PAPER DETAILS

TITLE: Topological Mappings via B?g-Closed Sets

AUTHORS: Raja MARUTHAMUTHU, Seenivasagan NARAYANASAMY, Ravi OTCHANATHEVAR

PAGES: 78-85

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/444797

Received: 21.12.2017 Year: 2018, Number: 21, Pages: 78-85

Published: 20.03.2018 Original Article

Topological Mappings via $B\delta q$ -Closed Sets

Raja Maruthamuthu^{1,*} Seenivasagan Narayanasamy² Rayi Otchanatheyar³ <rajamayil@gmail.com>

 $<\! {\rm vasagan2000@yahoo.co.in} \!>$

ISSN: 2149-1402

<siingam@yahoo.com>

Abstaract — In this paper we introduce a new class of functions called $B\delta g$ -continuous functions. We obtain several characterizations and some their properties. Also we investigate its relationship with other types of functions. Further we introduce and study a new class of functions namely $B\delta g$ -irresolute.

Keywords — $B\delta g$ -closed set, δ -continuous function, $B\delta g$ -continuous function, $B\delta g$ -irresolute function.

1 Introduction

Levine [6], Noiri [10], Balachandran et al [2] and Dontchev and Ganster [3] introduced generalized closed sets, δ -continuity, generalized continuity and δ -generalized continuity (beiefly δg - continuity) & δ -generalized irresolute functions respectively. Devi et al [2] and Veerakumar [12] introduced semi-generalized continuity and \hat{g} -continuity in topological spaces. The purpose of this present paper is to define a new class of generalized continuous functions called $B\delta g$ -continuous functions and investigate their relationships to other generalized continuous functions. We further introduce and study a new class of functions namely $B\delta g$ -irresolute.

2 Preliminaries

Throughout this paper (X, τ) and (Y, σ) and (Z, η) represent non-empty topological spaces on which no separation axioms are assumed unless or otherwise mentioned.

 $^{{}^1}Research\ Scholar,\ Bharathidhas an\ University,\ Tiruchirappalli,\ Tamil\ Nadu,\ India.$

²Department of Mathematics, Govt. Arts College, Kumbakonam, Tamil Nadu, India. ³Controller of Examinations, Madurai Kamaraj University, Madurai, Tamil Nadu, India.

^{*} Corresponding Author.

For a subset A of X, cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A respectively.

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a space (X,τ) is called a

- (i) semi-open set [5] if $A \subseteq cl(int(A))$.
- (ii) pre-open set [7] if $A \subseteq int(cl(A))$.
- (iii) α -open set [9] if $A \subseteq int(cl(int(A)))$.

The complement of a semi-open (resp. pre-open, α -open) set is called semi-closed (resp. semi-closed, α -closed).

Definition 2.2. The δ-interior [11] of a subset A of X is the union of all regular open sets of X contained in A and is denoted by $int_{\delta}(A)$. The subset A is called δ-open [11] if $A = int_{\delta}(A)$, i.e. a set is δ-open if it is the union of regular open sets. The complement of a δ-open set is called δ-closed. Alternatively, a set $A \subseteq (X,\tau)$ is called δ-closed [11] if $A = cl_{\delta}(A)$, where $cl_{\delta}(A) = \{x \in X : int(cl(U)) \cap A \neq \phi, U \in \tau \text{ and } x \in U\}$.

Definition 2.3. [11] A subset A of a space (X, τ) is called a

- (i) t-set if int(A) = int(cl(A)).
- (ii) B-set if $A = G \cap F$ where G is open and F is a t-set in X.

Definition 2.4. A subset A of (X,τ) is called

- (i) generalized closed (briefly g-closed) set [6] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X,τ) .
- (ii) generalized semi-closed (briefly gs-closed) set [1] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in (X,τ) .
- (iii) α generalized closed (briefly αg -closed) set [2] if $\alpha \operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (iv) δ -generalized closed (briefly δg -closed) set [3] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- (v) \hat{g} -closed set [12] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi-open in (X,τ) .
- (vi) δ - \hat{g} -closed (briefly $\delta \hat{g}$ -closed) set [4] if $cl_{\delta}(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X,τ) .
- (vii) $B\delta$ -generalized closed (briefly $B\delta g$ -closed) set [8] if $cl_{\delta}(A) \subseteq U$ whenever A $\subseteq U$ and U is B-set in (X,τ) .

The complement of a g-closed (resp. gs-closed, αg -closed, δg -closed, \hat{g} -closed, \hat{g} -closed, $B\delta g$ -closed) set is called g-open (resp. gs-open, αg -open, δg -open, \hat{g}

Definition 2.5. A function $f:(X,\tau)\to (Y,\sigma)$ is called

- (i) semi-continuous [5] if $f^{-1}(V)$ is semi-closed in (X, τ) for every closed set V of (Y, σ) .
- (ii) g-continuous [2] if $f^{-1}(V)$ is g-closed in (X,τ) for every closed set V of (Y,σ) .
- (iii) gs-continuous [2] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) .
- (iv) αg -continuous [2] if $f^{-1}(V)$ is αg -closed in (X, τ) for every closed set V of (Y, σ) .
- (v) super continuous [10] if $f^{-1}(V)$ is δ -open in (X,τ) for every open set V of (Y,σ) .
- (vi) \hat{g} -continuous [12] if $f^{-1}(V)$ is \hat{g} -closed in (X, τ) for every \hat{g} -closed set V of (Y, σ) .
- (vii) δ -continuous [10] if $f^{-1}(V)$ is δ -open in (X,τ) for every δ -open set V of (Y,σ) .
- (viii) δ -closed [10] if f(V) is δ -closed in (Y, σ) for every δ -closed set V of (X, τ) .
- (ix) δg -continuous [3] if $f^{-1}(V)$ is δg -closed in (X, τ) for every closed set V of (Y, σ) .
- (x) $\delta \hat{g}$ -continuous [4] if $f^{-1}(V)$ is $\delta \hat{g}$ -closed in (X, τ) for every closed set V of (Y, σ) .

Proposition 2.6. [8] If A and B are $B\delta g$ -closed sets, then $A \cup B$ is $B\delta g$ -closed.

3 $B\delta g$ -Continuous and $B\delta g$ -Irresolute Functions

In this section we introduce the following definitions.

Definition 3.1. A function $f:(X,\tau)\to (Y,\sigma)$ is called $B\delta g$ -continuous if $f^{-1}(V)$ is $B\delta g$ -closed in (X,τ) for every closed set V of (Y,σ) .

Example 3.2. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{q\}, \{p, q\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is $B\delta g$ -continuous.

Definition 3.3. A function $f:(X,\tau)\to (Y,\sigma)$ is called $B\delta g$ -irresolute if $f^{-1}(V)$ is $B\delta g$ -closed in (X,τ) for every $B\delta g$ -closed set V of (Y,σ) .

Example 3.4. Let $X = \{a, b, c\} = Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, \{q, r\}, Y\}$. Define $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = r and f(c) = q. Clearly f is $B\delta g$ -irresolute.

Proposition 3.5. If $f:(X,\tau)\to (Y,\sigma)$ is $B\delta g$ -continuous then f is g-continuous, αg -continuous, gs-continuous and δg -continuous maps.

Proof. It is true that every $B\delta g$ -closed set is g-closed, αg -closed, gs-closed and δg -closed.

Remark 3.6. The converses of the above proposition are not true in general as seen from the following examples.

Example 3.7. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, r\}, Y\}$. Define the map $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Clearly f is not $B\delta g$ -continuous because $\{q, r\}$ is closed in (Y, σ) but $f^{-1}(\{q, r\}) = \{b, c\}$ is not $B\delta g$ -closed in (X, τ) . However f is g-continuous.

Example 3.8. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{p, q\}, \{p, r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = r, f(b) = q and f(c) = p. Then f is αg -continuous and sg-continuous. But f is not $B\delta g$ -continuous, for the closed set $\{q\}$ of (Y, σ) , $f^{-1}(\{q\}) = \{b\}$ is not $B\delta g$ -closed in (X, τ) .

Example 3.9. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, \{q\}, \{p, q\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = r and f(c) = p. Then f is not $B\delta g$ -continuous, for $\{r\}$ is closed in (Y, σ) , $f^{-1}(\{r\}) = \{b\}$ is not $B\delta g$ -closed in (X, τ) . However f is δg -continuous function.

Theorem 3.10. Every super continuous function is $B\delta g$ -continuous.

Proof. It is true that every δ -closed set is $B\delta g$ -closed.

Remark 3.11. The converse of Theorem 3.10 need not be true as shown in the following example.

Example 3.12. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{r\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = p, f(b) = r and f(c) = q. Then f is $B\delta g$ -continuous. But f is not super continuous, for $\{r\}$ is open in (Y, σ) , $f^{-1}(\{r\}) = \{b\}$ is not δ -open in (X, τ) .

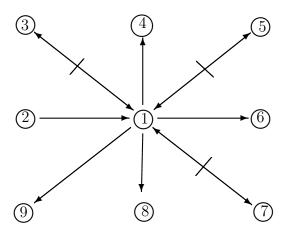
Remark 3.13. The following examples show that $B\delta g$ -continuity is independent of semi-continuity, \hat{g} -continuity and $\delta \hat{g}$ -continuity.

Example 3.14. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p, q\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a function defined by f(a) = q, f(b) = r and f(c) = p. Then f is semi-continuous but not $B\delta q$ -continuous.

Example 3.15. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{q\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = p and f(c) = r. Then f is \hat{g} -continuous and $\delta \hat{g}$ -continuous but not $B\delta g$ -continuous.

Example 3.16. Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{p\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = q, f(b) = r and f(c) = p. Then f is neither semi-continuous nor \hat{g} -continuous. Moreover it is not $\delta \hat{g}$ -continuous. However f is $B\delta g$ -continuous function.

Remark 3.17. All the above discussions of this section can be represented by the following diagram. $A \to B(A \leftrightarrow B)$ represents A implies B but not conversely (A and B are independent of each other).



 $1.B\delta g$ -continuous $2.\delta$ -continuous 3.semi-continuous $4.\alpha g$ -continuous $5.\hat{q}$ -continuous $6.\delta q$ -continuous $7.\delta \hat{q}$ -continuous 8.qs-continuous 9.q-continuous

4 Characterizations

Theorem 4.1. A function $f:(X,\tau)\to (Y,\sigma)$ is $B\delta g$ -continuous iff $f^{-1}(U)$ is $B\delta g$ -open in (X,τ) for every open set U in (Y,σ) .

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be an $B\delta g$ -continuous function and U be an open set in (Y,σ) . Then $f^{-1}(U^c)$ is $B\delta g$ -closed set in (X,τ) . But $f^{-1}(U^c)=[f^{-1}(U)]^c$ and hence $f^{-1}(U)$ is $B\delta g$ -open in (X,τ) . Conversely $f^{-1}(U)$ is $B\delta g$ -open in (X,τ) for every open set U in (Y,σ) . Then U^c is closed set in (Y,σ) and $[f^{-1}(U)]^c$ is $B\delta g$ -closed in (X,τ) . But $[f^{-1}(U)]^c=f^{-1}(U^c)$, so $f^{-1}(U^c)$ is $B\delta g$ -closed set in (X,τ) . Hence f is $B\delta g$ -continuous.

Theorem 4.2. Let $f:(X,\tau)\to (Y,\sigma)$ be a $B\delta g$ -irresolute and $g:(Y,\sigma)\to (Z,\eta)$ a $B\delta g$ -irresolute. Then their composition is $g\circ f:(X,\tau)\to (Z,\eta)$ is $B\delta g$ -irresolute.

Proof. Let F be $B\delta g$ -closed set in (Z, η) . Then $g^{-1}(F)$ is $B\delta g$ -closed in (Y, σ) . Since f is $B\delta g$ -irresolute, $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $B\delta g$ -closed set of (X, τ) and so $g \circ f$ is $B\delta g$ -irresolute function.

Remark 4.3. The composition of two $B\delta g$ -continuous functions need not be $B\delta g$ -continuous as the following examples shows.

Example 4.4. Let $X = \{a, b, c\} = Y = Z$ with the topologies $\tau = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, c\}, Y\}$ and $\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = c and f(c) = b and let $g: (Y, \sigma) \to (Z, \eta)$ be the identity function. Clearly f and g are $B\delta g$ -continuous. But $g \circ f: (X, \tau) \to (Z, \eta)$ is not an $B\delta g$ -continuous function because $(g \circ f)^{-1}(\{c\}) = f^{-1}(g^{-1}(\{c\})) = f^{-1}(\{c\}) = \{b\}$ is not an $B\delta g$ -closed in (X, τ) where as $\{c\}$ is a closed set of (Z, η) .

Theorem 4.5. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two functions. Then

(i) $g\circ f:(X,\tau)\to (Z,\eta)$ is $B\delta g$ -continuous, if g is continuous and f is $B\delta g$ -continuous.

- (ii) $g \circ f: (X, \tau) \to (Z, \eta)$ is $B\delta g$ -continuous, if g is $B\delta g$ -continuous and f is $B\delta g$ -irresolute.
- *Proof.* (i) Let F be any closed set in (Z, η) . Since g is continuous, $g^{-1}(F)$ is closed in (Y, σ) . But f is $B\delta g$ -continuous, $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $B\delta g$ -closed of (X, τ) and hence $g \circ f$ is $B\delta g$ -continuous function.
- (ii) Let G be any closed set in (Z, η) . Then $g^{-1}(G)$ is $B\delta g$ -closed in (Y, σ) . Since f is $B\delta g$ -irresolute, $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(G))$ is $B\delta g$ -closed of (X, τ) and so $g \circ f$ is $B\delta g$ -continuous functions.

Theorem 4.6. Let $f:(X,\tau)\to (Y,\sigma)$ be continuous and δ -closed map. Then for every $B\delta g$ -closed subset A of (X,τ) , f(A) is $B\delta g$ -closed in (Y,σ) .

Proof. Let A be $B\delta g$ -closed in (X,τ) . Let $f(A) \subseteq O$ where O is open in (Y,σ) . Since $A \subseteq f^{-1}(O)$ is open in (X,τ) , $f^{-1}(O)$ is B-set in (X,τ) . Since A is $B\delta g$ -closed and since $f^{-1}(O)$ is B-set in (X,τ) , then $cl_{\delta}(A) \subseteq f^{-1}(O)$. Thus $f(cl_{\delta}(A)) \subseteq O$. Hence $cl_{\delta}(f(A)) \subseteq cl_{\delta}(f(cl_{\delta}(A)) = f(cl_{\delta}(A)) \subseteq O$, since f is δ -closed. Hence f(A) is $B\delta g$ -closed in (Y,σ) .

Remark 4.7. $B\delta g$ -continuity and $B\delta g$ -irresoluteness are independent notions as seen in the following examples.

Example 4.8. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{r\}, Y\}$. Define a function $f: (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then f is $B\delta g$ -continuous but it is not $B\delta g$ -irresolute function because $f^{-1}(\{q, r\}) = \{b, c\}$ is not $B\delta g$ -closed in (X, τ) , where $\{q, r\}$ is $B\delta g$ -closed in (Y, σ) .

Example 4.9. Let $X = \{a, b, c\}$, $Y = \{p, q, r\}$ with the topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{r\}, \{q, r\}, Y\}$. Define a function $f : (X, \tau) \to (Y, \sigma)$ by f(a) = p, f(b) = q and f(c) = r. Then f is $B\delta g$ -irresolute but it is not $B\delta g$ -continuity function because $f^{-1}(\{p\}) = \{a\}$ is not $B\delta g$ -closed in (X, τ) , when $\{p\}$ is closed in (Y, σ) .

Proposition 4.10. The product of two $B\delta g$ -open sets of two spaces is $B\delta g$ -open set in the product space.

Proof. Let A and B be two $B\delta g$ -open sets of two spaces (X, τ) and (Y, σ) respectively and $V = A \times B \subseteq X \times Y$. Let $F \subseteq V$ be a complement of B-set in $X \times Y$, then there exists two complement of B-sets $F_1 \subseteq A$ and $F_2 \subseteq B$. So, $F_1 \subseteq int_{\delta}(A)$ and $F_2 \subseteq int_{\delta}(B)$. Hence $F_1 \times F_2 \subseteq A \times B$ and $F_1 \times F_2 \subseteq int_{\delta}(A) \times int_{\delta}(B) = int_{\delta}(A \times B)$. Therefore $A \times B$ is $B\delta g$ -open subset of the space $X \times Y$.

Theorem 4.11. Let $f_i: X_i \to Y_i$ be $B\delta g$ -continuous functions for each $i \in \{1, 2\}$ and let $f: X_1 \times X_2 \to Y_1 \times Y_2$ be defined by $f((x_1, x_2)) = (f(x_1), f(x_2))$. Then f is $B\delta g$ -continuous.

Proof. Let V_1 and V_2 be two open sets in Y_1 and Y_2 respectively. Since $f_i: X_i \to Y_i$ are $B\delta g$ -continuous functions, for each $i \in \{1,2\}$, $f_1^{-1}(V_1)$ and $f_2^{-1}(V_2)$ are $B\delta g$ -open sets in X_1 and X_2 respectively. By the Proposition 4.10, $f_1^{-1}(V_1) \times f_2^{-1}(V_2)$ is $B\delta g$ -open set in $X_1 \times X_2$. Therefore f is $B\delta g$ -continuous.

Theorem 4.12. Let $f:(X,\tau)\to (Y,\sigma)$ be a function. Then the following statements are equivalent.

- (i) f is $B\delta g$ -irresolute.
- (ii) For $x \in (X, \tau)$ and any $B\delta g$ -closed set V of (Y, σ) containing f(x) there exists an $B\delta g$ -closed set U such that $x \in U$ and $f(U) \subset V$.
- (iii) Inverse image of every $B\delta g$ -open set of (Y,σ) is $B\delta g$ -open in (X,τ) .

Proof. $(i) \Rightarrow (ii)$. Let V be an $B\delta g$ -closed set of (Y, σ) and $f(x) \in V$. Since f is $B\delta g$ -irresolute, $f^{-1}(V)$ is $B\delta g$ -closed in (X, τ) and $x \in f^{-1}(V)$. Put $U = f^{-1}(V)$. Then $x \in U$ and $f(U) \subset V$.

(ii) \Rightarrow (i). Let V be an $B\delta g$ -closed set of (Y, σ) and $x \in f^{-1}(V)$. Then $f(x) \in V$. Therefore by (ii) there exists an $B\delta g$ -closed set U_x such that $x \in U_x$ and $f(U_x) \subset V$. Hence $x \in U_x \subset f^{-1}(V)$. This implies that $f^{-1}(V)$ is a union of $B\delta g$ -closed sets of (X, τ) . By Proposition 2.6, $f^{-1}(V)$ is $B\delta g$ -closed set. This shows that f is $B\delta g$ -irresolute.

$$(i) \Leftrightarrow (iii)$$
. It is true that $f^{-1}(Y - V) = X - f^{-1}(V)$.

5 Applications

Definition 5.1. [8] A space (X, τ) is called a ${}_BT_{\delta g}$ -space if every $B\delta g$ -closed set in it is δ -closed.

Theorem 5.2. Let $f:(X,\tau)\to (Y,\sigma)$ be $B\delta g$ -irresolute. Then f is δ -continuous if (X,τ) is ${}_BT_{\delta g}$ -space.

Proof. Let V be a δ -closed subset of (Y, σ) . Every δ -closed is $B\delta g$ -closed and hence V is $B\delta g$ -closed in (Y, σ) . Since f is $B\delta g$ -irresolute, $f^{-1}(V)$ is $B\delta g$ -closed in (X, σ) . Since X is ${}_BT_{\delta g}$ -space, $f^{-1}(V)$ is δ -closed in (X, τ) . Thus f is δ -continuous. \square

Theorem 5.3. Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\eta)$ be two functions. Let (Y,σ) be ${}_BT_{\delta g}$ -space. Then $g\circ f$ is $B\delta g$ -continuous if g is $B\delta g$ -continuous and f is $B\delta g$ -continuous.

Proof. Let G be any closed set in (Z, η) . Then $g^{-1}(G)$ is $B\delta g$ -closed in (Y, σ) . Since (Y, σ) is ${}_BT_{\delta g}$ -space, $g^{-1}(G)$ is closed in (Y, σ) . Since f is $B\delta g$ -continuous, $(g \circ f)^{-1}(G) = f^{-1}(g^{-1}(G))$ is $B\delta g$ -closed in (X, τ) . Hence $g \circ f$ is $B\delta g$ -continuous function.

Theorem 5.4. Let $f:(X,\tau)\to (Y,\sigma)$ be onto, $B\delta g$ -irresolute and δ -closed. If (X,τ) is a ${}_BT_{\delta g}$ -space, then (Y,σ) is also a ${}_BT_{\delta g}$ -space.

Proof. Let B be a $B\delta g$ -closed subset of (Y, σ) . Since f is $B\delta g$ -irresolute, then $f^{-1}(B)$ is $B\delta g$ -closed set in (X, τ) . Since (X, τ) is ${}_BT_{\delta g}$ -space, $f^{-1}(B)$ is δ -closed in (X, τ) . Also since f is surjective, B is δ -closed in (Y, σ) . Hence (Y, σ) is ${}_BT_{\delta g}$ -space. \square

Theorem 5.5. If $f:(X,\tau)\to (Y,\sigma)$ is bijection, open and $B\delta g$ -continuous, then f is $B\delta g$ -irresolute.

Proof. Let V be $B\delta g$ -closed in (Y,σ) and let $f^{-1}(V) \subseteq U$ where U is open in (X,τ) . Since f is open, f(U) is open in (Y,σ) . Every open set is B-set and hence f(U) is B-set. Clearly $V \subseteq f(U)$. Then $cl_{\delta}(V) \subseteq f(U)$ and hence $f^{-1}(cl_{\delta}(V)) \subseteq U$. Since f is $B\delta g$ -continuous and since $cl_{\delta}(V)$ is a closed subset of (Y,σ) , then $cl_{\delta}(f^{-1}(V)) \subseteq cl_{\delta}(f^{-1}(cl_{\delta}(V)) = f^{-1}(cl_{\delta}(V)) \subseteq U$. U is open and hence B-set in (X,τ) . Thus we have $cl_{\delta}(f^{-1}(V)) \subseteq U$ whenever $f^{-1}(V) \subseteq U$ and U is B-set in (X,τ) . This shows that $f^{-1}(V)$ is $B\delta g$ -closed in (X,τ) . Hence f is $B\delta g$ -irresolute.

References

- [1] Arya S. P. and Nour T. M., Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21 (8) (1990), 717-719.
- [2] Devi R., Balachandran K. and Maki H., On generalized α -continuous and α -generalized continuous functions, For East J. Math Sci. Special Volume, Part I (1997), 1-15.
- [3] Dontchev J. and Ganster M., On δ -generalized closed sets and $T_{3/4}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser.A, Math., 17 (1996), 15-31.
- [4] Lellis T. M. and Meera D. B., Some new classes of generalized continuous functions, Proceedings of the ICMCS 2011, 431-434.
- [5] Levine N., Semi-open sets and semi-continuity in topological spaces, Amer Math. Monthly, 70 (1963), 36-41.
- [6] Levine N., Generalized closed sets in Topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [7] Mashhour A. S., Abd El-Monsef M. E. and El-Deeb S. N., On precontinuous and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt 55 (1982), 47-53.
- [8] Meera D. B., New Type of Generalized Closed sets In Topological Spaces, (Communicated).
- [9] Njastad O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [10] Noiri T., Super-continuity and some strong forms of continuity, Indian J. Pure. Appl Math., 15 (1984), 241-250.
- [11] Tong J., On Decomposition of continuity in topological spaces, Acta Math. Hungar., 54 (1-2) (1989), 51-55.
- [12] Veera K., \hat{g} -closed sets in topological spaces, Bull. Allah. Math. Soc., 18 (2003), 99-112.
- [13] Velicko N. V., H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.