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Abstract - In this paper, we introduce the notions of πgα-
I-open sets, πgp-I-open sets, Er-I-sets and E∗

r -I-sets in ideal
topological spaces and investigate some of their properties and us-
ing these notions we obtain three decompositions of πg-continuity.

Keywords - πgα-I-
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1 Introduction and Preliminaries

In 1968, Zaitsev [25] introduced the concept of π-closed sets and in 1970, Levine [13]
initiated the study of so called g-closed sets in topological spaces. The concept of g-
continuity was introduced and studied by Balachandran et.al in 1991 [3]. Dontchev and
Noiri [5] defined the notions of πg-closed sets and πg-continuity in topological spaces. In
1993, Palaniappan and Rao [18] introduced the notions of regular generalized closed (rg-
closed) sets and rg-continuity in topological spaces. In 2000, Sundaram and Rajamani
[22] obtained three different decompositions of rg-continuity by providing two types of
weaker forms of continuity, namely Cr-continuity and C∗

r -continuity. Recently, Noiri et.
al. [16] introduced the notions of αg-I-open sets, gp-I-open sets, gs-I-open sets, C(S)-
I-sets, C∗-I-sets and S∗-I-sets to obtain three different decompositions of g-continuity
via idealization. Recently Ravi et. al. [20] obtained three different decompositions
of πg-continuity by providing two types of weaker forms of continuity, namely Er-
continuity and E∗

r -continuity. In this paper, we introduce the notions of πgα-I-open
sets, πgp-I-open sets, Er-I-sets and E∗

r -I-sets to obtain the further decompositions of
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πg-continuity. Let (X, τ) be a topological space. An ideal is defined as a nonempty
collection I of subsets of X satisfying the following two conditions:

(i) If A ∈ I and B ⊆ A, then B ∈ I
(ii) If A ∈ I and B ∈ I, then A ∪B ∈ I.
For a subset A ⊆ X, A∗(I) = {x ∈ X/U ∩ A /∈ I for each neighborhood U of x} is

called the local function of A with respect to I and τ [10]. We simply write A∗ instead
of A∗(I) in case there is no chance for confusion. X∗ is often a proper subset of X.
For every ideal topological space (X, τ , I) there exists a topology τ ∗(I), finer than τ ,
generated by β(I, τ) = {U \ I : U ∈ τ and I ∈ I}, but in general β(I, τ) is not always
a topology [24]. Also, cl∗(A) = A∪A∗ defines a Kuratowski closure operator for τ ∗(I)
[24]. Additionally, cl∗(A) ⊆ cl (A) for any subset A of X [8]. Throughout this paper,
X denotes the ideal topological space (X, τ, I) and also cl(A) and int(A) denote the
closure of A and the interior of A in (X, τ), respectively.

Definition 1.1. A subset A of (X, τ) is said to be

1. α-open [15] if A ⊆ int(cl(int(A))),

2. preopen [14] if A ⊆ int(cl(A)),

3. regular open [21] if A = int(cl(A)),

4. π-open [25] if the finite union of regular open sets,

5. πg-open [5] iff F ⊆ int(A) whenever F ⊆ A and F is π-closed in (X, τ),

6. πgp-open [19] iff F ⊆ pint(A) whenever F ⊆ A and F is π-closed in (X, τ),

7. πgα-open [2] iff F ⊆ αint(A) whenever F ⊆ A and F is π-closed in (X, τ),

8. a t-set [23] if int(A) = int(cl(A)),

9. an α∗-set [7] if int(A) = int(cl(int(A))),

10. a Er-set [20] if A = U ∩ V, where U is πg-open and V is a t-set in (X, τ),

11. a E∗
r -set [20] if A = U ∩ V, where U is πg-open and V is an α∗-set in (X, τ).

The complements of the above mentioned open sets are called their respective closed sets.
The preinterior pint(A) (resp. α-interior, αint(A)) of A is the union of all preopen sets
(resp. α-open sets) contained in A. The α-closure αcl(A) of A is the intersection of all
α-closed sets containing A.

Lemma 1.2. [1] If A is a subset of X, then

1. pint(A) = A ∩ int(cl(A)),

2. αint(A) = A ∩ int(cl(int(A))) and αcl(A) = A ∪ cl(int(cl(A))).

Definition 1.3. A subset A of an ideal topological space (X, τ, I) is said to be

1. pre-I-open [4] if A ⊆ int(cl∗(A)),
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2. α-I-open [6] if A ⊆ int(cl∗(int(A))),

3. a t-I-set [6] if int(cl∗(A)) = int(A),

4. an α∗-I-set [6] if int(cl∗(int(A))) = int(A).

Also, we have α-I-int(A) = A ∩ int(cl∗(int(A))) [16] and p-I-int(A) = A ∩ int(cl∗(A))
[16], where α-I-int(A) denotes the α-I interior of A in (X, τ , I) which is the union
of all α-I-open sets of (X, τ , I) contained in A. p-I-int(A) has similar meaning.

Remark 1.4. The following hold in a topological space.

1. Every πg-open set is πgp-open but not conversely.[19]

2. Every πg-open set is πgα-open but not conversely.[2]

2 πgα-I-Open Sets and πgp-I-Open Sets

Definition 2.1. A subset A of an ideal topological space (X, τ , I) is called

1. πgα-I-open if F ⊆ α-I-int(A) whenever F ⊆ A and F is π-closed in X.

2. πgp-I-open if F ⊆ p-I-int(A) whenever F ⊆ A and F is π-closed in X.

Proposition 2.2. For a subset of an ideal topological space, the following hold:

1. Every πgα-I-open set is πgα-open.

2. Every πgp-I-open set is πgp-open.

3. Every πgα-open set is πgp-open.

Proof. (1) Let A be an πgα-I-open set. Let F ⊆ A and F is π-closed in X. Then, F ⊆
α-I-int(A) = A ∩ (int(cl∗(int(A)))) ⊆ A ∩ int(cl(int(A))) = αint(A). This shows that
A is πgα-open.

(2) Let A be πgp-I-open set. Let F ⊆ A and F is π-closed in X. Then, F ⊆ p-I-
int(A) = A ∩ int(cl∗(A)) ⊆ A ∩ int(cl(A)) = pint(A). This shows that A is πgp-open.

(3) It follows from the definitions.

Remark 2.3. The converses of Proposition 2.2 are not true, in general.

Example 2.4. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}
and I = {∅, {a}, {b}, {a, b}}. Then {a, b, d} is πgα-open but not an πgα-I-open set.

Example 2.5. In Example 2.4, {a, b, d} is πgp-open but not a πgp-I-open set.

Example 2.6. Let X= {a, b, c, d, e} and τ = {∅, {a}, {e}, {a, e}, {c, d}, {a, c, d},
{c, d, e}, {a, c, d, e}, {b, c, d, e}, X}. Then {b, c, e} is πgp-open set but not an
πgα-open.

Proposition 2.7. For a subset of an ideal topological space, the following hold:

1. Every πgα-I-open set is πgp-I-open.
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2. Every πg-open set is πgp-I-open.

3. Every πg-open set is πgα-I-open.

Proof. 1. Let A be πgα-I-open. Then, for any π-closed set F with F ⊆ A, we have F
⊆α-I-int(A) = A ∩ int(cl∗(int(A))) ⊆ A ∩ int(cl∗(A)) = p-I-int(A) which implies
that A is πgp-I-open.

2. Let A be an πg-open set. Then, for any π-closed set F with F ⊆ A, we have F
⊆ int(A) ⊆ int((int(A))∗) ∪ int(A) = int((int(A))∗) ∪ int(int(A)) ⊆ int((int(A))∗

∪ int(A)) = int(cl∗(int(A))). That is, F ⊆ A ∩ int(cl∗(int(A))) = α-I-int(A) =
A∩int(cl∗(int(A))) ⊆ A∩int(cl∗(A)) = p-I-int(A) which implies that A is πgp-I-
open.

3. Let A be an πg-open set. Then, for any π-closed set F with F ⊆ A, we have F ⊆
int(A) ⊆ int((int(A))∗) ∪ int(A) = int((int(A))∗) ∪ int(int(A)) ⊆ int((int(A))∗ ∪
int(A)) = int(cl∗(int(A))). That is, F ⊆ A ∩ int(cl∗(int(A))) = α-I-int(A) which
implies that A is πgα-I-open.

Remark 2.8. The converses of Proposition 2.7 are not true, in general.

Example 2.9. Let X = {a, b, c, d, e}, τ = {∅, X, {b}, {e}, {b, e}, {c, d}, {b, c, d},
{c, d, e}, {a, c, d, e}, {b, c, d, e}} and I = {∅, {b}, {e}, {b, e}}. Then {a, d, e} is
πgp-I-open but not an πgα-I-open set.

Example 2.10. In Example 2.9, {a, d, e} is πgp-I-open but not a πg-open set.

Example 2.11. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}
and I = {∅, {c}}. Then {a, b, d} is πgα-I-open but not a πg-open set.

Remark 2.12. By Remark 1.4, Propositions 2.2 and 2.7, we have the following dia-
gram. In this diagram, there is no implication which is reversible as shown by examples
above.

πgα-I-open −→ πgα-open
↗

πg-open ↓ ↓
↘

πgp-I-open −→ πgp-open

3 Er-I-Sets and E∗
r -I-Sets

Definition 3.1. A subset A of an ideal topological space (X, τ , I) is called

1. a Er-I-set if A = U ∩ V, where U is πg-open and V is a t-I-set,

2. a E∗
r -I-set if A = U ∩ V, where U is πg-open and V is an α∗-I-set.

We have the following proposition:

Proposition 3.2. For a subset of an ideal topological space, the following hold:

1. Every t-I-set is an α∗-I-set [6] and a Er-I-set.
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2. Every α∗-I-set is a E∗
r -I-set.

3. Every Er-I-set is a E∗
r -I-set.

4. Every πg-open set is a Er-set.

5. Every Er-set is a Er-I-set and a E∗
r -set.

6. Every E∗
r -set is a E∗

r -I-set.

From Proposition 3.2, We have the following diagram.

πg-open set −→ Er-set −→ Er-I-set ←− t-I-set
↓ ↓ ↓

E∗
r -set −→ E∗

r -I-set ←− α∗-I-set

Remark 3.3. The converses of implications in Diagram II need not be true as the
following examples show.

Example 3.4. In Example 2.4, {a, b, d} is Er-I-set but not a Er-set.

Example 3.5. In Example 2.4, {a, b, c} is Er-I-set but not a t-I-set.

Example 3.6. Let X = {a, b, c, d, e} and τ = {∅, X, {b}, {e}, {b, e}, {c, d}, {b, c,
d}, {c, d, e}, {a, c, d, e}, {b, c, d, e}}. Then {a} is Er-set but not a πg-open set.

Example 3.7. In Example 3.6, {a, b, d, e} is E∗
r -set but not a Er-set.

Example 3.8. In Example 2.10, {a, b, d, e} is E∗
r -I-set but not a Er-I-set.

Example 3.9. In Example 2.4, {a, b, d} is E∗
r -I-set but not a E∗

r -set.

Example 3.10. In Example 2.4, {a, b, c} is E∗
r -I-set but not an α∗-I-set.

Example 3.11. Let X = {a, b, c}, τ = {∅, X, {a, b}} and I = {∅, {c}}. Then {b}
is α∗-I-set but not a t-I-set.

Remark 3.12. Examples 3.13 and 3.14 show that Er-I-sets and E∗
r -sets are indepen-

dent of each other.

Example 3.13. Let X = {a, b, c, d, e}, τ = {∅, X, {b}, {e}, {b, e}, {c, d}, {b, c, d},
{c, d, e}, {a, c, d, e}, {b, c, d, e}} and I = {∅, {b}, {e}, {b, e}}. Then {a, b, d, e}
is E∗

r -set but not a Er-I-set.

Example 3.14. In Example 2.4, {a, b, d} is Er-I-set but not a E∗
r -set.

Proposition 3.15. A subset A of X is πg-open if and only if it is both πgp-I-open and
a Er-I-set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is πgp-I-open and
a Er-I-set in X. Let F ⊆ A and F is π-closed in X. Since A is a Er-I-set in X, A = U
∩ V , where U is πg-open and V is a t-I-set. Since A is πgp-I-open, F ⊆ p-I-int(A) =
A ∩ int(cl∗(A)) = (U ∩ V ) ∩ int(cl∗(U ∩ V )) ⊆ (U ∩ V ) ∩ int(cl∗(U)∩ cl∗(V )) = (U
∩ V ) ∩ int(cl∗(U)) ∩ int(cl∗(V )). This implies F ⊆ int(cl∗(V )) = int(V ) since V is a
t-I-set. Since F is π-closed, U is πg-open and F ⊆ U , we have F ⊆ int(U). Therefore,
F ⊆ int(U) ∩ int(V ) = int(U ∩ V ) = int(A). Hence A is πg-open in X.
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Corollary 3.16. A subset A of X is πg-open if and only if it is both πgα-I-open and
a Er-I-set in X.

Proof. This is an immediate consequence of Proposition 3.15.

Proposition 3.17. A subset A of X is πg-open if and only if it is both πgα-I-open
and a E∗

r -I-set in X.

Proof. Necessity is trivial. We prove the sufficiency. Assume that A is πgα-I-open and
a E∗

r -I-set in X. Let F ⊆ A and F is π-closed in X. Since A is a E∗
r -I-set in X, A =

U ∩V , where U is πg-open and V is an α∗-I-set. Now since F is π-closed, F ⊆ U and U
is πg-open, F ⊆ int(U). Since A is πgα-I-open, F ⊆ α-I-int(A) = A ∩ int(cl∗(int(A)))
= (U ∩ V ) ∩ int(cl∗(int(U ∩ V ))) = (U ∩ V ) ∩ int(cl∗(int(U) ∩ int(V ))) ⊆ (U ∩ V ) ∩
int(cl∗(int(U)) ∩ cl∗(int(V ))) = (U ∩V ) ∩ int(cl∗(int(U))) ∩ int(cl∗(int(V ))) = (U ∩V )
∩ int(cl∗(int(U))) ∩ int(V ), since V is an α∗-I-set. This implies F ⊆ int(V ). Therefore,
F ⊆ int(U) ∩ int(V ) = int(U ∩ V ) = int(A). Hence A is πg-open in X.

Remark 3.18. 1. The concepts of πgp-I-open sets and Er-I-sets are independent
of each other.

2. The concepts of πgα-I-open sets and Er-I-sets are independent of each other.

3. The concepts of πgα-I-open sets and E∗
r -I-sets are independent of each other.

Example 3.19. Let X = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}
and I = {∅, {c}}. Then
(1) {b, c, d} is Er-I-set but not a πgp-I-open.
(2) In Example 3.13, {a, b, d, e} is πgp-I-open but not a Er-I-set.

Example 3.20. Let X ={a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}
and I = {∅, {c}}. Then
(1) {b, c, d} is Er-I-set but not an πgα-I-open set.
(2) {a, b, d} is πgα-I-open set but not a Er-I-set.

Example 3.21. Let X ={a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}
and I = {∅, {c}}. Then
(1) {b, c, d} is E∗

r -I-set but not an πgα-I-open set.
(2) {a, b, d} is πgα-I-open set but not a E∗

r -I-set.

4 Decompositions of πg-Continuity

Definition 4.1. A mapping f : (X, τ) → (Y, σ) is said to be πg-continuous [5] (resp.
πgp-continuous [19], πgα-continuous [20], Er-continuous [20] and E∗

r -continuous [20])
if f−1(V) is πg-open (resp. πgp-open, πgα-open, Er-set and E∗

r -set) in (X, τ) for every
open set V in (Y, σ).

Definition 4.2. A mapping f : (X, τ , I) → (Y, σ) is said to be πgα-I-continuous
(resp. πgp-I-continuous, Er-I-continuous and E∗

r -I-continuous) if for every V ∈ σ,
f−1(V) is πgα-I-open (resp. πgp-I-open, a Er-I-set and a E∗

r -I-set) in (X, τ , I).
From Propositions 3.15 and 3.17 and Corollary 3.16 we have the following decom-

positions of πg-continuity.
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Theorem 4.3. Let (X, τ , I) be an ideal topological space. For a mapping f : (X, τ ,
I) → (Y, σ), the following properties are equivalent:

1. f is πg-continuous;

2. f is πgp-I-continuous and Er-I-continuous;

3. f is πgα-I-continuous and Er-I-continuous;

4. f is πgα-I-continuous and E∗
r -I-continuous.

Remark 4.4. 1. The concepts of πgp-I-continuity and Er-I-continuity are inde-
pendent of each other.

2. The concepts of πgα-I-continuity and Er-I-continuity are independent of each
other.

3. The concepts of πgα-I-continuity and E∗
r -I-continuity are independent of each

other.

Example 4.5. (1) Let X = Y = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a,
b, c}}, I = {∅, {c}} and σ = {∅, Y, {b, c, d}}. Let f : (X, τ , I) → (Y, σ) be the
identity function. Then f is Er-I-continuous but not πgp-I-continuous.
(2) Let X = Y = {a, b, c, d, e}, τ = {∅, X, {b}, {e}, {b, e}, {c, d}, {b, c, d}, {c,
d, e}, {a, c, d, e}, {b, c, d, e}}, I = {∅, {b}, {e}, {b, e}} and σ = {∅, Y, {a, b, d,
e}}. Let f : (X, τ , I) → (Y, σ) be the identity function. Then f is πgp-I-continuous
but not Er-I-continuous.

Example 4.6. (1) Let X = Y = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a,
b, c}}, I = {∅, {c}} and σ = {∅, Y, {b, c, d}}. Let f : (X, τ , I) → (Y, σ) be the
identity function. Then f is Er-I-continuous but not πgα-I-continuous.
(2) Let X = Y = {a, b, c, d}, τ = {∅, X, {a}, {b}, {a, b}, {b, c}, {a, b, c}}, I = {∅,
{c}} and σ = {∅, Y, {a, b, d}}. Let f : (X, τ , I) → (Y, σ) be the identity function.
Then f is πgα-I-continuous but not Er-I-continuous.

Example 4.7. In Example 4.6 (1) f is E∗
r -I-continuous but not πgα-I-continuous.

In Example 4.6 (2) f is πgα-I-continuous but not E∗
r -I-continuous.

Corollary 4.8. [20] Let (X, τ , I) be an ideal topological space and I = {∅}. For a
mapping f : (X, τ , I) → (Y, σ), the following properties are equivalent:

1. f is πg-continuous;

2. f is πgp-continuous and Er-continuous;

3. f is πgα-continuous and Er-continuous;

4. f is πgα-continuous and E∗
r -continuous.

Proof. Since I= {∅}, we have A∗ = cl(A) and cl∗(A) = A∗ ∪ A = cl(A) for any subset
A of X [[6], Proposition 2.4(a)]. Therefore, we obtain (1) A is πgα-I-open (resp. πgp-
I-open) if and only if it is πgα-open (resp. πgp-open) and (2) A is a Er-I-set (resp. a
E∗

r -I-set) if and only if it is a Er-set ( resp. a E∗
r -set). The proof follows from Theorem

4.3 immediately.
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5 Conclusion

Topology as a field of mathematics is concerned with all questions directly or indirectly
related to open/closed sets. Therefore, generalization of open/closed sets is one of the
most important subjects in topology. Topology plays a significant role in quantum
physics, high energy physics and superstring theory. In this paper, we introduce the
notions of πgα-I-open sets, πgp-I-open sets, Er-I-sets and E∗

r -I-sets in ideal topolog-
ical spaces and investigate some of their properties and using these notions we obtain
three decompositions of πg-continuity. Moreover, some notions of the sets and func-
tions in topological spaces and ideal topolgical spaces are highly developed and used
extensively in many practical and engineering problems.
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