
PAPER DETAILS

TITLE: Implementation Of The Zero-Error One Second Timing Algorithm For Microcontroller

AUTHORS: Feyzi AKAR,Özdemir ÇETIN

PAGES: 133-148

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/105322

Journal of Naval Science and Engineering
2010, Vol. 6 , No.2, pp. 133-148

133

IMPLEMENTATION OF THE ZERO-ERROR
ONE SECOND TIMING ALGORITHM FOR

MICROCONTROLLER

Feyzi AKAR, Cdr
Asst.Prof.

Faculty of Electrical and Electronics Engineering,
Naval Academy, Tuzla, 34940, Istanbul, Turkey

feyziakar@dho.edu.tr

Özdemir ÇETIN
Asst.Prof.

Technical Education Faculty,
Computer Systems Education,

Esentepe Campus, Serdivan, Sakarya, 54187,Turkey
ocetin@sakarya.edu.tr

Abstract

This paper presents a novel accurate timer method that can be used for
generating regular of zero-error one second period. Time functions have
crucial importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Microcontrollers have programmable timers which
can be used in many tasks, such as generating timing signals, causing
interrupts to be generated at specific time intervals, measuring frequency and
time intervals, and so on. Timing errors, which can be measured with
microseconds in interrupt subroutine that can be, bring about irretrievable
results in control applications. The objective of this research is to propose a
new algorithm and implementation its application for generating zero-error
one-second period with PIC Microcontrollers that uses an interrupt to carry
out accurate timing-related operations inside the microcontroller.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

134

MİKRODENETLEYİCİLER İÇİN SIFIR HATALI
BİR-SANİYE ZAMANLAMA

ALGORİTMALARININ
GERÇEKLEŞTİRİLMESİ

Özetçe

Bu makalede düzenli olarak sıfır-hatalı bir saniye periyodu üretilmesiyle ilgili
yeni bir yöntem oluşturulmaktadır. Bir çok control sisteminde zamanlama
fonksiyonları kritik öneme sahiptir. Bu durum harici fiziksel olayların
saydırılmasında, sayma esnasında sürenin ölçümünde ortaya çıkabilir.
Mikrodenetleyicilerbir özel kesmelerin zamanlama sinyallerinin üretilmesi,
frekans ölçülmesi vb. gibi bir çok görevlerde kullanılabilen programlanabilir
zamanlayıcılara sahiptirler. Zamanlama hataları control uygulamalarında
kesme altprogramları ile mikrosaniyelerle ölçülebilen telafi edilemez
sonuçlara neden olabilmektedir. Bu çalışmanın amacı PIC
Mikrodenetleyiciler ile sıfır hatalı zamanlama periyotlarının üretilmesinde
yeni bir algoritma önermek ve gerçekleştirmektir.

Keywords: Assembly, embedding systems, timing algorithm, interrupt, PIC
Anahtar Kelimeler: Assembly, gömülü sistemler, zamanlama algortimaları,
kesme, PIC

1. INTRODUCTION

1.1. Embedded Systems

Basically a microcontroller is a self-contained computer system on a
single chip that includes a processor, data and program memory (RAM,
ROM, EEPROM), serial and parallel input/output ports which are some way
of communicating with the outside world. Microcontrollers are virtually
everywhere in our modern world. About 50 percent of all microcontroller
applications are found in office and house equipment, such as mobile
phones, DVD Players, video cameras, toys, kitchen appliances, TVs and
VCRs, phones and answering machines, automobiles and most self-
contained electronic systems. It is essential for the operation of above-
mentioned devices and allows an independent functionality to its user. In

Feyzi AKAR & Özdemir ÇETİN

135

this sense an MCU (Microcontroller Unit) is also called an embedded
system that provides the key element in the vast range of programmed
devices which are now commonplace. In most cases the presence of a small
LCD screen in electronic devices indicates that this device has got also an
MCU.

Today many different microcontrollers are available in control
applications. In this paper we shall be looking at “an accurate timer”
programming and system design for the PIC (programmable interface
controller) series of microcontrollers manufactured by Microchip
Technology Inc.

1.2 Timer Modules

Timers are the most important parts of any microcontroller, which are
available in all mid-range devices. Microcontrollers have programmable
timers which can be used in many tasks, such as generating timing signals,
causing interrupts to be generated at specific time intervals, measuring
frequency and time intervals, and so on. Time functions have crucial
importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Where time is of the essence these functions are
often best implemented by using hardware counters to time events.

A timer can be 8 bits or 16 bits wide. Data can be loaded into a timer
under program control, and the timer can be stopped or started by program
control. Most timers can be configured to generate an interrupt when they
reach a certain count (usually when they overflow). The user program can
use an interrupt to carry out accurate timing-related operations inside the
microcontroller [1].

A timer is basically a counter that is driven from either an external
clock pulse or the microcontroller’s internal oscillator.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

136

The TIMER0 module shown in Fig.1 is present in all PICs of this
family. It has the following features:[2]

 8-bit timer/counter
 Readable and writable
 8-bit programmable Prescaler
 External or internal clock source
 Interrupt generation on overflow (from FFh to 00h)
 Edge select for external clock

([2]DS33023A : PICmicro™ Mid-Range MCU Family Reference Manual)

Feyzi AKAR & Özdemir ÇETİN

137

2. PROPOSED ZERO-ERROR TIMING TECHNIQUE

2.1. Design of Timing Algorithm

The formula that follows can be used to calculate the time it will take
for the timer to overflow (or to generate an interrupt) given the oscillator
period, the value loaded into the timer, and the Prescaler value: [3,4,5]

Overflow time = 4 TOSC Prescaler (256 – TMR0) (1.1)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms.
Prescaler : Prescaler is the Prescaler value.
TMR0 : TMR0 is the value loaded into

 TMR0 register.

For example, assume that we are using a 4MHz crystal, and the
Prescaler is chosen as 1:8 by setting bits PS2:PS0 to 010. Also assume that
the value loaded into the timer register TMR0 is decimal 100. The overflow
time is then given by:

4MHz clock has a period, T = 1/f = 0.25s

using the below formula;

Overflow time = 4 TOSC Prescaler (256 – TMR0)

Overflow time = 4 0.25 8 (256 – 100) = 1248s

Thus, the timer will overflow after 1.248msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

138

What we normally want is to know what value to load into the
TMR0 register for a required overflow time. This can be calculated by
modifying Equation (1.1) as follows:

TMR0 = 256 – (Overflow time) / (4 TOSC Prescaler) (1.2)

For example, suppose we want an interrupt to be generated after
500ms and the clock and the prescaler values are as before. The value to be
loaded into the TMR0 register can be calculated using Equation (1.2) as
follows:

TMR0 = 256 – (500) / (4 0.25 8) = 193.5

The closest number we can load into TMR0 register is 193.

The common application of the Timer0 module is as an instruction
cycle counter in implementing delay loops. Timer0 register is also called a
free running timer. There are two advantages of using free running timers
over conventional delay loops: the Prescaler provides a way of slowing
down the count, and the delay is independent of the number of machine
cycles in the loop body. In most cases, it is easier to implement an accurate
time delay using the Timer0 module than by counting instruction cycles [6].
Calculating the time is taken by each counter iteration that consists of
dividing the clock speed by four. For example, a PIC is running on a 4 MHz
oscillator clock increment the counter every 1 MHz. If the Prescaler is not
used, the counter register is incremented at a rate of 1 µs; the timer beats at a
rate of 1,000,000 times per second. If the Prescaler is set to the maximum
divisor value (256) then each increment of the timer takes place at a rate of
1,000,000/256 µs, which is approximately 3.906 ms (exact value:
3.906.25ms). Since this is the slowest possible rate of the timer in a machine
running at 4 MHz, it is often necessary to employ supplementary counters in
order to achieve larger delays [6].

Feyzi AKAR & Özdemir ÇETİN

139

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

140

Overflow time = 4 TOSC Prescaler (256 – TMR0)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms. 4MHz clock has a period,
 T = 1/f = 0.25s

Prescaler : Prescaler is the Prescaler value.
 (TMR0 Rate: 1:1)

TMR0 : TMR0 is the value loaded into
 TMR0 Register. (00h)

Feyzi AKAR & Özdemir ÇETİN

141

For example, assume that we are using a 4MHz crystal, and the
Prescaler is chosen as 1:1. To achieve a 1:1 Prescaler assignment for the
TMR0 register, assign the Prescaler to the Watchdog Timer (OPTION_REG
<3> PSA=1) [7,8].

Also assume that the value loaded into the timer register TMR0 is
00h. The overflow time is then given by: using the below formula;

Overflow time = 4 TOSC Prescaler (256 – TMR0)

Overflow time = 4 0.25 1 (256 – 0) = 256 s

Thus, the timer will overflow after 0.256 msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled
[7,8,9].

256s 0F42h =
256s 3.906 = 999.936s

256s 0F43h =
256s 3.907 = 1.000.192s

Error values of the TMR0 are zero for every four seconds in Timer0;
this situation can be shown in below.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

142

Feyzi AKAR & Özdemir ÇETİN

143

Overflow time = 4 TOSC Prescaler (256 – TMR0)

Where;
Overflow time: Overflow time is in ms.
TOSC : TOSC is the oscillator period

 in ms. 4MHz clock has a period,
 T = 1/f = 0.25s

Prescaler : Prescaler is the Prescaler value.
 (TMR0 Rate: 1:2)

TMR0 : TMR0 is the value loaded into
 TMR0 Register. (00h)

For example, assume that we are using a 4MHz crystal, and the
prescaler is chosen as 1:2 by setting bits PS2:PS0 to 000. Also assume that
the value loaded into the timer register TMR0 is 00h. The overflow time is
then given by:

4MHz clock has a period, T = 1/f = 0.25s

using the below formula;

Overflow time = 4 TOSC Prescaler (256 – TMR0)

Overflow time = 4 0.25 2 (256 – 0) = 512s

Thus, the timer will overflow after 0.512msec, and a timer interrupt
will be generated if the timer interrupt and global interrupts are enabled. To
achieve a 1:2 prescaler assignment for the TMR0 register, assign the
prescaler to the Timer0 (OPTION_REG <3> PSA=0).

512s 07A1h =
512s 1.953 = 999.936s

512s 07A2h =
512s 1.954 = 1.000.448s

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

144

2.2 Implementation of One-Second-Timer Control Algorithm

This study contains a novel accurate timer method that can be used
for generating regular of zero-error one-second period. Time functions have
crucial importance in many control systems. This may manifest itself in the
measurement of duration, event counting or control of an external physical
event for known periods. Timing errors, which can be measured with
microseconds in interrupt subroutine that can be, bring about irretrievable
results in control applications. The objective of this research is to propose a
new algorithm and implementation its application for generating zero-error
one-second period with PIC Microcontrollers that uses an interrupt to carry
out accurate timing-related operations inside the microcontroller.
In Fig. 2.1 and 2.3, flowchart of the one-second timer control algorithms is
presented with two distinct approaches respectively. Ultimate aim is to reset
the error rate at the end of the fourth and eighth second.

Feyzi AKAR & Özdemir ÇETİN

145

Figure 2.1 Flowchart of the One-Second Timer control algorithm, 4-seconds step.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

146

Figure 2.2 Flowchart of the One-Second-Timer control algorithm with asm codes.

Feyzi AKAR & Özdemir ÇETİN

147

3. CONCLUSION

Figure 2.3 Flowchart of the One-Second Timer control algorithm, 8-seconds step.

Implementation Of The Zero-Error One Second Timing Algorithm For
Microcontroller

148

In this paper, we have proposed two new zero-error one-second
timer control algorithms based on PIC micro. In this proposed algorithms,
the total error rate is zero at the each end of the fourth and eighth seconds by
the system, which makes this study distinctive in the literature. The
objective of this research is to propose a new algorithm and implementation
its application for generating zero-error one-second period with PIC
Microcontrollers that uses an interrupt to carry out accurate timing-related
operations inside the microcontroller.

REFERENCES
[1] Dogan Ibrahim, Advanced PIC Microcontroller Projects in C, ISBN-13: 978-0-7506-
8611-2, Elsevier, 2008.
[2] PICmicro™ Mid-Range MCU Family Reference Manual, DS33023A, Microchip
Technology Inc.,1997
[3]. PIC16F87XA, Data Sheet- DS39582B, Microchip Technology Inc., 2003.
[4] PIC16F62X, Data Sheet- DS40300C, Microchip Technology Inc., 2003.
[5] PIC16F84A, Data Sheet- DS35007B, Microchip Technology Inc., 2001.
[6] Julio Sanchez, Maria P. Canton Microcontroller
Programming The Microchip PIC
CRC Pres, 2007
[7] Feyzi Akar, Mustafa Yağımlı, PIC Mikrodenetleyiciler, 16F84A & 16F628A, Beta
Yayınevi, 2006
[8] Feyzi Akar, Mustafa Yağımlı, PIC 16F877A Proje Tasarımı, Beta Yayınevi, 2007
[9] John Iovine, PIC Microcontroller Project Book, McGraw-Hill, 2000.
[10] Charles Kim, Embedded Computing with PIC 16F877 – Assembly Language
Approach, 2006
[11] Microchip Technology http://www.microchip.com

