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Abstract – The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we 

introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate 

some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative 

KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous 

map of this topological space.   
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1. Introduction 
 

The Zariski topology on the spectrum of prime ideals of a commutative ring is one of the 

main tools in Algebraic Geometry. Atiyah and Macdonald [1] introduced the spectrum 

)(RSpc  of a ring R  as the following: for each ideal I of R , }:)({)( PIRSpecPIV  , 

then the set )(IV  satisfy the axioms for the closed sets of a topology on )(RSpc , called the 

Zariski topology. Also, the notion of a spectrum of modules has been introduced by many 

authors see [2, 5, 6 and 7]. Prabpayak and Leerawat [11] introduced a new algebraic 

structure which is called KU-algebras. They introduced the concept of homomorphisms of 

KU-algebras and investigated some related properties. In [3, 4, 12 and 13], the authors 

introduced topologies on the set of all prime ideals by different way. In this paper, we study 

the relationship between a KU-algebra and topological space by the notion of the Zariski 

topology. We give the new concept of KU-lattice, involutory ideal and prime ideal of a 

KU-algebra X  and discuss some properties which related to these concepts. Consequently, 
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we show that )(XSpc  of a KU-algebra X  is a compact and disconnected space. Also, we 

study some of separation axioms and continuous map of this topological space.  

 

2. Preliminaries 

 
Now we recall some known concepts related to KU-algebra from the literature which will 

be helpful in further study of this article. 
 

Definition 2.1 [11]. Let X  be a nonempty set with a binary operation and a constant 0 . 

The triple )0,,( X is called a KU-algebra, if the following axioms are satisfied. For all 

Xzyx ,, . 

( 1ku )  0)]())[()(  zxzyyx . 

( 2ku  )  00 x . 

( 3ku )  xx 0 . 

( 4ku ) 0 yx  and 0 xy  implies yx  . 

( 5ku ) 0 xx . 

 

On a KU-algebra X, we can define a binary relation   on X  by putting 0 xyyx . 

Then ),( X is a partially ordered set and 0 is its smallest element. Thus )0,,( X satisfies 

the following conditions. For all Xzyx ,, , we that 

 ( \1
ku ) )()()( yxzxzy     

 ( \2
ku ) x0    

 ( \3
ku ) xyyx  ,  implies yx  , 

( \
4

ku )   xxy  . 

 

Theorem 2.2 [8]. In a KU-algebra X . The following axioms are satisfied. 

For all Xzyx ,, , 

 (1)  yx  imply zxzy  , 

 (2) )()( zxyzyx  , 

 (3) yxxy  ))(( . 

 

Definition 2.3 [11]. A non-empty subset I  of a KU-algebra X  is called an ideal of X  if 

for any Xyx , , then  

(i) I0  and 

(ii) Ixyx  ,  imply Iy . 

  

Definition 2.4 [9].  A KU-algebra X is said to be KU-commutative if it satisfies 

yyxxxy  )()( , for all yx,  in X . 

 

Lemma 2.5 [9]. If X  is KU-commutative algebra, then for any distinct elements 

Xzyx ,, , )()()( zxyxzyx   . 
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Definition 2.6. If there is an element   of a KU-algebra X  satisfying x  for all Xx , 

then the element   is called unit of X . A KU-algebra with unit is called  bounded. In a 

bounded KU-algebra X , we denote x  by xN . It is easy to see that ENNE  0,0 . 

 

Example 2.7. Let  dcbaX ,,,,0  be a set with a binary operation   defined by the 

following table. 

 

 

 

 

 

 

 

 

 

 

 
 

Using the algorithms in Appendix, we can prove that (X, *, 0) is a KU-algebra and by 

routine calculations, we can see that X  is a bounded KU-algebra with unit "d". 

 

Theorem 2.8. For a bounded KU-commutative algebra X , we denote )( yx NNNyx    and 

for all ,, Xyx   we have            

(a) xN
xN  , 

(b) ,)( yxyx NNN   ,)( yxyx NNN    

(c) yx  implies xy NN  . 

(d) xxE  , 

(e) EEx  . 

 

Proof. The proof is straightforward.  

 

Definition 2.9. A partially ordered set ),( L  is said to be a lower semilattice if every pair 

of elements in L  has a greatest lower bound and it is called to be an upper semilattice if 

every pair of elements in L  has a least upper bound. If L is a lattice, then we define 

},glb{ yxyx  and },lub{ yxyx  . A lattice L  is said to be distributive if it satisfies 

the following conditions. For all Lzyx ,,  

(1) )()()( zxyxzyx  , 

(2) )()()( zxyxzyx  . 

 

Theorem 2.10. Every KU-commutative algebra X  is a KU-lower semilattice with respect 

to ),( X . 

 Proof. Suppose X is a KU-commutative algebra. We know that xyx  and   yyx   . 

Let z be any element of X such that xz  and yz  , then 0 zyzx  (by Definition of 

 ), so we have that
   itycommutativ

xxzzzxzz  )()(0 . 

 

  0 a b c d e 

0 0 a b c d e 

a 0 0 b c b c 

b 0 a 0 b a d 

c 0 a 0 0 a a 

d 0 0 0 b 0 b 

e 0 0 0 0 0 0 
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By the same reason we have yyzz  )( , and hence 

yxxxyxxyyzxxzz  )()))((()( , thus yx  is the greatest KU- 

lower bound and so ),( X is a KU-lower semilattice. 

 

 The converse of this theorem may not be true. For example, in Example 2.7 we have that 

X is a lower semilattice, but aacaacccca  )(00)( . 

 

Theorem 2.11. Any bounded KU-commutative algebra X with respect to ),( X  is a KU- 

lattice. 

 

Proof. Since xyx NNN  and yyx NNN   , from Theorem 2.8 we have that 

yxNNx
yxx NNN  

 )(  and yxNNy
yxy NNN  

 )( . 

This shows that yx  is a common upper bound of x  and y . Now, by Theorem 2.8 if 

zx  and zy  , then xz NN  and yz NN   . It follows that yxz NNN   , therefore 

zyx NNN NN  )(  and zyx  . Hence  yx  is a least upper bound of x  and y , i.e. ),( X is 

a KU-upper semilattice. By using Theorem 2.10 and this Theorem, we obtain ),( X is a 

KU-lattice.  
 

Definition 2.12. Let X  be a KU-algebra and A  a nonempty subset of X . The ideal of 

X generated by A is denoted by AaaXxA n  ,...,:{ 1  such that }0)((...( 1  xaa n , if 

A . We have that }0{ . 
 

Definition 2.13. Let X be KU-commutative algebra and A  a subset of X . Then we define 

0:{  xaXxA  for all }Aa and call it the KU-annihilator of A . 

 

We write 
A in place of 

)(A . Note that A is a nonempty since  A0 . Obviously we 

have }0{X and X
}0{ . If A is an ideal it is easy to see that }0{AA . We 

observe that if   Ax then 0 xa  for all Aa . It follows that 0)(  aax  then 

axa   and 0)(  axa , hence aax   which implies that axa  . Thus  Ax if 

and only if axa   for all Aa . Moreover if X  is commutative, then  Ax if and only 

if axa   for all Aa .  

 

 If }{aA  , then we write 
)(a instead of 

})({a . 

 

Example 2.14. Let },,,,,0{ edcbaX   be a set with a binary operation   defined by the 

following table. 

 

It is easy to show that X is a bounded KU-commutative algebra. If },{ cbA  , then 

},0{ aA  . 

 

Definition 2.15. An ideal A  of a KU-commutative algebra X is said to be involutory if 
 AA . Moreover a KU-commutative algebra X is said to be involutory if every ideal of 

X is involutory. 
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Clearly }0{ and X are involutory ideals. 

 

Remark 2.16. In involutory KU-commutative algebra X , for any two ideals BA,  of X , we 

have that   BABA  )( . 

 

Lemma 2.17. Let X  be involutory KU-commutative algebra. Then  AAX  for any 

ideal A of X . 

 

Proof. Note that }0{AA . By Remark 2.16 and note X  is involutory, we have 

XAAAAAA   

)0()(  .  

 

Definition 2.18. A KU-algebra X is said to be KU-positive implicative if it satisfies that 

)()()( yxzyzxz  , for all zyx ,,  in X .  

 

Definition 2.19. A nonempty subset I of a KU-algebra X is said to be a KU-positive 

implicative ideal if for all zyx ,,  in X , then 

(1) I0  and 

(2) Iyxz  )( and Ixz  imply Iyz  . 
 

Theorem 2.20. If we are given an ideal I of a KU-algebra X , then I is a KU-positive 

implicative if and only if, for any Xa  the set }:{ IxaXxAa  is an ideal of X . 

 

Proof. )(  Suppose that I is positive implicative ideal and aAyx  )( and aAx . Then 

Iyxa  )( and Ixa  . By Definition 2.19 we obtain Iya  )(  i.e. aAy . This says 

aA is an ideal. 

 

)(  Suppose that aA is an ideal of X , for any Xa  . If Iyxz  )( and Ixz  , then 

zAyx  )( and zAx . Since zA is an ideal of X  then zAy and Iyz  . This means that 

I is positive implicative ideal.  
 

Corollary 2.21. If I is a KU-positive implicative ideal of X , then }:{ IxaXxAa   is 

the least ideal containing I and a , for any Xa . 
 

Definition 2.22. A nonempty subset I of a KU-algebra X is said to be a KU-implicative 

ideal if for all zyx ,,  in X , then 

(1) I0  and 

(2) Ixyxz  ))(( and Iz imply Ix . 
 

Definition 2.23.  A proper ideal I of a KU-algebra X is called a maximal ideal if and only 

if XAI  implies that AI  or XA  , for any ideal A of X . 
 

Theorem 2.24. If  I  is an ideal of a KU-algebra X . Then the following statements are 

equivalent. 

(a) I is maximal and KU-implicative ideals, 

(b) I is maximal and KU-positive implicative ideals, 

(c) Iyx , implies Iyx  and Ixy  for all yx,  in X . 
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Proof. (a) (b). Suppose that I is KU-implicative ideal and Iyxz  )( , Ixz  . Since 

Iyxzyzxyzzxz  )()())(()(  then Iyzzxz  ))(()( and Ixz  . 

I is an ideal, we have that Iyzz  ))(( . It follows that 

Iyzzyzyyz  )()())((  and .))()))(((0 Iyzyyz   Combining I0  

we obtain Iyz  . Hence I is KU-positive implicative ideal.  

 

(b)  (c). Let Iyx , . Since I is KU-positive implicative. By Corollary 2.21 

}:{ IyuXuAy  is the least ideal containing I and y . Using maximality of I we 

have that XAy  . Hence yAx , that is Iyx  . Likewise for Ixy  . 

 

(c)  (a) At first we prove that I is KU-implicative. Suppose I does not KU implicative, 

then there are yx,  in X such that Ixyx  )( but Ix . If Iyx  , combining 

Ixyx  )( we get Ix . This contradicts to Ix . If Iyx  , by (c) we have 

Iy as Ix . By \
4

ku , we have yyx  , we get Iyx  . This contradicts to Iyx  . 

Hence I  is KU-implicative. Next we prove that I is maximal. Note that I is also KU-

positive implicative. Hence it is sufficient to prove that for any Ia we have 

XIaxXxAa  }:{ . By Corollary 2.21, aA is the least ideal containing I and a .  

For all x  in X , when Ix  then aAx and when Ix , by Ia and (c) we have that  

Iax   i.e. aAx . This means that XAa  . Therefore I is maximal ideal of X .  
 

Definition 2.25. Let X  be a KU-lower semilattice and P a proper ideal of X . Then P is 

said to be a prime ideal if Pba   implies  Pa  or Pb , for any ba,  in X . 
 

Theorem 2.26. In a KU-lower semilattice X , a proper ideal P of X is said to be a prime if 

PBA   implies  PA  or PB , for any ideals BA,  in X . 

 

Proof. Suppose that PBA  , PA and PB  for some two ideals BA,  in X . 

Thus there exist a and b such that PAa  and PBb  . From aba   and bba   

it follows that BAba , and PBAba   . This contradicts to primness of P . 

Hence PA  or PB .  
 

Theorem 2.27. If X  is a KU-implicative algebra, then each prime ideal of X is maximal. 

 

Proof. Suppose that P is prime ideal and Pba , . Since X is KU-implicative, then   

Paaaababaa  0))(()( . Noticing Pa , we have Pba  . By the same 

way we get Pab  . Hence P is maximal ideal by Theorem 2.24.  
 

 

Lemma 2.28. Let X  be a KU-lower semilattice. If nxa  and mxa  for natural numbers n  

and m , then there exists a natural number p such that pyxa )(   , for any Xayx ,, . 

 

Proof. Since for nm  , mxa  implies nxa  , it suffices to verify that when 

0 ayax nn , there exist a natural number p such that 0)(  ayx p . We proceed 

by induction on n . When 1n , we have 0 ayax , xa   and ya  .  Hence 

yxa   , i.e., 0)(  ayx  . 
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Now suppose the assertion holds for natural number n , that is, 0 ayax nn  implies 

that there exists a natural number p such that 0)(  ayx p . 

 

If 011   ayax nn , then ))(((0 1 axyxax nnn  

. 

 

By the same argument we have )((0 axyy nn  . In view of the first step of induction 

we get 

 

 0)(()(  axyyx nn , 0))((((  ayxxy nn  , 0)))((((( 1   ayxyxx nn  . 

 

From 01  ayn . It easily follows that 0)))((((( 1   ayxyxy nn  . Hence 

0))((( 21  ayxyx nn   . Repeating the above procedure n times we obtain 

)1.(..........0))(( 1   ayxy nn  . By an entirely similar way we have that  

 

)2.(..........0))(( 1   ayxx nn  . By the induction hypothesis and (1), (2), we know that 

there is a natural number p such that 0))(()( 1   ayxyx np  , 0)( 1   ayx pn .  
 

 

Corollary 2.29. Let X  be a KU-lower semilattice and P an ideal in X . Then for any  

Xyx ,  if Pyx  , then PyPxP  }{}{  . 
 

Definition 2.30. Let X  be a KU-lower semilattice. A nonempty subset S  of X is said to be 

 -closed if Syx   whenever Syx , . 
 

Theorem 2.31. Let X be a KU-lower semilattice and S a nonempty -closed subset 

of X such that S0 , )(XI  denotes the set of all ideals of X  then }:)({  SIXII   

have a maximal ideal P such that SP . Moreover P is a prime ideal. 

 

Proof. The existence of an ideal P easily follows from Zorn's lemma. We will prove that 

P is a prime ideal. Let us suppose it is not the case, i.e., there exist Xyx , such that 

Pyx  , Px  and Py . Then P is properly contained in both 

1}{ PxP   and 2}{ PyP   . Because of maximality of P , SP 1 and SP 2 . 

Let 2,1,  iSPs ii  . We known 2,1,21  isss i
 implies PPPss  2121  (by 

Corollary 2.29). On the other hand Sss  21
 . This is a contradiction. Hence P is a prime 

ideal.  

 

Theorem 2.32. In a KU-lower semilattice X . Any maximal ideal must be prime.  

 

Proof. By using Theorem 2.31 and Corollary 2.29, we obtain the result. 
 

Definition 2.33. Let I be an ideal of a KU-algebra X . We will call an ideal J  of X a 

minimal prime ideal associated with the ideal I if J is a minimal element in the set of all 

prime ideals containing I . 
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Lemma 2.34. Let I be a proper ideal of a KU-lower semilattice X .Then  

(a) I is contained in a prime ideal, 

(b) Any prime ideal containing I contains a minimal prime ideal associated with the 

ideal I . 

 

Proof. If I is a prime ideal, then the Lemma is true. Let us suppose that I is not a prime 

ideal and IXa  . Obviously, }:{ xaXxS  is a nonempty,  -closed and S0 . By 

Theorem 2.31, there exists a prime ideal P such that SP . (a) holds. 

 

To show (b) it is sufficient to show that the intersection of any chain of prime ideals is a 

prime ideal. Let }:{ iPi be a chain of prime ideals of X and }:{  iPP i . Suppose 

that P is not a prime ideal, that is, there are Xyx , such that PyPxPyx  ,, . 

Thus, there are ji,  such that ji PyPx  , . Without loss of generality we can assume 

that ji PP  , ii PyPx  ,  and iPPyx   . This contradicts to iP being a prime.  

 

3. Topology Spectrum of KU-commutative algebra X  
 

In this section, we define the notion of a spectrum of KU-commutative algebra X  and 

study some of its properties.  

 

Definition 3.1. Let X be KU-commutative algebra and )(XSpec  the set of all prime ideals 

of X . Then for any ideal A of X , we define }|)({)( PAXSpecPAW   . 
 

Proposition 3.2. Let X  be KU-commutative semilattice algebra. Then  

(i) BA  implies that )()( BWAW  , for any ideals BA, of X , 

(ii) )()(  AWAW .  

 

Proof. (i) Let )(AWL  LA . Since BA   )(BWL .  Hence )()( BWAW  . 

(ii) Since  AA  from (i) we get that )()(  AWAW . Let )(  AWP  PA   and 

since  AA then PA , )(AWP  it follows that 

)()( AWAW  . Hence )()(  AWAW .  
 

Theorem 3.3. Let X be KU-commutative algebra. Then the family 

)()}({)( XIAAWXT  forms a topology on )(XSpec  . 

 

Proof.  })0(:)({)0( PXSpecPW  and 

)(}:)({)( XSpecPXXSpecPXW  . For any family IiiAW )}({  

PAXSpecPAW i

Ii

i 


:)({)( for some }:)({} PAXSpecPA
Ii

ii 


  

)(}:)({ 



Ii

i

Ii

i AWPAXSpecP  implies that )()( XTAW
Ii

i 


 . 

Finally, }:)({}:)({)()( PBXSpecPPAXSpecPBWAW    

                                      PAXSpecP  :)({ and }PB . 

 

Since P is a prime ideal, therefore can be written as  
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)(}:)({)()( BAWPBAXSpecPBWAW   , i.e., )()()( XTBWAW  . Hence 

)(XT is a topology on )(XSpec , this topology will be called the spectrum topology. 
 

Example 3.4. In Example 2.14. By using the algorithms in Appendix A, we can found that 

}},,0{},,0{},0{,{ cbaX  is the set of all ideals. Note that }},,0{,},0{{ cba  is the set of all 

prime ideals of X and }},,0{},,0{{)( cbaXSpec  . Therefore )}(,{)( XSpecXT   this is 

the indiscrete topology. 
 

Definition 3.5. For any )(XIA  we denote the complement of )(AW by )(AV . Hence 

}|)({)( PAXspecPAV  , it follows that the set )()}({ XIAAV  is the family of the 

closed sets of a topological space )(XSpec . 
 

Remark 3.6. For any Ax  we denote })({xV  by )(xV and })({xW  by )(xW , i.e.  

}|)({)( PxXspecPxV   and }|)({)( PxXspecPxW  . 

 

Now, we give some properties of the topological space )(XSpec .  
 

Theorem 3.7.  Let X  be a KU-commutative semilattice.  The family AxxW )}({ is a basis 

for the topology of )(XSpec . 

 

Proof. Let XA  and )(AW an open subset of )(XSpec , then 


AxAx

xWxWAW


 )()}{()( . Hence, any open set of )(XSpec is union of subsets from the 

family AxxW )}({ . 
  

Theorem 3.8. Let X  be a KU-lower semilattice and A a proper ideal of X . Then A is equal 

to the intersection of all minimal prime ideals associated with it. 

 

Proof.  Denote PXIPAJ :)({)(   is a prime ideal and associated with }A . 

 

It is clearly )(AJA . We will show that AAJ )( . Let us suppose that it is not the case, 

then there is )(AJa and Aa . As in the proof of Lemma 2.34, we can show that if 

}:{ xaXxS  , then there exists a prime ideal P such that PA and SP . The 

existence of such a prime ideal P contradicts to the assumptions. Hence AAJ )( .   
 

Lemma 3.9. The mapping )()(: XTXIf   given by )()( AWAf   is a lattice 

isomorphism. 

 

Proof. By Theorem 3.3 of )(AW  , it follows that f  define a lattice homomorphism. We 

only show that f is one to one and onto. For any ideals )(, XIBA  . Suppose that 

)()( BfAf   then )()( BWAW   and )()()()( BWXSpecAWXSpec  . Consequently, 

)()( BJAJ  , hence BA  , it follows that f  is one to one and onto. Hence )(XI  and 

)(XT  are isomorphic.   
 

Proposition 3.10. If X is a bounded KU-commutative algebra, then )(XSpec is a compact 

space. 
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Proof. Let IiiAW )}({ be an open cover of )(XSpec . Then 

)()()( 



Ii

i

Ii

i AWAWXSpec . By injectiveness of W (Lemma3.9) implies that 

XA
Ii

i 


 . Since X is a bounded  



Ii

iA  and hence 0))((...(( 21  naaa . 

We may assume that ik Aa  for nk ,...,2,1 , then 
n

k

ik k
Aa

1

 for all nk ,...,2,1 . This 

implies that 



n

k

ik
A

1

 and hence XA
n

k

ik





1

(because no proper ideal contains ). This 

shows that )()()()()(
111

XSpecXWAWAWAW
n

k

i

n

k

i

n

k

i kkk




 . Thus we obtain a 

finite Sub cover and consequently, )(XSpec is compact.            
 

Proposition 3.11. Let X be KU-commutative algebra. Then )(XSpec is 0T  topological 

space. 

 

Proof. Let P  and Q  be any two distinct prime ideals in )(XSpec . Then either QP or 

PQ . If QP , there exists Px  such that )(xWQthatimplieswhichQx  and 

)(xWP . Therefore exists an open set )(xW containing Q but not P . Similarly, if PQ . 

There exists Qx such that )(, xWQthatimplieswhichPx  and )(xWP . Therefore 

exists an open set )(xW containing P but notQ . Hence )(XSpec is a 0T -space. 
  

Proposition 3.12. If  X  is a KU-implicative algebra. Then )(XSpec is 1T  topological 

space. 

 

Proof. If )(,)( XSpecthenXSpec   is trivial space and it is a 1T space.  

 If )(XSpec , then there exist a prime ideal P of )(XSpec . It follows by Theorem 2.27 

that P is a maximal ideal.  Hence }{)( iPV   and }{i is closed set in )(XSpec , i.e. 

)(XSpec is a 1T space.  
 

Proposition 3.13. If A is an involutory ideal of X and )(XSpecP , then )(
 AWP if and 

only if )(AWP . 

 

Proof. If )(
 AWP , then PA  . Since A  is an involutory ideal of X , therefore by 

Lemma 2.17  AAX   and hence PA . This implies that )(AWP . 

Conversely, assume that )(AWP  then PA . Since PAA 
}0{  and P is a prime 

ideal. Therefore by Theorem 2.26 PA or PA  , but PA . It follows that PA  and 

consequently we have )(
 AWP . 

 

Proposition 3.14. Let X  be an involutory KU-algebra with at least one involutory ideal 

(proper). Then )(XSpec is a disconnected topological space. 

 

Proof. Let A be an involutory (proper) ideal of X . We claim that )(AW and )(
AW form 

disconnection of )(XSpec . That )(AW and )(
AW mutually exclusive, follows from 
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Proposition 3.13. We show that )()()(
 AWAWXSpec  . Indeed A is an involutory ideal, 

then  AAX  . This implies that     

 

             )()()()()(
  AWAWAAWAAWXW  .  

 

This means that )()()(
 AWAWXSpec  and consequently )(XSpec is a disconnected 

space.  

 

Proposition 3.15. If X is an involutory KU-algebra, then )(XSpec is Hausdorff space. 

 

Proof. Let P and Q  be any two distinct prime ideals in )(XSpec . Then there exists an 

element x  in X such that Px and Qx . This implies that Px   and Qx  . In 

other word )(  xWP  and )(  xWQ . By Proposition 3.13, we have )(
 xWP . Thus 

we obtain two open sets )( xW and )(
xW such that )(

 xWP and )(  xWQ . It 

follows that  
)0()()()( WxxWxWxW  . Hence )(XSpec is Hausdorff 

space.  
 

Corollary 3.16. If X is a bounded involutory KU-algebra, then )(XSpec is normal space. 
 

Definition 3.17 [4]. Let )0,,( G and )0,,( H be KU-algebras. A homomorphism is a map 

HGh : satisfying )()()( yhxhyxh  for all Gyx , . An injective homomorphism is 

called monomorphism and a surjective homomorphism is called epimorphism. 
 

Proposition 3.18. Let )0,,( G and )0,,( H be KU-algebras and HGh :  a 

homomorphism map of KU-algebras, then for any prime ideal P of H . The ideal 

})(:{)(
1 PxhGxPh   is also a prime ideal ofG . 

 

Proof. Let )(
1 Phyx   for any Gyx , , then  

.)()()())()((

)()(sm)homomorphi(by ))(()()( 1

PyhxhPxhxhyh

PxhxyhPxxyhPhxxy



 


 

Since P is prime Pxh  )(  or Pyh )(   

)(
1 Phx   or )(

1 Phy   . Hence )(1 Ph  is prime ideal of G .   
 

Theorem 3.19. Let )0,,( G , )0,,( H be KU-algebras and HGh :  a homomorphism map 

of KU-algebras. If SpecGSpecH : , define by )()( 1 PhP   for any SpecHP , then 

  is continuous map. 

 

Proof. Let )(xW  be a basic open set in )(GSpec , for any Gx . Then  

 

  )}()(:{))((
1 xWPSpecHPxW    

                    )}()(:{
1 xWPhSpecHP    

                    )}(:{
1 PhxSpecHP   

                    })(:{ PxhSpecHP  , which is open in )(HSpec . 
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Thus the inverse image of any open set in )(GSpec  is open in )(HSpec  and hence  is a 

continuous map.  

 

4. Conclusion 
 

This work is a study of the relationship between the KU-algebras and topological spaces. 

We introduced the topology spectrum of a commutative KU-algebra and we obtained some 

results that were different from the topology spectrum of commutative ring. However, there 

are differences because KU-algebras are not rings. We proved that the spectrum of KU-

algebra is compact, disconnected and Hausdorff space. Also, we studied the continuous 

map of this topological space. The main purpose of our future work is to investigate the 

fuzzy topology of KU-algebras, which may have a lot of applications in different branches 

of mathematics. 
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Appendix  Algorithms 

 

Algorithm for KU-algebras  

Input ( :X set, : binary operation) 

Output (“ X is a KU-algebra or not”) 

Begin 

If X  then go to (1.); 

EndIf 

If X0  then go to (1.); 

EndIf 

Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

If 0 ii xx  then 

Stop: = true; 

EndIf 

1:j  

While Xj   and not (Stop) do 

If 0))((  iij xxy  then  

Stop: = true; 

EndIf 

EndIf 

1:k  

While Xk   and not (Stop) do 

If 0))()(()(  kikjji zxzyyx  then  

Stop: = true; 

     EndIf 



Journal of New Theory 5 (2015) xx-yy                                                                                                            90 
 

   EndIf While 

 EndIf While 

EndIf While 

If Stop then  

 

(1.) Output (“ X is not a KU-algebra”) 

Else  

   Output (“ X is a KU-algebra”) 

     EndIf 

End 

 

Algorithm for ideals 

 

Input ( :X KU-algebra, :I subset of X ); 

Output (“ I is an ideal of X  or not”); 

Begin 

If I  then go to (1.); 

EndIf 

 If I0  then go to (1.); 

EndIf 

Stop: =false; 

1:i ; 

While Xi   and not (Stop) do 

1:j  

While Xj   and not (Stop) do 

If Iyx ji  )( and Ixi   then  

If Iy j   then 

    Stop: = true; 

          EndIf 

       EndIf 

    EndIf While 

 EndIf While 

EndIf While 

If Stop then  

Output (“ I is an ideal of X ”) 

Else  

(1.) Output (“ I is not an ideal of X ”) 

     EndIf 

End 
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