### PAPER DETAILS

TITLE: wα-Separation Axioms in Topological Spaces

AUTHORS: P G Patil

PAGES: 96-103

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/105161



Received: 21.03.2014 Accepted: 10.05.2014 Editors-in-Chief: Naim Çağman Area Editor: Oktay Muhtaroğlu

# $\omega\alpha\text{-}\mathbf{Separation}$ Axioms in Topological Spaces

P. G. Patil<sup>a,1</sup>(pgpatil01@gmail.com)
S. S. Benchalli<sup>a</sup> (benchalliss@gmail.com)
P. K. Gonnagar<sup>b</sup> (pkgonnagar@rediffmail.com)

<sup>a</sup>Department of Mathematics, Karnatak University, Dharwad-580003,Karnataka, India <sup>b</sup>Department of Mathematics, BLDEA'S VP Dr.PGH College of Engineering and Technology, Bigapur-586103, Karnataka, India

**Abstract** - The aim of this paper is to introduce and study two new classes of spaces, namely  $\omega\alpha$ -normal and  $\omega\alpha$ -regular spaces and obtained their properties by utilizing  $\omega\alpha$  -closed sets. Recall that a subset A of a topological space  $(X, \tau)$  is called  $\omega\alpha$  -closed if  $\alpha cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\omega$  - open in  $(X, \tau)$ . We will present some characterizations of  $\omega\alpha$ -normal and  $\omega\alpha$ -regular spaces.

**Keywords** -  $\omega \alpha$ -closed set,  $\omega \alpha$ -continuous function.

# 1 Introduction

Maheshwari and Prasad[8] introduced the new class of spaces called *s*-normal spaces using semi-open sets. It was further studied by Noiri and Popa[10],Dorsett[6] and Arya[1]. Munshi[9], introduced *g*-regular and *g*- normal spaces using *g*-closed sets of Levine[7]. Later, Benchalli et al [3] and Shik John[12] studied the concept of  $g^*$  - pre regular,  $g^*$  - pre normal and  $\omega$ - normal,  $\omega$ -regular spaces in topological spaces. Recently, Benchalli et al [2,4,11] introduced and studied the properties of  $\omega\alpha$ - closed sets and  $\omega\alpha$ - continuous functions.

## 2 Preliminaries

Throughout this paper  $(X, \tau)$ ,  $(Y, \sigma)$  (or simply X, Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X the closure, interior and  $\alpha$ -closure of A with respect to  $\tau$  are denoted by cl(A), int(A)

 $<sup>^{1}</sup>$ Corresponding Author

and  $\alpha cl(A)$  respectively.

**Definition 2.1.** A subset A of a topological space X is called a (1) semi-open set [3] if  $A \subset cl(int(A))$ . (2)  $\omega$ -closed set[12] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X. (3) g-closed set[7] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

**Definition 2.2.** A topological space X is said to be a

(1) g- regular[10], if for each g-closed set F of X and each point  $x \notin F$ , there exists disjoint open sets U and V such that  $F \subseteq U$  and  $x \in V$ .

(2)  $\alpha$  - regular [4], if for each closed set F of X and each point  $x \notin F$ , there exists disjoint  $\alpha$  - open sets U and V such that  $F \subseteq V$  and  $x \in U$ .

(3)  $\omega$ -regular[12], if for each  $\omega$ -closed set F of X and each point  $x \notin F$ , there exists disjoint open sets U and V such that  $F \subseteq U$  and  $x \in V$ .

**Definition 2.3.** A topological space X is said to be a

(1) g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that  $A \subseteq U$  and  $B \subseteq V$ .

(2)  $\alpha$  - normal [4], if for any pair of disjoint closed sets A and B, there exists disjoint  $\alpha$ -open sets U and V such that  $A \subseteq U$  and  $B \subseteq V$ .

(3)  $\omega$ -normal [12], if for any pair of disjoint  $\omega$ -closed sets A and B, there exists disjoint open sets U and V such that  $A \subseteq U$  and  $B \subseteq V$ .

**Definition 2.4.** [2] A topological space X is called  $T_{\omega\alpha}$  - space if every  $\omega\alpha$ -closed set in it is closed set.

**Definition 2.5.** A function  $f: X \to Y$  is called:

(1)  $\omega \alpha$  - continuous [4] (resp.  $\omega$ - continuous [12]) if  $f^{-1}(F)$  is  $\omega \alpha$ -closed(resp. $\omega$ -closed) set in X for every closed set F of Y.

(2)  $\omega \alpha$  - irresolute [4] (resp.  $\omega$ - irrosulte [12]) if  $f^{-1}(F)$  is  $\omega \alpha$ -closed (resp. $\omega$ -closed) set in X for every  $\omega \alpha$  - closed(resp.  $\omega$ - closed) set F of Y.

(3) pre- $\omega\alpha$  -closed[4](resp.  $\omega\alpha$  -closed[4]) if for each  $\alpha$  -closed(resp.closed) set F of X, f(F) is an  $\omega\alpha$ -closed(resp. $\omega\alpha$ - closed) set in Y.

### 3 $\omega \alpha$ -Regular Spaces

In this section, we introduce a new class of spaces called  $\omega \alpha$ -regular spaces using  $\omega \alpha$ closed sets and obtain some of their characterizations.

**Definition 3.1.** A topological space X is said to be  $\omega\alpha$ -regular if for each  $\omega\alpha$ - closed set F and a point  $x \notin F$ , there exist disjoint open sets G and H such that  $F \subseteq G$  and  $x \in H$ .

We have the following interrelationship between  $\omega \alpha$ -regularity and regularity.

**Theorem 3.2.** Every  $\omega \alpha$ - regular space is regular.

**Proof:** Let X be a  $\omega\alpha$ -regular space. Let F be any closed set in X and a point  $x \in X$  such that  $x \notin F$ . By [2], F is  $\omega\alpha$ -closed and  $x \notin F$ . Since X is a  $\omega\alpha$ -regular space, there exists a pair of disjoint open sets G and H such that  $F \subseteq G$  and  $x \in H$ . Hence X is a regular space.

**Remark 3.3.** If X is a regular space and  $T_{\omega\alpha}$  - space, then X is  $\omega\alpha$ - regular.

We have the following characterization.

**Theorem 3.4.** The following statements are equivalent for a topological space X

(i) X is a  $\omega \alpha$ - regular space

(ii) For each  $x \in X$  and each  $\omega \alpha$ - open neighbourhood U of x there exists an open neighbourhood N of x such that  $cl(N) \subseteq U$ .

**Proof:** (i)  $\Rightarrow$  (ii): Suppose X is a  $\omega \alpha$ - regular space. Let U be any  $\omega \alpha$ - neighbourhood of x. Then there exists  $\omega \alpha$ - open set G such that  $x \in G \subseteq U$ . Now X - Gis  $\omega \alpha$ - closed set and  $x \notin X - G$ . Since X is  $\omega \alpha$ - regular, there exist open sets M and N such that  $X - G \subseteq M$ ,  $x \in N$  and  $M \cap N = \phi$  and so  $N \subseteq X - M$ . Now  $cl(N) \subseteq cl(X - M) = X - M$  and  $X - M \subseteq M$ . This implies  $X - M \subseteq U$ . Therefore  $cl(N) \subseteq U$ .

(ii)  $\Rightarrow$  (i): Let F be any  $\omega \alpha$ - closed set in X and  $x \in X - F$  and X - F is a  $\omega \alpha$  - open and so X - F is a  $\omega \alpha$  - neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that  $x \in N$  and  $cl(N) \subseteq X - F$ . This implies  $F \subseteq X - cl(N)$  is an open set containing F and  $N \cap \{(X - cl(N)\} = \phi$ . Hence X is  $\omega \alpha$  - regular space.

We have another characterization of  $\omega \alpha$  - regularity in the following.

**Theorem 3.5.** A topological space X is  $\omega \alpha$  - regular if and only if for each  $\omega \alpha$  - closed set F of X and each  $x \in X - F$  there exist open sets G and H of X such that  $x \in G$ ,  $F \subseteq H$  and  $cl(G) \cap cl(H) = \phi$ .

**Proof:** Suppose X is  $\omega \alpha$  - regular space. Let F be a  $\omega \alpha$  - closed set in X with  $x \notin F$ . Then there exists open sets M and H of X such that  $x \in M$ ,  $F \subseteq H$  and  $M \cap H = \phi$ . This implies  $M \cap cl(H) = \phi$ . As X is  $\omega \alpha$  - regular, there exist open sets U and V such that  $x \in U$ ,  $cl(H) \subseteq V$  and  $U \cap V = \phi$ , so  $cl(U) \cap V = \phi$ . Let  $G = M \cap U$ , then G and H are open sets of X such that  $x \in G$ ,  $F \subseteq H$  and  $cl(H) \cap cl(H) = \phi$ .

Conversely, if for each  $\omega \alpha$  - closed set F of X and each  $x \in X - F$  there exists open sets G and H such that  $x \in G$ ,  $F \subseteq H$  and  $cl(H) \cap cl(H) = \phi$ . This implies  $x \in G$ ,  $F \subseteq H$  and  $G \cap H = \phi$ . Hence X is  $\omega \alpha$  - regular.

Now we prove that  $\omega \alpha$  - regularity is a heriditary property.

**Theorem 3.6.** Every subspace of a  $\omega \alpha$  -regular space is  $\omega \alpha$  - regular.

**Proof:** Let X be a  $\omega \alpha$  - regular space. Let Y be a subspace of X. Let  $x \in Y$  and F be a  $\omega \alpha$  - closed set in Y such that  $x \notin F$ . Then there is a closed set and so  $\omega \alpha$  - closed set A of X with  $F = Y \cap A$  and  $x \notin A$ . Therefore we have  $x \in X$ , A is  $\omega \alpha$  - closed in X such that  $x \notin A$ . Since X is  $\omega \alpha$  - regular, there exist open sets G and H such that  $x \in G$ ,  $A \subseteq H$  and  $G \cap H = \phi$ . Note that  $Y \cap G$  and  $Y \cap H$  are open sets in Y. Also  $x \in G$  and  $x \in Y$ , which implies  $x \in Y \cap G$  and  $A \subseteq H$  implies  $Y \cap G \subseteq Y \cap H$ ,  $F \subseteq Y \cap H$ . Also  $(Y \cap G) \cap (Y \cap H) = \phi$ . Hence Y is  $\omega \alpha$  -regular space.

We have yet another characterization of  $\omega \alpha$  -regularity in the following.

**Theorem 3.7.** The following statements about a topological space X are equivalent: (i) X is  $\omega \alpha$  -regular

(ii) For each  $x \in X$  and each  $\omega \alpha$  - open set U in X such that  $x \in U$  there exists an open set V in X such that  $x \in V \subseteq cl(V) \subseteq U$ 

(iii) For each point  $x \in X$  and for each  $\omega \alpha$  - closed set A with  $x \notin A$ , there exists an open set V containing x such that  $cl(V) \cap A = \phi$ .

**Proof:** (i) $\Rightarrow$  (ii): Follows from Theorem 3.5.

(ii)  $\Rightarrow$  (iii): Suppose (ii) holds. Let  $x \in X$  and A be an  $\omega \alpha$  - closed set of X such that  $x \notin A$ . Then X - A is a  $\omega \alpha$  - open set with  $x \in X - A$ . By hypothesis, there exists an open set V such that  $x \in V \subseteq cl(V) \subseteq X - A$ . That is  $x \in V, V \subseteq cl(A)$  and  $cl(A) \subseteq X - A$ . So  $x \in V$  and  $cl(V) \cap A = \phi$ .

(iii)  $\Rightarrow$  (i): Let  $x \in X$  and U be an  $\omega \alpha$  - open set in X such that  $x \in U$ . Then X - U is an  $\omega \alpha$  closed set and  $x \notin X - U$ . Then by hypothesis, there exists an open set V containing x such that  $cl(A) \cap (X - U) = \phi$ . Therefore  $x \in V$ ,  $cl(V) \subseteq U$  so  $x \in V \subseteq cl(V) \subseteq U$ .

The invariance of  $\omega \alpha$  - regularity is given in the following.

**Theorem 3.8.** Let  $f : X \to Y$  be a bijective,  $\omega \alpha$  - irresolute and open map from a  $\omega \alpha$  - regular space X into a topological space Y, then Y is  $\omega \alpha$  - regular.

**Proof:** Let  $y \in Y$  and F be a  $\omega \alpha$  - closed set in Y with  $y \notin F$ . Since F is  $\omega \alpha$  - irresolute,  $f^{-1}(F)$  is  $\omega \alpha$  - closed set in X. Let f(x) = y so that  $x = f^{-1}(y)$  and  $x \notin f^{-1}(F)$ . Again X is  $\omega \alpha$  - regular space, there exist open sets U and V such that  $x \in U$  and  $f^{-1}(F) \subseteq G$ ,  $U \cap V = \phi$ . Since f is open and bijective, we have  $y \in f(U)$ ,  $F \subseteq f(V)$  and  $f(U) \cap f(V) = f(U \cap V) = f(\phi) = \phi$ . Hence Y is  $\omega \alpha$  - regular space.

**Theorem 3.9.** Let  $f : X \to Y$  be a bijective,  $\omega \alpha$  - closed and open map from a topological space X into a  $\omega \alpha$  - regular space Y. If X is  $T_{\omega \alpha}$ -space, then X is  $\omega \alpha$  - regular.

**Proof:** Let  $x \in X$  and F be an  $\omega \alpha$  - closed set in X with  $x \notin F$ . Since X is  $T_{\omega \alpha}$ -space, F is closed in X. Then f(F) is  $\omega \alpha$  - closed set with  $f(x) \notin f(F)$  in Y, since f is  $\omega \alpha$  - closed. As Y is  $\omega \alpha$  - regular, there exist open sets U and V such that  $x \in U$  and  $f(x) \in U$  and  $f(F) \subseteq V$ . Therefore  $x \in f^{-1}(U)$  and  $F \subseteq f^{-1}(V)$ . Hence X is  $\omega \alpha$  - regular space.

**Theorem 3.10.** If  $f : X \to Y$  is  $\omega$  - irresolute, pre  $\omega \alpha$  - closed, continuous injection and Y is  $\omega \alpha$  - regular space, then X is  $\omega \alpha$  - regular.

**Proof:** Let F be any closed set in X with  $x \notin F$ . Since f is  $\omega$  - irresolute, pre  $\omega \alpha$ - closed by [3], f is  $\omega \alpha$  - closed set in Y and  $f(x) \notin f(F)$ . Since Y is  $\omega \alpha$  - regular, there exists open sets U and V such that  $f(x) \in U$  and  $f(F) \subseteq V$ . Thus  $x \in f^{-1}(U)$ ,  $F \subseteq f^{-1}(V)$  and  $f^{-1}(U) \cap f^{-1}(V) = \phi$ . Hence X is  $\omega \alpha$  - regular space.

## 4 $\omega \alpha$ -Normal Spaces

In this section, we introduce the concept of  $\omega \alpha$  - normal spaces and study some of their characterizations.

**Definition 4.1.** A topological space X is said to be  $\omega\alpha$ -normal if for each pair of disjoint  $\omega\alpha$ - closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that  $A \subseteq U$  and  $B \subseteq V$ .

We have the following interrelationship.

**Theorem 4.2.** Every  $\omega \alpha$  - normal space is normal.

**Proof:** Let X be a  $\omega\alpha$ - normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are  $\omega\alpha$ - closed sets in X. Since X is  $\omega\alpha$ - normal, there exists a pair of disjoint open sets G and H in X such that  $A \subseteq G$  and  $B \subseteq H$ . Hence X is normal.

**Remark 4.3.** The converse need not be true in general as seen from the following example.

**Example 4.4.** Let  $X = Y = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}, \{b, c, d\}\}$  Then the space X is normal but not  $\omega \alpha$  - normal, since the pair of disjoint  $\omega \alpha$  - closed sets namely,  $A = \{a, d\}$  and  $B = \{b, c\}$  for which there do not exists disjoint open sets G and H such that  $A \subseteq G$  and  $B \subseteq H$ .

**Remark 4.5.** If X is normal and  $T_{\omega\alpha}$ -space, then X is  $\omega\alpha$  - normal.

Hereditary property of  $\omega \alpha$  - normality is given in the following.

**Theorem 4.6.** A  $\omega \alpha$  - closed subspace of a  $\omega \alpha$  - normal space is  $\omega \alpha$  - normal.

We have the following characterization.

**Theorem 4.7.** The following statements for a topological space X are equivalent: (i) X is  $\omega \alpha$  - normal

(ii) For each  $\omega \alpha$  - closed set A and each  $\omega \alpha$  - open set U such that  $A \subseteq U$ , there exists an open set V such that  $A \subseteq V \subseteq cl(V) \subseteq U$ 

(iii) For any  $\omega \alpha$  - closed sets A, B, there exists an open set V such that  $A \subseteq V$  and  $cl(V) \cap B = \phi$ 

(iv) For each pair A, B of disjoint  $\omega \alpha$  - closed sets there exist open sets U and V such that  $A \subseteq U, B \subseteq V$  and  $cl(U) \cap cl(V) = \phi$ .

**Proof:** (i)  $\Rightarrow$  (ii): Let A be a  $\omega \alpha$  -closed set and U be a  $\omega \alpha$  - open set such that  $A \subseteq U$ . Then A and X - U are disjoint  $\omega \alpha$  - closed sets in X. Since X is  $\omega \alpha$  - normal, there exists a pair of disjoint open sets V and W in X such that  $A \subseteq V$  and  $X - U \subseteq W$ . Now  $X - W \subseteq X - (X - U)$ , so  $X - W \subseteq U$  also  $V \cap W = \phi$  implies  $V \subseteq X - W$ , so  $cl(V) \subseteq cl(X - W)$  which implies  $cl(V) \subseteq X - W$ . Therefore  $cl(V) \subseteq X - W \subseteq U$ . So  $cl(V) \subseteq U$ .

(ii)  $\Rightarrow$ (iii): Let A and B be a pair of disjoint  $\omega \alpha$  - closed sets in X. Now  $A \cap B = \phi$ , so  $A \subseteq X - B$ , where A is  $\omega \alpha$  - closed and X - B is  $\omega \alpha$  - open. Then by (ii) there exists an open set V such that  $A \subseteq V \subseteq cl(V) \subseteq X - B$ . Now  $cl(V) \subseteq X - B$  implies  $cl(V) \cap B = \phi$ . Thus  $A \subseteq V$  and  $cl(V) \cap B = \phi$ 

(iii)  $\Rightarrow$ (iv): Let A and B be a pair of disjoint  $\omega \alpha$  - closed sets in X. Then from (iii) there exists an open set U such that  $A \subseteq U$  and  $cl(U) \cap B = \phi$ . Since cl(V) is closed, so  $\omega \alpha$  - closed set. Therefore cl(V) and B are disjoint  $\omega \alpha$  - closed sets in X. By hypothesis, ther exists an open set V, such that  $B \subseteq V$  and  $cl(U) \cap cl(V) = \phi$ .

(iv)  $\Rightarrow$ (i): Let A and B be a pair of disjoint  $\omega \alpha$  - closed sets in X. Then from (iv) there exist an open sets U and V in X such that  $A \subseteq U$ ,  $B \subseteq V$  and  $cl(U) \cap cl(V) = \phi$ . So  $A \subseteq U$ ,  $B \subseteq V$  and  $U \cap V = \phi$ . Hence X  $\omega \alpha$  - normal.

**Theorem 4.8.** Let X be a topological space. Then X is  $\omega \alpha$  - normal if and only if for any pair A, B of disjoint  $\omega \alpha$  - closed sets there exist open sets U and V of X such that  $A \subseteq U, B \subseteq V$  and  $cl(U) \cap cl(V) = \phi$ .

**Theorem 4.9.** Let X be a topological space. Then the following are equivalent:

(i) X is normal

(ii) For any disjoint closed sets A and B, there exist disjoint  $\omega \alpha$  - open sets U and V such that  $A \subseteq U, B \subseteq V$ .

(iii) For any closed set A and any open set V such that  $A \subseteq V$ , there exists an  $\omega \alpha$  - open set U of X such that  $A \subseteq U \subseteq \alpha cl(U) \subseteq V$ .

**Proof:** (i)  $\Rightarrow$ (ii): Suppose X is normal. Since every open set is  $\omega \alpha$  - open [2], (ii) follows.

(ii)  $\Rightarrow$ (iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are disjoint closed sets. By (ii), there exist disjoint  $\omega \alpha$ - open sets U and W such that  $A \subseteq U$  and  $X - V \subseteq W$ , since X - V is closed, so  $\omega \alpha$  - closed. From [2], we have  $X - V \subseteq \alpha int(W)$  and  $U \cap \alpha int(W) = \phi$  and so we have  $\alpha cl(U) \cap \alpha int(W) = \phi$ . Hence  $A \subseteq U \subseteq \alpha cl(U) \subseteq X - \alpha int(W) \subseteq V$ . Thus  $A \subseteq U \subseteq \alpha cl(U) \subseteq V$ .

(iii)  $\Rightarrow$ (i): Let A and B be a pair of disjoint closed sets of X. Then  $A \subseteq X - B$  and X - B is open. There exists a  $\omega \alpha$  - open set G of X such that  $A \subseteq G \subseteq \alpha cl(G) \subseteq X - B$ . Since A is closed, it is  $\omega$  - closed, we have  $A \subseteq \alpha int(G)$ . Take  $U = int(cl(int(\alpha int(G))))$  and  $V = int(cl(int(X - \alpha cl(G))))$ . Then U and V are disjoint open sets of X such that  $A \subseteq U$  and  $B \subseteq V$ . Hence X is normal.

We have the following characterization of  $\omega \alpha$  - normality and  $\alpha$ - normality.

**Theorem 4.10.** Let X be a topological space. Then the following are equivalent: (i) X is  $\alpha$  - normal

(ii) For any disjoint closed sets A and B, there exist disjoint  $\omega \alpha$  - open sets U and V such that  $A \subseteq U, B \subseteq V$  and  $U \cap V = \phi$ .

**Proof:** (i)  $\Rightarrow$ (ii): Suppose X is  $\alpha$ - normal. Let A and B be a pair of disjoint closed sets of X. Since X is  $\alpha$  - normal, there exist disjoint  $\alpha$  - open sets U and V such that  $A \subseteq U$  and  $B \subseteq V$  and  $U \cap V = \phi$ .

(ii)  $\Rightarrow$ (i):Let A and B be a pair of disjoint closed sets of X. The by hypothesis there exist disjoint  $\omega \alpha$  - open sets U and V such that  $A \subseteq U$  and  $B \subseteq V$  and  $U \cap V = \phi$ . Since from [2],  $A \subseteq \alpha intU$  and  $B \subseteq \alpha intV$  and  $\alpha intU \cap \alpha intV = \phi$ . Hence X is  $\alpha$ - normal.

**Theorem 4.11.** Let X bea  $\alpha$  - normal, then the following hold good: (i)For each closed set A and every  $\omega \alpha$  - open set B such that  $A \subseteq B$  ther exists a  $\alpha$ -

open set U such that  $A \subseteq U \subseteq \alpha cl(U) \subseteq B$ .

(ii) For every  $\omega \alpha$  - closed set A and every open set B containing A, there exist a  $\alpha$  - open set U such that  $A \subseteq U \subseteq \alpha cl(U) \subseteq B$ .

**Theorem 4.12.** If  $f: X \to Y$  is weakly continuous,  $\omega \alpha$  - closed injection and Y is  $\omega \alpha$  - normal, then X is normal.

#### References

- [1] S.P. Arya and T.M. Nour, Characterization of s- normal spaces, Indian. J. Pure and Appl. Math., 21(8),(1990), 717-719.
- [2] S.S. Benchalli, P.G. Patil and T.D. Rayanagoudar,  $\omega \alpha$  Closed sets in Topological Spaces, The Global J. Appl. Math Sciences 2/1-2 (2009) 53-63.
- [3] S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g<sup>\*</sup> Pre Regular and g<sup>\*</sup>
   -Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399-2408.
- [4] S.S. Benchalli and P.G. Patil, Some New Continuous Maps in Topological Spaces, Journal of Advanced Studies in Topology 2/1-2 (2009) 53-63.
- [5] R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms in Topological Spaces, Ph.D. thesis, Bharatiyar University, Coimbatore (1994).
- [6] C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- [7] N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2 (1970) 89-96.
- [8] S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie 22 (1978) 27-28.
- [9] B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- [10] T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Math 20 (1999)67-74.

- [11] P.G. Patil, S.S. Benchalli and T.D. Rayanagoudar, Generalization of New Continuous Functions in Topological Spaces, CUBO, A Mathematical Journal 5/3 (2013) 51-58.
- [12] M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps in Topological and Bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore (2002).