆(𝑉, 𝑍)𝑈 − 𝑆(𝑈, 𝑍)𝑉 + 𝑔(𝑉, 𝑍)𝑄𝑈 (3.20) 

        −𝑔(𝑈, 𝑍)𝑄𝑉] +
𝑟

2𝑛(2𝑛−1)
[𝑔(𝑉, 𝑍)𝑈 − 𝑔(𝑈, 𝑍)𝑉].  
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One can describe the conharmonic curvature tensor ∇
∗

 as follows [24]  

 

𝐿
∗

(𝑈, 𝑉)𝑍 = 𝑅
∗

(𝑈, 𝑉)𝑍 −
1

(2𝑛−1)
[𝑆

∗

(𝑉, 𝑍)𝑈 − 𝑆
∗

(𝑈, 𝑍)𝑉 + 𝑔(𝑉, 𝑍)𝑄
∗

𝑈 (3.21) 

  −𝑔(𝑈, 𝑍)𝑄
∗

𝑉].  

 

Using (3.6), (3.7), (3.8) and (3.9) in the Eq. (3.21), we have  

 

𝐿
∗

(𝑈, 𝑉)𝑍 − 𝐿(𝑈, 𝑉)𝑍 = 2𝛼𝑔(𝜑𝑈, 𝑉)𝜂(𝑍)𝜉 + 𝛼𝑔(𝜑𝑉, 𝑍) − 𝛼𝑔(𝜑𝑈, 𝑍)𝑉 (3.22) 

            −
1

2𝑛−1
[2𝑛𝛼𝑔(𝜑𝑉, 𝑍)𝑈 − 2𝑛𝛼𝑔(𝜑𝑈, 𝑍)𝑉   

                  +2𝑛𝛼𝑔(𝑉, 𝑍)𝜑𝑈 − 2𝑛𝛼𝑔(𝑈, 𝑍)𝜑𝑉]  

 

where  

 

𝐿(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 −
1

(2𝑛−1)
[𝑆(𝑉, 𝑍)𝑈 − 𝑆(𝑈, 𝑍)𝑉 + 𝑔(𝑉, 𝑍)𝑄𝑈 (3.23) 

        −𝑔(𝑈, 𝑍)𝑄𝑉].   

 

One can prove this theorem in a clear way by the help of Eqs. (3.19) and (3.22).  

  

Theorem 3.9 In an α -cosymplectic manifold admitting the (NSNM) connection ∇
∗

, the 

necessary and sufficient condition for the concircular curvature tensor coincides with curvature 

tensor is scalar curvature of ∇
∗

 to be zero.  

  

Proof. The concircular curvature tensor [25] of a Riemannian manifold is described by the 

following formula  

 

𝒵(𝑈, 𝑉)𝑍 = 𝑅(𝑈, 𝑉)𝑍 −
𝑟

2𝑛(2𝑛+1)
[𝑔(𝑉, 𝑍)𝑈 − 𝑔(𝑈, 𝑍)𝑉]. (3.24) 

 

One can prove the theorem easily by using Eqs. (3.9) and (3.24) together with 𝑟
∗

= 𝑟.  

 

4. Semi-symmetric 𝜶-cosymplectic manifolds admitting the 

(NSNM)-connection 𝛁
∗

 
 

In this section, semi-symmetric 𝛼-cosymplectic manifolds admitting the (NSNM) connection 

∇
∗

 are going to be investigated.  

 

Definition 4.1 A (2n + 1)-dimensional contact metric manifold M with a (NSNM) 

connection is known as semi-symmetric if (R
∗

(U, V). R
∗

)(Z, W)F = 0 [24].  

  

Theorem 4.2 A semi-symmetric α-cosymplectic manifold admitting (NSNM) connection ∇
∗

 

is a cosymplectic manifold.  

  

Proof. Suppose M  be a semi-symmetric contact metric manifold admitting the (NSNM) 

connection ∇
∗

. Which implies  
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(R
∗

(U, V)R
∗

) (𝑍, 𝑊)𝐹 − 𝑅
∗

(𝑅
∗

(𝑈, 𝑉)𝑍, 𝑊) 𝐹 − 𝑅
∗

(𝑍, 𝑅
∗

(𝑈, 𝑉)𝑊) 𝐹  (4.1) 

 −𝑅
∗

(𝑍, 𝑊)𝑅
∗

(𝑈, 𝑉)𝐹 = 0.       

 

By changing 𝑈 = 𝜉  in (4.1) and with the help of (2.1), (2.2), (3.10), (3.12) Eqs. on 

simplification, we get  

𝛼2𝑅
∗

(𝑍, 𝑊, 𝐹, 𝑉) − 𝛼𝑔(𝑅
∗

(𝑍, 𝑊)𝐹, 𝜑𝑉) − 3𝛼3𝑔(𝜑𝑉, 𝑊)𝜂(𝐹)𝜂(𝑍)

+𝛼4𝑔(𝑉, 𝑍)𝑔(𝑊, 𝐹) − 𝛼3𝑔(𝑉, 𝑍)𝑔(𝜑𝑊, 𝐹) − 2𝛼3𝑔(𝜑𝑍, 𝑉)𝜂(𝐹)𝜂(𝑊)

−𝛼4𝑔(𝑉, 𝑊)𝑔(𝑍, 𝐹) + 𝛼3𝑔(𝑊, 𝑉)𝑔(𝜑𝑍, 𝐹) + 𝛼3𝑔(𝜑𝑉, 𝑊)𝑔(𝑍, 𝐹)

−𝛼2𝑔(𝜑𝑉, 𝑊)𝑔(𝜑𝑍, 𝐹) − 2𝛼3𝑔(𝑉, 𝐹)𝑔(𝜑𝑍, 𝑊) − 2𝛼2𝑔(𝜑𝑉, 𝐹)𝑔(𝜑𝑍, 𝑊) = 0.

 (4.2) 

 

Putting 𝑉 = 𝜉 in Eq. (4.2) and making the necessary simplifications, we obtain  

 

𝛼2𝑅
∗

(𝑍, 𝑊, 𝐹, 𝜉) + 𝛼4𝜂(𝑍)𝑔(𝑊, 𝐹) − 𝛼3𝜂(𝑍)𝑔(𝜑𝑊, 𝐹) (4.3) 

−𝛼4𝜂(𝑊)𝑔(𝑍, 𝐹) + 𝛼3𝜂(𝑊)𝑔(𝜑𝑍, 𝐹) − 2𝛼3𝜂(𝐹)𝑔(𝜑𝑍, 𝑊) = 0.  

 

On contracting 𝑍 and 𝐹 in (4.3), we have  

 

𝛼2[𝑆
∗

(𝑊, 𝜉) − (2𝑛 + 2)𝛼2𝜂(𝑊)] = 0.  (4.4) 

 

Putting (2.11), (3.13) in (4.4) and by means of simplification, one obtains  

 

𝛼4(2𝑛 + 1)𝜂(𝑊) = 0.  (4.5) 

 

The Eq. (4.5) implies that either 𝛼 = 0 or 𝑛 =
−1

2
 (this contradicts 𝑛 > 1). 

Thus from (4.5), one achieves the proof.  

  

Corollary 4.3 A semi-symmetric α-cosymplectic manifold admitting the (NSNM) connection 

∇
∗

 is locally the Riemannian product of an almost Kaehler manifold with the real line.  

 

5. Ricci semi-symmetric 𝜶-cosymplectic manifolds admitting 

(NSNM)-connection 𝛁
∗

 
 

In this section, Ricci-symmetric 𝛼-cosymplectic manifolds admitting the (NSNM) connection 

∇
∗

 are going to be investigated.  

 

Definition 5.1 A (2n + 1)-dimensional contact metric manifold M with the (NSNM) 

connection is said to be Ricci semi-symmetric if R
∗

(U, V). S
∗

 vanish identically [24].  

  

Theorem 5.2 A Ricci semi-symmetric α-cosymplectic manifold admitting the (NSNM) 

connection ∇
∗

 is an Einstein manifold.  

  

Proof. In a (2𝑛 + 1)-dimensional Ricci semi-symmetric contact metric manifold 𝑀 having a 

(NSNM) connection, we have  
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𝑆
∗

(𝑅
∗

(𝑈, 𝑉)𝑍, 𝑊) + 𝑆
∗

(𝑍, 𝑅
∗

(𝑈, 𝑉)𝑊) = 0.   (5.1) 

 

By changing 𝑍 = 𝜉 and with the help of Eqs. (3.11), (3.13) on simplification, we have  

 

𝛼2𝜂(𝑈)𝑆
∗

(𝑉, 𝑊) − 𝛼2𝜂(𝑉)𝑆
∗

(𝑈, 𝑊) − 2𝑛𝛼2𝑔(𝜑𝑈, 𝑉)𝜂(𝑊) − 2𝑛𝛼4𝑔(𝑈, 𝑊)𝜂(𝑉) (5.2) 

+2𝑛𝛼4𝑔(𝑉, 𝑊)𝜂(𝑈) + 4𝑛𝛼3𝑔(𝜑𝑈, 𝑉)𝜂(𝑊) = 0.  

 

Taking 𝑉 = 𝜉 in Eq. (5.2) with 𝛼 ≠ 0 and using Eq. (3.13), we get  

 

𝑆
∗
(𝑈, 𝑊) = −2𝑛𝛼2𝑔(𝑈, 𝑊).  (5.3) 

 

As the Ricci curvature tensor of an 𝛼-cosymplectic manifold admitting the (NSNM) connection 

is invariant with respect to the (NSNM) connection ∇
∗

 and Levi-Civita connection ∇, one may 

say  

 

𝑆(𝑈, 𝑊) = −2𝑛𝛼2𝑔(𝑈, 𝑊).  (5.4) 

 

Thus the proof is complete.  

 

Ricci soliton of data (𝑔, 𝑉, 𝜆) is defined by the Eq. (2.15), where 𝑔, 𝑉 and 𝜆 are Riemannian 

metric, a vector field and real constant. Naturally two situations appear regarding the vector 

field 𝑉: 𝑉 ∈ 𝑆𝑝𝑎𝑛(𝜉) and 𝑉 ⊥ 𝑆𝑝𝑎𝑛(𝜉). Here we discuss first case that is 𝑉 ∈ 𝑆𝑝𝑎𝑛(𝜉). 

Ricci soliton of data (𝑔, 𝜉, 𝜆)  on an 𝛼 -cosymplectic manifold admitting the (NSNM) 

connection ∇
∗

 can be defined as under:  

 

(𝔏
∗

𝜉𝑔) (𝑈, 𝑉) + 2𝑆
∗
(𝑈, 𝑉) + 2𝜆𝑔(𝑈, 𝑉) = 0,   (5.5) 

 

for all 𝑈, 𝑉 ∈ 𝑇𝑀. Here 𝔏
∗

𝜉𝑔 is the Lie-derivative of Riemmanian metric g with respect to 𝜉 

admitting the (NSNM) connection ∇
∗

.  

 

Theorem 5.3 On a Ricci semi-symmetric α-cosymplectic manifold admitting the (NSNM) 

connection ∇
∗

, the Ricci soliton of data (g, ξ, λ) is steady, expanding as α = 0, α ≠ 0, 

respectively.  

  

Proof. 𝔏
∗

𝜉𝑔 is defined as  

𝔏
∗

𝜉𝑔(𝑈, 𝑉) = 𝜉𝑔(𝑈, 𝑉) − 𝑔(𝔏
∗

𝜉𝑈, 𝑉) − 𝑔(𝑈, 𝔏
∗

𝜉𝑉 (5.6) 

 = 𝜉𝑔(𝑈, 𝑉) + 𝑔 (∇
∗

𝜉𝑈, 𝑉) + 𝑔 (∇
∗

𝜉𝑉, 𝑈) − 𝑔 (∇
∗

𝑈𝜉, 𝑉) − 𝑔 (∇
∗

𝑉𝜉, 𝑈)  

 = (∇
∗

𝜉𝑔) (𝑈, 𝑉) − 𝑔 (∇
∗

𝑈𝜉, 𝑉) − 𝑔 (∇
∗

𝑉𝜉, 𝑈).  

 

Taking into account of (2.4), (2.21) and (2.25) in Eq. (5.6), we have  

 

𝔏
∗

𝜉𝑔(𝑈, 𝑉) = −2𝛼𝑔(𝜑𝑈, 𝜑𝑉).             (5.7) 
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Making use of (5.7) in (5.5), we get  

 

−2𝛼𝑔(𝜑𝑈, 𝜑𝑉) + 2𝑆
∗

(𝑈, 𝑉) + 2𝜆𝑔(𝑈, 𝑉) = 0.  (5.8) 

 

By utilizing Eq. (5.3) in Eq. (5.8), we obtain  

 

−2𝛼𝑔(𝜑𝑈, 𝜑𝑉) − 4𝑛𝛼2𝑔(𝑈, 𝑉) + 2𝜆𝑔(𝑈, 𝑉) = 0. (5.9) 

 

Using 𝑈 = 𝑉 = 𝜉 in (5.9), one has  

 

𝜆 = 2𝑛𝛼2.  (5.10) 

 

The proof comes from (5.10). 

  

6. Conclusion 
 

In this article, firstly, basic definitions and propositions of the 𝛼-cosymplectic manifolds and 

(NSNM) connection are given. Then, several results have been obtained on Ricci semi-

symmetric and semi-symmetric 𝛼 -cosymplectic manifolds with respect to (NSNM) 

connection. In addition to, Ricci solitons are investigated for 𝛼-cosymplectic manifolds with 

non-symmetric non-metric connection. The works on this subject will be useful tools for the 

applications of contact geometry with different connections. 
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