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Abstract

This paper deals with the numerical solution of space-time fractional partial differential-
difference Toda lattice equation ∂ 2α un

∂xα ∂ tα = (1+ ∂ α un
∂ tα )(un−1−2un +un+1), α ∈ (0,1). The

finite differences method (FD-method) is used for numerical solution of this problem.
According to the method, we approximate the unknown values un of the desired function by
finite differences approximation. As an application we demonstrate the capabilities of this
method for identification of various values of order of fractional derivative α . Numerical
results show that the proposed version of FD-method allows to obtain all data from the
initial and boundary conditions with enough high accuracy.

1. Introduction

In this paper, we shall consider the space-time fractional (2+1)-dimensional Toda lattice equation described in equation (1) and (2) below.
The importance of Toda lattice is, together with the Korteweg –de Vires equation, one of the most classical and significant completely
integrable systems. Several methods have been developed to reveal its philosophical mathematical structure [1]. The (2+1)-dimensional Toda
lattice hierarchy has been proposed as an extension of the KP hierarchy. This comprises the (2+1)-dimensional Toda lattice equation as the
modest nontrivial differential-difference equation. The Toda lattice equation and the sine-Gordon equation are derived by imposing suitable
reductions on the (2+1)-dimensional Toda lattice equation [2]. These type of equations, usually, describe the evolution of certain phenomena
over the course of time [3].
This paper studies the space-time fractional differential-difference Toda lattice equation (denote I = (a,b)),

∂ 2α un

∂xα ∂ tα
= (1+

∂ α un

∂ tα
)(un−1−2un +un+1), (x, t) ∈ I× (0,T ] (1.1)

from the initial and homogeneous Dirichlet boundary condition{
u(x,0) = φ(x), x ∈ I,
u(a, t) = u(b, t) = 0, t ∈ (0,T ],

where the mixed derivative ∂ 2α un

∂xα ∂ tα denotes the space-time derivative with fractional order 2α of the function u = u(x, t) at t = tn. The
derivative ∂ α un

∂ tα also denotes time derivative with fractional order α ∈ (0,1). We consider the most frequently used the Riemann–Liouville
and the Caputo derivative for fractional derivatives in (1.1). Riemann-Liouville fractional derivative with fractional order α of the function
u = u(x, t) is defined by [4, 5], i.e., [

∂ α u(x, t)
∂ tα

]
RL

=
1

Γ(1−α)

∂

∂ t

∫ t

0

u(x,τ)
(t− τ)α

dτ, t > 0. (1.2)

where Γ(x) is the Euler’s Gamma Function. Another definition of fractional derivative is Caputo derivative. Caputo fractional derivative with
fractional order α of the function u = u(x, t) is defined by [4, 5] as follows:[

∂ α u(x, t)
∂ tα

]
C
=

1
Γ(1−α)

∫ t

0

1
(t− τ)α

∂u(x,τ)
∂ t

dτ, t > 0. (1.3)
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From (1.2) and (1.3), it is clear that definitions of Riemann–Liouville derivative and Caputo derivative are not equivalent. But, there is a
fact that, almost all the numerical methods for the Riemann–Liouville derivative can be theoretically extended to the Caputo derivative if
the function u(x, t) satisfies suitable smooth conditions. Following equality shows the relation between the Riemann–Liouville and Caputo
derivatives for 0 < α < 1: [

∂ α u(x, t)
∂ tα

]
RL

=

[
∂ α u(x, t)

∂ tα

]
C
+

t−α u(x,0)
Γ(1−α)

, t > 0. (1.4)

Hence, a natural way to discretize the Caputo derivative in the equation (1.1) is to use the Grünwald–Letnikov approximation [6].

2. Numerical implementation

One method of the solutions of fractional equations based on numerical methods and solutions are determined by implementing the numerical
methods on original (physical) domain. These methods are adapted for fractional integrals (Riemann-Liouville integrals etc.) and derivatives
(Caputo derivatives and the Riesz Derivatives etc.) based on polynomial interpolation, Gauss interpolation or linear multistep methods.
For the numerical solution to the considered problem above we construct a uniform grid of mesh points tn with tn = n∆t, n = 0,1, . . . ,Nt
and ∆t = T/Nt . One can define the space step size ∆x = (b−a)/Nx. The space grid point xk is given by xk = a+ k∆x, k = 0,1, . . . ,Nx. We
denote the exact solution u(x, t) at (xk, tn) by un

k = u(xk, tn) and approximate solution by Un
k at the same grid point (xk, tn).

Toda Lattice Equation for Riemann-Liouville derivative in time: For the numerical solution to the considered problem (1.1), we consider
Riemann-Liouville time-fractional derivative:[

∂ 2α un

∂xα ∂ tα

]
RL

=

(
1+
[

∂ α un

∂ tα

]
RL

)
(un−1−2un +un+1), (x, t) ∈ I× (0,T ] (2.1)

We can discretize the Riemann-Liouville fractional derivative of u(x, t) at t = tn by the Grünwald–Letnikov formula as follows:[
∂ α u(xk, tn)

∂ tα

]
RL

=
1

∆tα

n

∑
j=0

wα
j un− j

k +O(∆t p), t > 0

where wα
j are the coefficients of the generating function, that is wα

0 = 1, wα
j = (1− (α +1)/ j)wα

j−1, j ≥ 1 and p = 1 [4, 5]. Then the finite
difference approximation of (2.1) is given as follows:

1
∆tα

n

∑
j=0

wα
j (δ

α
x Un− j

k ) =

(
1+

1
∆tα

n

∑
j=0

wα
j Un− j

k

)
(Un−1

k −2Un
k +Un+1

k ), n≥ 1, (2.2)

where δ α
x Un− j

k is the approximation of the Riemann-Liouville space-fractional derivative ∂ α un

∂xα and defined by the Grünwald–Letnikov
formula similarly:

δ
α
x Un

k =
1

∆xα

k

∑
i=0

wα
i Un

k−i.

So (2.2) gives the approximate solution for all points (xk, tn), k = 1,Nx−1, n = 1,Nt −1 as follows:{
1

∆tα
1

∆xα ∑
n
j=0 ∑

k
i=0 wα

j wα
i Un− j

k−i =
(

1+ 1
∆tα ∑

n
j=0 wα

j Un− j
k

)
(Un−1

k −2Un
k +Un+1

k ), n≥ 0,

U0
k = φ(xk), k = 0,Nx, Un

0 =Un
Nx

= 0, n = 1,Nt .

Example 1. We consider here φ(x) = 10x(10− x), 0≤ x≤ 10 as initial data and α = 0.75 as fractional order of derivative. In this example
the time step size is ∆t = 0.001 , number of time nodes is Nt = 41 and the space step size is ∆x = 0.5 , number of space nodes is Nx = 21.
The left Figure 2.1 shows numerical solution U(x, t) for x ∈ [0,10], t ∈ (0,T ], T = 0.04. The right Figure 2.1 shows final time profile of
numerical solution at T = 0.04.

Toda Lattice Equation for Caputo derivative in time: For the numerical solution to the considered problem (1.1), we consider Caputo
time-fractional derivative: [

∂ 2α un

∂xα ∂ tα

]
C
=

(
1+
[

∂ α un

∂ tα

]
C

)
(un−1−2un +un+1), (x, t) ∈ I× (0,T ]. (2.3)

We can discretize the Caputo fractional derivative of u(x, t) at t = tn by the L1-method defined as follows:[
∂ α u(xk, tn)

∂ tα

]
C
=

1
∆tα

n−1

∑
j=0

bα
n− j−1(u

j+1
k −u j

k)+O(∆t p), t > 0

where bα
n− j−1 are the coefficients, that is bα

j = 1
Γ(2−α)

[( j+1)1−α − ( j)1−α ] and p = 1 [4, 5]. Then the finite difference approximation of
(2.3) is given as follows:

1
∆tα

n−1

∑
j=0

bα
n− j−1[δ

α
x (U j+1

k −U j
k )] =

(
1+

1
∆tα

n−1

∑
j=0

bα
n− j−1[δ

α
x (U j+1

k −U j
k )]

)
(Un−1

k −2Un
k +Un+1

k ), n≥ 1, (2.4)
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Figure 2.1: Numerical solutions for Riemann-Liouville fractional derivative (α = 0.75 )

where δ α
x Un

k is the approximation of the Riemann-Liouville space-fractional derivative ∂ α un

∂xα and defined by the Grünwald–Letnikov formula
similarly. So (2.4) gives the approximate solution for all points (xk, tn), k = 1,Nx−1, n = 1,Nt −1 as follows:{

1
∆tα

1
∆xα ∑

n−1
j=0 ∑

k
i=0 bα

n− j−1wα
i (U

j+1
k−i −U j

k−i) =
(

1+ 1
∆tα ∑

n−1
j=0 bα

n− j−1(U
j+1

k −U j
k )
)
(Un−1

k −2Un
k +Un+1

k ), n≥ 1(U j+1
k−i −U j

k−i),

U0
k = φ(xk), k = 0,Nx, Un

0 =Un
Nx

= 0, n = 1,Nt .
(2.5)

Example 2. We consider same data in Example 1 to compare the numerical solutions corresponding to the two type of fractional derivatives.
Thus, φ(x) = 10x(10−x), 0≤ x≤ 10 is initial data and α = 0.75 is fractional order of derivative. The time step size is ∆t = 0.001 , number
of time nodes is Nt = 41 and the space step size is ∆x = 0.5 , number of space nodes is Nx = 21. The left Figure 2.2 shows numerical
solution U(x, t) for x ∈ [0,10], t ∈ (0,T ], T = 0.04. The right Figure 2.2 shows final time profile of numerical solution at T = 0.04. Figure
2.3 shows a slight differences difference on the solutions with Riemann–Liouville fractional derivative and Caputo fractional derivatives for
(α = 0.75 ). This slight difference, may be interpreted as, that is, due to the second term on r.h.s of equation (1.4) which states the relation
between the Riemann–Liouville and Caputo derivatives for 0 < α < 1.
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Figure 2.2: Numerical solutions for Caputo fractional derivative (α = 0.75 )
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Figure 2.3: Numerical solutions for both Riemann-Liouville and Caputo fractional derivative (α = 0.75 )

3. Conclusion

In this study the space-time fractional partial differential-difference Toda lattice equation is considered. We use the finite differences method
for numerical solution of the problem and present computational results for the case of two type of time fractional derivative (Riemann
Liouville and Caputo) with fractional order α = 0.75. Numerical experiments show that any of the fractional (Riemann–Liouville and
Caputo) derivatives may be used for any physical problem without any reluctance and the choice of the fractional derivative is negligible at
least the problem considered in this study.

Acknowledgement

The author thanks to Prof. Dr. Turgut Ozis for the recommendation of the problem and helpful and constructive discussions. The author also
thanks the referee for carefully reading the paper and the valuable suggestions that improved the paper.

References

[1] M. Toda, Theory of Nonlinear Lattices, Springer-Verlag, New-York, 1989.
[2] K. Kajiwara,J. Satsuma, The conserved quantities and symmetries of the two-dimensional Toda lattice hierarchy, J. Math. Phys., 32 (1991), 506—514.
[3] J. J. Mohan, G. V. S. R. Deekshitulu, Fractional order difference equations, Int. J. Differ. Equ., 2012(2012), Article ID 780619, 11 pages,

https://doi.org/10.1155/2012/780619.
[4] M. Cui, Compact finite difference method for the fractional diffusion equation J. Comput. Phys., 228 (2009), 7792–7804.
[5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[6] C. Li, F. Zeng, Numerical Methods for Fractional Calculus CRC Press, Boca Raton, 2015.


