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Abstract − This paper studies the convergence of fixed points for Garsia-Falset gener-
alized nonexpansive mappings. First, it investigates weak and strong convergence results
for Garsia-Falset generalized nonexpansive mappings using the Temir-Korkut iteration in
uniformly convex Banach spaces. This paper then exemplifies Garsia-Falset generalized non-
expansive mappings, which exceed the class of Suzuki generalized nonexpansive mappings.
Moreover, it numerically compares this iteration’s convergence speed with the well-known
Thakur iteration of approximating the fixed point of Garsia-Falset generalized nonexpan-
sive mapping. The results show that the Temir-Korkut iteration converges faster than the
Thakur iteration converges. Finally, this paper discusses the need for further research.

Subject Classification (2020): 47H09, 47H10

1. Introduction

In mathematics and many disciplines, the concept of a fixed point is crucial. The conditions under
which maps have solutions are provided by fixed point results. In particular, fixed-point approaches
have been used in various disciplines, including biology, chemistry, economics, engineering, and in-
formatics. Even if establishing the existence of a fixed point is an essential first step, the major and
probably last stage in finding a solution is to find the exact value of the intended fixed point. An
iterative procedure is one of the common ways to obtain the intended fixed point. In the last 65
years, many authors have been interested in these areas and established many iterative processes to
approximate fixed points for nonexpansive mappings and a broader class of nonexpansive mappings.

Especially, some generalizations of nonexpansive mappings and the study of related fixed point theo-
rems have been intensively carried out over the past decades [1–9]. A class of generalized nonexpansive
mappings (GNMs) on a nonempty subset K of a Banach space X has been defined by Suzuki [5].
Such mappings were referred to as belonging to the class of mappings satisfying condition (C) (also
referred as Suzuki GNM), which properly includes the class of nonexpansive mappings. Recently,
fixed point theorems for Suzuki generalized nonexpansive mappings have been studied by a number
of authors [10–14]. Every self-mapping Ψ on K providing condition (C) has an almost fixed point
sequence for a nonempty bounded and convex subset K. Two new classes of GNMs that are wider
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than those providing the condition (C) were presented in 2011 by Garsia-Falset et al. [2], while re-
taining their fixed point properties. They investigated Garsia-Falset GNMs, named as condition (E).
Later in 2019, for a general class of nonexpansive mappings that are not necessarily continuous on
their domains, Pandey et al. [3] presented fixed point results and showed how several other classes of
nonexpansive type mappings are appropriately included inside this class. Recently, Usurelu et al. [7]
investigated the visualization of convergence behaviors of various iterative processes and some fixed
point outcomes for this class of mappings.

Some related properties to the aforesaid topics are as follows: Let K be a nonempty subset of a
Banach space X. A mapping Ψ : K → K is said to be nonexpansive if ∥Ψu − Ψv∥ ≤ ∥u − v∥,
for all u, v ∈ K. A mapping Ψ : K → K is called quasi-nonexpansive if ∥Ψu − p∥ ≤ ∥u − p∥, for
all u ∈ K and p ∈ F (Ψ) (where F (Ψ) denotes the set of all fixed points of Ψ). Therefore, the
class of quasi-nonexpansive mappings is weaker than the class of nonexpansive mappings. Suzuki [5]
presented the concept of GNMs, known as condition (C), in 2008. Let K be a nonempty convex
subset of a Banach space X, a mapping Ψ : K → K satisfies condition (C) on K if, for all u, v ∈ K,
1
2∥u−Ψu∥ ≤ ∥u−v∥ ⇒ ∥Ψu−Ψv∥ ≤ ∥u−v∥. Suzuki [5] showed that the mapping satisfying condition
(C) is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.

Recently, Garsia-Falset et al. [2] studied GNMs satisfying condition (E) that have a weaker property
than Suzuki GNMs. Let K be a nonempty subset of a Banach space X. A mapping Ψ : K → X

satisfies condition (Eµ) on K, if there exists µ ≥ 1 such that

∥u − Ψv∥ ≤ µ∥u − Ψu∥ + ∥u − v∥

for all u, v ∈ K. Moreover, it is said that Ψ satisfies condition (E) on K, whenever Ψ satisfies condition
(Eµ), for some µ ≥ 1. It is clearly seen that if Ψ : K → X is nonexpansive, then it satisfies condition
(E1) and from Lemma 7 in [5], we know that if Ψ : K → K satisfies condition (C) on K, then Ψ
satisfies condition (E3) (see [2]). Proposition 1 in [2], we know also that if Ψ : K → X a mapping
which satisfies condition (E) on K has some fixed point, then Ψ is quasi-nonexpansive. Example 2
that is in [2] shows the converse is not true. Hence, the class of Garcia-Falset GNMs exceeds the class
of Suzuki GNMs (also the class of nonexpansive mappings), however, it still remains stronger than
quasi-nonexpansiveness.

The generalized α−nonexpansive mappings (which includes α− nonexpansive mappings [1]) of nonex-
pansive type mappings are introduced by Pant and Shukla [4] in 2017. They have attained some fixed
point results for this class of mappings. A mapping Ψ : K → K is called a generalized α−nonexpansive
mapping if, for each u, v ∈ K, there exists an α ∈ [0, 1) such that

1
2∥u − Ψu∥ ≤ ∥u − v∥ ⇒ ∥Ψu − Ψv∥ ≤ α∥Ψu − v∥ + α∥Ψv − u∥ + (1 − 2α)∥u − v∥

In recent years, many iterations have been used to approximate fixed points of GNMs. In particular,
with iteration development, a faster approach to the fixed point has gained importance. Iterations,
such as the Thakur iteration [11] and the Temir-Korkut iteration [15], have recently been introduced
and used to approximate the fixed points of GNMs. Usurelu et al. [7] studied the Thakur iteration in
the new context of GNMs enriched with condition (E). The underlying setting of their method is a
uniformly convex Banach space (UCBS). Thakur iteration: For {ζn}, {ςn}, {τn} ∈ (0, 1) and arbitrary
u1 ∈ K construct a sequence {un} defined by

zn = (1 − τn)un + τnΨun

yn = (1 − ςn)zn + ςnΨzn

un+1 = (1 − ζn)Ψzn + ζnΨyn

(1.1)
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For generalized α−nonexpansive mappings in UCBS, Temir and Korkut [15] recently presented an
iteration (named the Temir-Korkut iteration) and proved some convergence results using this iteration.
Temir-Korkut iteration: For {ζn}, {ςn}, {τn} ∈ (0, 1) and arbitrary u1 ∈ K construct a sequence {un}
defined by 

zn = Ψ((1 − τn)un + τnΨun)
yn = Ψ((1 − ςn)Ψun + ςnΨzn)
wn = Ψ((1 − ζn)yn + ζnΨyn)

un+1 = Ψwn

(1.2)

In this study, we use the Temir-Korkut iteration motivated by the above to prove weak and strong
convergence results for Garsia-Falset GNMs, which is the generalization of Suzuki GNMs in the setting
of UCBS. Moreover, we provide an example of Garsia-Falset GNM, which is not Suzuki GNM. In
addition, we numerically show that the Temir-Korkut iteration converges to a fixed point of Garsia-
Falset GNM faster than the Thakur iteration.

2. Preliminaries

This section recalls some basic notations to be used in main results.

Definition 2.1. [16] A Banach space X will be said to be uniformly convex if for each ε ∈ (0, 2], there
corresponds a δ(ε) > 0 such that the conditions ∥u∥ = ∥v∥ = 1, ∥u − v∥ ≥ ε imply ∥u+v∥

2 ≤ 1 − δ(ε).

Definition 2.2. [17] A Banach space X is said to satisfy Opial’s condition if, for each sequence {un}
in X, the condition un → u (weakly) as n → ∞ and for all v ∈ X with v ̸= u imply that

lim inf
n→∞

∥un − u∥ < lim inf
n→∞

∥un − v∥

Definition 2.3. [18] Let {un} be a bounded sequence in a Banach space X and u ∈ X. Then,

i. the asymptotic radius of {un} at u is the number r(u, {un}) = lim sup
n→∞

∥un − u∥.

ii. the asymptotic radius of {un} relative to K is defined by r(K, {un}) = inf{r(u, {un}) : u ∈ K}.

iii. the asymptotic center of {un} relative to K is the set A(K, {un}) = {u ∈ K : r(u, {un}) =
r(K, {un})}.

It is known that A(K, {un}) consists of exactly one-pointin UCBS.

Lemma 2.4. [19] Suppose that X is a UCBS and 0 < k ≤ tn ≤ m < 1 for all n ∈ N. Let {un} and {vn}
be two sequences of X such that lim sup

n→∞
∥un∥ ≤ κ, lim sup

n→∞
∥vn∥ ≤ κ and lim sup

n→∞
∥tnun +(1− tn)vn∥ = κ

hold for κ ≥ 0. Then, lim
n→∞

∥un − vn∥ = 0.

Definition 2.5. [20] Let {un} in K be a given sequence. Ψ : K → X with the nonempty fixed point
set F (Ψ) in K is said to satisfy condition (I) with respect to the {un} if there is a nondecreasing
function φ : [0, ∞) → [0, ∞) with φ(0) = 0 and φ(κ) > 0 for all κ ∈ (0, ∞) such that for all n ∈ N,
∥un − Ψun∥ ≥ φ(d(un, F (Ψ)).

Theorem 2.6. [2] Let K be nonempty subset of a Banach space X. Let Ψ : K → X be a mapping.
Then, u = Ψu, if

i. there exists {un} for Ψ in K such that lim
n→∞

∥un − Ψun∥ = 0 and un → u ∈ K (weakly).

ii. Ψ satisfies condition (E) on K,

iii. (X, ∥.∥) satisfies the Opial’s condition.
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3. Convergence of Garsia-Falset GNMs

This section proves weak and strong convergence theorems for (1.2) of Garsia-Falset GNMs in UCBS.

Lemma 3.1. Let K be a nonempty closed convex subset of a uniformly convex Banach space X,
Ψ : K → K be a Garsia-Falset GNM with F (Ψ) ̸= ∅. For arbitrary chosen u1 ∈ K, let {un} be a
sequence generated by (1.2), then lim

n→∞
∥un − p∥ exists for any p ∈ F (Ψ).

Proof.

Assume that F (Ψ) ̸= ∅. Ψ is a quasi-nonexpansive because Ψ : K → K is a Garsia-Falset GNM.
In order to prove, we follow Lemma 3.1 in [15]. By (1.2) and for any p ∈ F (Ψ), because of Ψ
quasi-nonexpansive mapping, then we have

∥zn − p∥ = ∥Ψ((1 − τn)un + τnΨun) − p∥
≤ ∥(1 − τn)(un − p) + τn(Ψun − p)∥
≤ (1 − τn)∥un − p∥ + τn∥un − p∥
= ∥un − p∥ (3.1)

From (1.2) and (3.1), we have

∥yn − p∥ = ∥Ψ((1 − ςn)Ψun + ςnΨzn) − p∥
≤ ∥(1 − ςn)(Ψun − p) + ςn(Ψzn − p)∥
≤ (1 − ςn)∥un − p∥ + ςn∥un − p∥
= ∥un − p∥ (3.2)

From (1.2) and (3.2), we get

∥wn − p∥ = ∥Ψ((1 − ζn)yn + ζnΨyn) − p∥
≤ ∥(1 − ζn)(yn − p) + ζn(Ψyn − p)∥
≤ (1 − ζn)∥un − p∥ + ζn∥un − p∥
= ∥un − p∥ (3.3)

Moreover, from (1.2) and (3.3), we have

∥un+1 − p∥ = ∥Ψwn − p∥ ≤ ∥wn − p∥ ≤ ∥un − p∥

This implies that {∥un − p∥} is bounded and non-increasing for all p ∈ F (Ψ). Hence, lim
n→∞

∥un − p∥
exists.

Theorem 3.2. Let K be a nonempty closed convex subset of a UCBS X. For µ ≥ 1, let Ψ : K → K

be a Garsia-Falset GNM. For arbitrarily chosen u1 ∈ K, let {un} be a sequence in K defined by (1.2)
with {ζn}, {ςn} and {τn} real sequences in (0, 1), then F (Ψ) ̸= ∅ if and only if {un} is bounded and
lim

n→∞
∥un − Ψun∥ = 0.

Proof.

Suppose F (Ψ) ̸= ∅ and let p ∈ F (Ψ). Then, from Lemma 3.1, lim
n→∞

∥un−p∥ exits and {un} is bounded.
In this part of the proof, we follow Theorem 3.1 in [15]. Put lim

n→∞
∥un−p∥ = κ. Since a GNM satisfying

the condition (E) is quasi-nonexpansive mapping and from (1.2), we have

lim sup
n→∞

∥zn − p∥ ≤ lim sup
n→∞

∥un − p∥ = κ

lim sup
n→∞

∥wn − p∥ ≤ lim sup
n→∞

∥yn − p∥ ≤ lim sup
n→∞

∥un − p∥ = κ
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and
lim sup

n→∞
∥Ψun − p∥ ≤ lim sup

n→∞
∥un − p∥ = κ

Besides, ∥un+1 − p∥ ≤ ∥wn − p∥. Therefore, κ ≤ lim inf
n→∞

∥wn − p∥. Thus, we have κ = lim
n→∞

∥wn − p∥.

Using here, we can get κ = lim inf
n→∞

∥wn − p∥ ≤ lim inf
n→∞

∥yn − p∥. Thus, we have κ = lim
n→∞

∥yn − p∥.
Moreover,

∥yn − p∥ = ∥Ψ((1 − ςn)Ψun + ςnΨzn) − p∥
≤ ∥(1 − ςn)(Ψun − p) + ςn(Ψzn − p)∥
≤ (1 − ςn)∥Ψun − p∥ + ςn∥Ψzn − p∥
≤ (1 − ςn)∥un − p∥ + ςn∥zn − p∥

Hence,

∥yn − p∥ − ∥un − p∥ ≤ ∥yn − p∥ − ∥un − p∥
ςn

≤ ∥zn − p∥ − ∥un − p∥

implies that ∥yn − p∥ ≤ ∥zn − p∥. Thus, we have κ = lim
n→∞

∥zn − p∥. Again from (1.2), we have

lim
n→∞

∥(1 − τn)(un − p) + τn(Ψun − p)∥ = κ

Thus, by Lemma 2.4, we have

lim
n→∞

∥un − Ψun∥ = 0

Conversely, suppose that {un} is bounded lim
n→∞

∥un − Ψun∥ = 0. Let p ∈ A(K, {un}). Since Ψ satisfies
condition (E) with µ ≥ 1, one has

r(Ψp, {un}) = lim sup
n→∞

∥un − Ψp∥ ≤ lim sup
n→∞

(µ∥Ψun − un∥ + ∥un − p∥)

≤ lim sup
n→∞

∥un − p∥ = r(p, {un})

This implies that for Ψp ∈ A(K, {un}). For closed-bounded convex subsets of UCBSs, the asymptotic
center consists of exactly one point. Therefore, Ψp = p, i.e F (Ψ) ̸= ∅, and the proof is complete.

Next, we prove the following strong convergence theorems of Garsia-Falset GNMs.

Theorem 3.3. Let X be a real UCBS and K a nonempty compact convex subset of X and Ψ : K → K

be a Garsia-Falset GNM for µ ≥ 1. Let Ψ and {un} be as in Theorem 3.2. If F (Ψ) ̸= ∅, then {un}
defined by (1.2) converges strongly to a fixed point of Ψ.

Proof.

Suppose F (Ψ) ̸= ∅. Thus by Theorem 3.2, we have lim
n→∞

∥Ψun − un∥ = 0. Since K is compact, there
exists a subsequence {unk

} of {un} such that unk
→ p as k → ∞ for some p ∈ K. Since Ψ satisfies

condition (E) with µ ≥ 1, then we have, for all k ∈ N,

∥unk
− Ψp∥ ≤ µ∥Ψunk

− unk
∥ + ∥unk

− p∥

Letting k → ∞, we get unk
−→ Ψp. Thus Ψp = p, i.e. p ∈ F (Ψ). Furthermore, lim

n→∞
∥un − p∥ exists

for every p ∈ F (Ψ), thus {un} converges strongly to a fixed point of Ψ.

Moreover, we give below our second strong convergence theorem of Garsia-Falset GNMs satisfying
condition (I).

Theorem 3.4. Let K be a nonempty closed convex subset of a UCBS X and Ψ : K → K be a
Garsia-Falset GNM for µ ≥ 1. Let Ψ and {un} be as in Theorem 3.2 and F (Ψ) ̸= ∅. If Ψ satisfies
condition (I), then {un} defined by (1.2) converges strongly to a fixed point of Ψ.
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Proof.

Using the same argument as in Theorem 3.5 in [7], we obtain the strong convergence theorem of
Garsia-Falset GNMs satisfying condition (I).

Finally, we give the following weak convergence theorem of Garsia-Falset GNMs in a UCBS satisfying
Opial’s condition.

Theorem 3.5. Let K be a nonempty closed convex subset of a UCBS X endowed with Opial’s
condition and Ψ : K → K be a Garsia-Falset GNM for µ ≥ 1. Let Ψ and {un} be as in Theorem 3.2
and F (Ψ) ̸= ∅. Then, {un} converges weakly to a fixed point of Ψ.

Proof.

Since F (Ψ) ̸= ∅, let p be a fixed point of Ψ. By Theorem 3.2, the sequence {un} is bounded and
lim

n→∞
∥Ψun − un∥ = 0 and by Lemma 3.1, lim

n→∞
∥un − p∥ exists. Because X is uniformly convex, X

is reflexive. Due to the reflexiveness of X, there exists a subsequence {unj } of {un} such that {unj }
converges weakly to some ν1 ∈ X. Since K is closed and convex subset of X, according to Mazur’s
Theorem, ν1 ∈ K. Hence, by Theorem 2.6, we obtain Ψν1 = ν1, consequently ν1 ∈ F (Ψ). Arguing
by contradiction, suppose that {un} has two sub-sequences {unj } and {unk

} converging weakly to ν1

and ν2, respectively. Ψν2 = ν2 is obtained in the same way which is used Ψν1 = ν1. After that, the
uniqueness will be proved. By Lemma 3.1, lim

n→∞
∥un − ν1∥ and lim

n→∞
∥un − ν2∥ exist. Suppose that

ν1 ̸= ν2, afterward by the Opial’s condition, we obtain

lim
n→∞

∥un − ν1∥ = lim
j→∞

∥unj − ν1∥ < lim
j→∞

∥unj − ν2∥ = lim
n→∞

∥un − ν2∥

= lim
k→∞

∥unk
− ν2∥ < lim

k→∞
∥unk

− ν1∥ = lim
n→∞

∥un − ν1∥

which is a contradiction. Hence, ν1 = ν2. Therefore, {un} converges weakly to a fixed point of Ψ.
This completes the proof.

4. Illustrative Example

This section exemplifies Garsia-Falset generalized nonexpansive mappings, which exceed the class of
Suzuki generalized nonexpansive mappings.

Example 4.1. Let K = [0, 1] ⊂ R endowed with usual norm in R and Ψ : [0, 1] → [0, 1] be a mapping
defined by

Ψu =
{

arctan u
2 , u ̸= 1
5
7 , u = 1

Here, Ψ is a Garsia-Falset GNM. We prove next that Ψ satisfies condition (E 7
2
). For Ψ, satisfying

condition (E 7
2
) explicitly means to check if the following inequality holds:

∥u − Ψv∥ ≤ 7
2∥u − Ψu∥ + ∥u − v∥, for all u, v ∈ [0, 1] (4.1)

To verify that Ψ satisfies the condition (E 7
2
), we consider the following cases.

Case I: Let u = 1 and v ∈ [0, 1). Then, (4.1) is written as follows for this particular case∣∣∣∣1 − arctan v

2

∣∣∣∣ ≤ 7
2

∣∣∣∣1 − 5
7

∣∣∣∣ + |1 − v|

1 − arctan v

2 ≤ 1 + 1 − v
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Then, we have

v − arctan v

2 ≤ 1

which is ultimately equivalent to condition f(v) = v − arctan v
2 ≤ 1. Since f(v) = v − arctan v

2 is nonde-
creasing over the interval [0, 1), then Im(f) = [f(0), f(1)) =

[
f(0), 1 − π

8
)
; therefore, this inequality

is satisfied.

Case II: Let u ∈ [0, 1) and v = 1. Then, (4.1) is written as follows for these particular assignments∣∣∣∣u − 5
7

∣∣∣∣ ≤ 7
2

∣∣∣∣u − arctan u

2

∣∣∣∣ + |u − 1|

≤ 7u

2 − 7 arctan u

4 + 1 − u

≤ 5u

2 − 7 arctan u

4 + 1

Taking this time the function g(u) = 5u
2 − 7arctanu

4 + 1. Since the function g(u) = 5u
2 − 7arctanu

4 + 1
also is nondecreasing over the interval [0, 1), then Im(g) = [g(0), g(1)) =

[
1, 7

2 − 7π
16

)
. Hence, g(u) ≥

1 >
∣∣∣u − 5

7

∣∣∣, for all u ∈ [0, 1). Therefore, this inequality is satisfied.

Case III: Let u, v ∈ [0, 1). One has

∥u − Ψv∥ ≤ ∥u − Ψu∥ + ∥Ψu − Ψv∥

Substituting, we attain∣∣∣∣u − arctan v

2

∣∣∣∣ ≤ 7
2

∣∣∣∣u − arctan u

2

∣∣∣∣ + 1
2 |arctan u − arctan v|

From the mean value theorem, we have∣∣∣∣u − arctan v

2

∣∣∣∣ ≤ 7
2

∣∣∣∣u − arctan u

2

∣∣∣∣ + 1
2 |u − v|

≤ 7
2

∣∣∣∣u − arctan u

2

∣∣∣∣ + |u − v|

which is precisely (4.1), for u, v ∈ [0, 1). Thus, this inequality is satisfied.

Case IV: Let u = 1, v = 1. Then, (4.1) which needs to be fulfilled is∣∣∣∣1 − 5
7

∣∣∣∣ ≤ 7
2

∣∣∣∣1 − 5
7

∣∣∣∣ + |1 − 1|

2
7 ≤ 1

and it is obviously satisfied.

Finally, if u = 1, v = 0.8 is taken, then
1
2∥u − Ψu∥ = 1

2

∣∣∣∣1 − 5
7

∣∣∣∣ = 1
7 = 0.1428 < 0.2 = ∥u − v∥

and

∥Ψu − Ψv∥ =
∣∣∣∣5
7 − arctan(0.8)

2

∣∣∣∣ = 0.37693 > 0.2 = ∥u − v∥

Hence, Ψ does not satisfy condition (C).

Next, since an example of the Garsia-Falset GNM is provided, we will give it to a numerical reckoning
for the iteration stated in the introduction. The observations are given in Table 1 and Figure 1.
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4.1. Numerical Results

The convergence behaviors of (1.2) and (1.1) implementing Example 4.1 is compared. Let {ζn} =
{ςn} = {τn} = 0.75, for all n ≥ 1. 0 is the fixed point of the mapping defined in Example 4.1.

Table 1. Sequences generated by (1.2) and (1.1) for mapping Ψ of Example 4.1.
Temir-Korkut iteration Thakur iteration

u1 0.80000000 0.80000000
u2 0.01258820 0.15303068
u3 0.00023817 0.03411124
u4 0.00000451 0.00765877
u5 0.00000009 0.00172020
u6 0 0.00038637
u7 0 0.00008678
u8 0 0.00001949
u9 0 0.00000438
u10 0 0.00000098
u11 0 0.00000022
u12 0 0.00000005
u13 0 0.00000001
u14 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13

Iteration Number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

It
e

ra
ti
o

n
 V

a
lu

e

Temir-Korkut iteration vs Thakur iteration

Temir-Korkut iteration

Thakur iteration

Figure 1. Convergences of the Temir-Korkut iteration and the Thakur iteration to the fixed point 0
of the mapping defined in Example 4.1.

5. Conclusion

This paper has studied the convergence of (1.2) to fixed points for the Garsia-Falset GNMs in UCBS.
An illustrative numerical example has been presented, one of the crucial of this paper. Example 4.1
satisfies condition (E). However, this example does not satisfy condition (C). This is intended to
show numerically that the Garcia-Falset GNMs class is actually wider than the Suzuki GNMs class.
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Moreover, Table 1 and Figure 1, obtained from Example 4.1, can be observed that the Temir-Korkut
iteration converges faster than the Thakur iteration. New iterations that converge faster than those
presented herein can be developed in future studies. Additionally, more complex examples can be
studied to compare the results obtained in this paper.
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