
PAPER DETAILS

TITLE: Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean and Gaussian

Curvatures

AUTHORS: Sezin AYKURT SEPET,Hülya GÜN BOZOK,Muhittin Evren AYDIN

PAGES: 1-11

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/2513966



New Theory
Journal of

ISSN: 2149-1402 

40 (2022) 1-11

Journal of New Theory

https://dergipark.org.tr/en/pub/jnt

Open Access

New Theory
Journal of

ISSN: 2149-1402 

Editor-in-Chief

Naim Çağman

Number 40 Year 2022

www.dergipark.org.tr/en/pub/jnt

Factorable Surfaces in Pseudo-Galilean Space with Prescribed Mean
and Gaussian Curvatures
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1. Introduction

A Cayley-Klein space is defined as a real projective space P (R) with a certain absolute figure which is
a subset of quadrics and planes. Let (u0 : u1 : u2 : u3) denote the homogeneous coordinates in P (R).
The pseudo-Galilean 3-space G1

3 that we are interested in is a Cayley-Klein space P (R) with the
absolute figure {ω, f, I} such that ω is the absolute plane u0 = 0, f the line u0 = u1 = 0 and I the fixed
hyperbolic involution of points of f . The hyperbolic involution is (0 : 0 : u2 : u3) 7→ (0 : 0 : u3 : u2)
and u22 − u23 = 0 is the absolute conic, [1–5].

Consider the affine coordinates in G1
3 defined by (u0 : u1 : u2 : u3) = (1 : x : y : z) . Then, a plane

of the form x = d, d ∈ R, in G1
3 is said to be Lorentzian since its induced geometry is Lorentzian. We

call other planes isotropic.
The main purpose of this study, in this special ambient space, is determining the surfaces with

prescribed mean (H) and Gaussian (K) curvatures which is a common problem in differential geometry
of surfaces. For this, we focus on a graphical surface. Because of the absolute figure ofG1

3, the geometric
structure of the surface depends on if it is graph on an isotropic or a Lorentzian plane.

Without lose of generality we may consider the coordinate planes. Hence a graph on the isotropic
xy−plane (resp. the Lorentzian yz−plane) is said to be of type 1 (type 2 ). Let M be a non-degenerate
graph of a smooth function u = u (s, t) , s ∈ I ⊂ R, t ∈ J ⊂ R. If M is of type 1 then it parametrizes
r (s, t) = (s, t, u (s, t)) and hence its mean and Gaussian curvatures are given by

ussutt − u2st = −ϵK (s, t)
∣∣1− u2t

∣∣2 (1)

utt = 2ϵH (s, t) 2
∣∣1− u2t

∣∣3/2 (2)
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where ϵ is 1 if 1 − u2t > 0 and −1 otherwise. Here we notice us = ∂u/∂s, ust = ∂2u/∂s∂t, and so. If
M is of type 2 then parameterizes r (s, t) = (u (s, t) , s, t) and

ussutt − u2st = −ϵK (s, t)
∣∣u2s − u2t

∣∣2 (3)

u2sutt − 2usutust + u2tuss = −2ϵH (s, t)
∣∣u2s − u2t

∣∣3/2 (4)

We point out that the PDEs (1) and (3) are of Monge-Ampère type and their importance is due to
economics, meteorology, oceanography etc. [6–11].

In principle, we will concern with the PDEs (1)-(4). Finding their solutions is complicated and
one way to reduce their complexity is to use the technique of separation of variables, namely

u (s, t) = f (s) + g (t) , u (s, t) = f (s) g (t)

for smooth functions f, g. Notice that the graphs u (s, t) = f (s) + g (t) are known as translation
surfaces. The name is because kinematic point of view, obtained by translating one curve along the
other one. If the so-called generating curves are denoted by α (s) and β (t) then

r (s, t) = α (s) + β (t) = (s, t, f (s) + g (t))

r (s, t) = α (s) + β (t) = (f (s) + g (t) , s, t)

Those surfaces were completely obtained in [12–16] when H and K are a constant function.
Most recently, as a generalization, the present authors [17] classified translation surfaces when H

andK are a non-constant function of one variable, that is,K = K (s) andK = K (t) (orH = H (s) and
H = H (t)). The authors found the motivation in Ruiz-Hernández’s paper [18] where the translation
hypersurfaces in the Euclidean n−space Rn were obtained when mean and Gauss-Kronocker curvatures
depend on its first p (or second q) variables, p + q = n. This is indeed, in 3-dimensional setting, a
well-known framework for surfaces of revolution or, more generally, helicoidal surfaces due to the fact
the mean and Gaussian curvatures only depend on the parameter of the profile curve, see [19,20].

Following Ruiz-Hernández’s idea, we will consider the graphs u (s, t) = f (s) g (t) called factorable
(or homothetical) surfaces [21]. These surfaces were studied from various point of view in the (pseudo-)
Galilean ambient space, see [22–24].

When u (s, t) = f (s) g (t), the PDEs (1)-(4) that we will solve are now

fgf ′′g′′ −
(
f ′g′

)2
= −ϵK

∣∣∣1− (fg′)2∣∣∣2 (5)

fg′′ = 2ϵH
∣∣∣1− (fg′)2∣∣∣3/2 (6)

and

fgf ′′g′′ −
(
f ′g′

)2
= −ϵK

∣∣∣(f ′g
)2 − (fg′)2∣∣∣2 (7)

(
f ′g
)2

fg′′ − 2fg
(
f ′g′

)2
+
(
fg′
)2

f ′′g = −2ϵH
∣∣∣(f ′g

)2 − (fg′)2∣∣∣3/2 (8)

where H and K only depend on s or t and a prime denotes the derivative with respect to the related
variable. The Equations (5)-(8) were solved in [13,25,26] when K and H are a constant.

In Section 3, we will solve (5) and (6), obtaining the graphs are a cylindrical ruled surface of type
3 from geometric point of view. The detailed properties of ruled surfaces may be found in [2,27]. We
remark that K has to be a function of s in (5) while H has to be a function of t in (6). Contrary
to this, the solution of (7) is that, up to a change in the roles of the functions f, g, f (s) = aebs,
K (s) = cb2f−2 (s) and g (t) is the solution to the following autonomous differential equation

gg′′ − g′2 = c
(
g′2 − (cg)2

)2
, a, b ∈ R, a, b, c ̸= 0

We also provide an example admits a solution when H depends on only one variable.
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2. Preliminaries

The pseudo-Galilean distance between the points p = (p1, p2, p3) and q = (q1, q2, q3) is

d (p,q) =


|q1 − p1| , p1 ̸= q1√∣∣∣(q2 − p2)

2 − (q3 − p3)
2
∣∣∣, p1 = q1

Let a1, .., a5, φ be some constants. Then, the six-parameter group of motions of G1
3 which leaves

invariant the absolute figure and pseudo-Galilean distance is given in terms of affine coordinates by

x = a1 + x

y = a2 + a3x+ y coshφ+ z sinhφ

z = a4 + a5x+ y sinhφ+ z coshφ

A line in G1
3 is said to be isotropic if its intersection with the absolute line f is non-empty and

non-isotropic otherwise. A vector v = (v1, v2, v3) is said to be isotropic (non-isotropic) if v1 = 0
(̸= 0). Let w = (w1, w2, w3) and ⟨·, ·⟩G denote the pseudo-Galilean dot product. Then, ⟨v,w⟩G is
the Lorentzian scalar product if both v and w are isotropic. Otherwise, v21 + w2

1 ̸= 0, it is defined
by ⟨v,w⟩G = v1w1. The pseudo-Galilean angle between v and w is defined as the Lorentzian angle
if v and w are isotropic. Otherwise, it is given by the pseudo-Galilean distance. We call v and w
orthogonal if ⟨v,w⟩G = 0.

An isotropic vector v is called spacelike if ⟨v,v⟩L > 0; timelike if ⟨v,v⟩L < 0 and lighlike if
⟨v,v⟩L = 0. Let {e1, e2, e3} be standard basis vectors and v and w no both isotropic vectors. Then,
the pseudo-Galilean cross-product is

v×Gw =

∣∣∣∣∣∣
0 −e2 e3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣
Then, ⟨v×Gw, z⟩G = −det (v,w, z̃) , where z̃ is the projection of z onto the yz−plane. Note that the
vector v×Gw is orthogonal to the vectors v and w.

Let S be a surface in G1
3 locally given by a regular map

(u1, u2) 7→ x (u1, u2) = (x (u1, u2) , y (u1, u2) , z (u1, u2)) , (u1, u2) ∈ D ⊂ R2

Denote x,i =
∂x
∂ui

and x,ij = ∂2x
∂ui∂uj

and etc., 1 ≤ i, j ≤ 2. Then, S is said to be admissible if x,i ̸= 0

for some i = 1, 2. For such an admissible surface S, the first fundamental form is

⟨dx, dx⟩G = Edu21 + 2Fdu1du2 +Gdu22

where E = (x,1)
2 , F = x,1x,2, G = (x,2)

2. Since nowhere an admissible surface has Lorentzian tangent
plane, up to the absolute figure, the isotropic vector x,1 ×G x,2 is normal to S. Let

W = ⟨x,1 ×G x,2,x,1 ×G x,2⟩L

Then, the surface S is called spacelike if W < 0; timelike if W > 0; and lightlike if W = 0. The
spacelike and timelike surfaces are so-called non-degenerate and, throughout this study, we deal with
the only non-degenerate admissible surfaces. The unit normal vector to the non-degenerate surface S
is

N =
x,1 ×G x,2√

|W |
Let ϵ = ⟨N,N⟩L = ±1 and

Lij = ϵ
1

x,1

〈
x,1x̃,ij − (x,i),j x̃,1,N

〉
L
= ϵ

1

x,2

〈
x,2 x̃,ij − (x,i),j x̃,2,N

〉
L
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in which one of x,1 and x,2 is always nonzero due to the admissibility. Then, the second fundamental
form of S is

II = Ldu21 + 2Mdu1du2 +Ndu22

where L = L11, M = L12, N = L22. Thereby, the Gaussian and mean curvatures are defined by

K = −ϵ
LN −M2

W
and H = −ϵ

GL− 2FM + EN

2W

A surface is said to be minimal if H vanishes identically.
Let S be a ruled surface in G1

3 locally given by

x (u1, u2) = γ(u1) + u2w(u1)

where γ(u1) is a regular curve and w(u1) is a nonvanishing vector field along γ(u1). There are three
types of such surfaces depending on the positions of γ(u1), w(u1) and the absolute figure:

� Type 1: w(u1) is non-isotropic and γ(u1) does not lie in a pseudo-Euclidean plane.

� Type 2: w(u1) is non-isotropic and γ(u1) lies in a pseudo-Euclidean plane.

� Type 3: w(u1) is isotropic and γ(u1) is an arbitrary curve lying a plane orthogonal to w(u1).

3. The Graphs of Type 1

Let the graph z (x, y) = f (x) g (y) be of type 1, then

r (x, y) = (x, y, f (x) g (y)) , (s, t) ∈ I × J ⊂ R2

The Gaussian curvature is

K =
fgf ′′g′′ − (f ′g′)2[

1− (fg′)2
]2 (9)

where a prime denotes the derivative with respect to the related variable. We study the case that
K is a non-constant function; that is, at least a partial derivative of K with respect to x and y is
non-vanishing. It is equivalent to the statement that the first derivatives of both f and g are nonzero
on I × J .

In the following we obtain the graphs with K(x, y) = k (x) where k(x) is some smooth function of
x.

Theorem 3.1. If the Gaussian curvature K(x, y) of the graph z (x, y) = f (x) g (y) is a non-constant
function depending one variable then it is of the form K(x, y) = k(x), where k(x) is some negative
smooth function of x. Furthermore, the graph is a cylindrical ruled surface of type 3 such that, up to
a translation of y,

z (x, y) = ±y tanh

(
±
∫ x√

−k (s)ds

)
Proof. Since there is not a symmetry in Equation (9) up to the functions f and g, we distinguish
two cases:

1. Case (∂K/∂y)(x, y) = 0. We set K(x, y) = k(x), for some smooth function k(x). Then,

k (x) =
fgf ′′g′′ − (f ′g′)2[

1− (fg′)2
]2 (10)
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Here, if there is a point y0 ∈ J such that g′′ (y0) = 0 then we may assume g′′ = 0 on a
neighborhood of y0 in J. Letting g′ = c, c ̸= 0, (10) is now

k (x) =
−c2f ′2

(1− c2f2)2

which implies that k (x) is a negative function. Notice that, up to a translation of y, the graph
is written by

r(x, y) = (x, 0, 0) + y (0, 1, cf (x))

which is a parametrization of a ruled surface of type 3. Here f (x) is the solution to

cf ′

1− c2f2
= ±

√
−k (x)

Integrating gives

f (x) = |c|−1 tanh

(
±
∫ x√

−k (s)ds

)
which proves the result. Next, we will show that Equation (10) has no a solution provided
g′′ (y) ̸= 0 on J. In order to overcome difficulties in our calculations we introduce

α1 = ff ′′

α2 = −f ′2

α3 = −f2

Then, Equation (10) turns into

k(x) =
α1gg

′′ + α2g
′2

(1 + α3g′2)
2 (11)

We observe two subcases;

(a) Subcase α1 ̸= 0. Then,

k (x)

α1

(
1 + α3g

′2)2 − (α2

α1

)
g′2 = gg′′ (12)

By taking derivative of Equation (12) with respect to x we obtain

4∑
n=0

Pn

(
g′
)n

= 0

where

P0 = (k (x) /α1)
′

P1 = 0

P2 = 2 (k (x) /α1)
′ α3 + 2 (k (x) /α1)α

′
3 − (α2/α1)

′

P3 = 0

P4 = (k (x) /α1)
′ α2

3 + 2 (k (x) /α1)α3α
′
3

Because of the fact that g′ is a non-constant function of y, P0, ..., P4 are zero all. From
P0 = 0 we get (k (x) /α1)

′ = 0, implying the existence of some nonzero constant c such that
k (x) = cα1. Then, using this in P4 = 0 we obtain 4cf3f ′ = 0 which allows k (x) to be zero.
This is not possible by our assumption.
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(b) Subcase α1 = 0. Then, because α1 = ff ′′, concludes α2 = c, c ̸= 0. Therefore considering
this in Equation (11) and next taking derivative with respect to y we obtain g′′ = 0, which
is a contradiction.

2. Case (∂K/∂x)(x, y) = 0. We set K(x, y) = k(y), for some smooth function k(y). Then, follows

k (y) =
α1gg

′′ + α2g
′2

[1 + α3g′2]
2 (13)

where if g is a linear function then the left hand side of (13) is a function of y and the other
side is a function of x. Thus, g cannot be a linear function by our assumption. Next, let g′′ ̸= 0.
Then, by replacing k (x) with k (y) in Equation (12) we may easily show that no (13) has a
solution.

Example 3.2. Take z(x, y) = f(x)g(y) with K(x, y) = −4x2. By Theorem 3.1, we have z(x, y) =
y tanh(x2) up to a translation of x. One can be drawn as in Fig. 1.

Fig. 1. Graph of z(x, y) = y tanh(x2) with 0 ≤ x ≤ 2π and −π ≤ y ≤ π. The Gaussian curvature is
K(x, y) = x2.

We are also interested in the graphs z (x, y) = f (x) g (y) whose mean curvature is non-vanishing
function of one variable and present the following results:

Theorem 3.3. If the mean curvature H of the graph z (x, y) = f (x) g (y) is a non-constant function
depending one variable then it is of the form H(x, y) = h(y), where h(y) is some smooth function of
y, and the graph is a cylindrical ruled surface of type 3 such that

z (x, y) = cg (y) = 2

∫ y

q(s) (1 + 4q(s))−1/2 ds (14)

where q(y) =
∫ y

h (s) ds and c is a non-zero constant.
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Proof. We distinguish two cases:

1. (∂H/∂x)(x, y) = 0. We set H(x, y) = h(y), for some smooth function h(y). Then, we have

h (y) =
fg′′

2
[
1− (fg′)2

]3/2 (15)

Suppose that f is non-constant function. By squaring we write

4h2 (y)
[
1−

(
fg′
)2]3 − f2g′′2 = 0

which is a polynomial equation of degree 6 on f whose leading coefficient is −4h2 (y) g′6. Since
h (y) is nowhere vanish, we obtain a contradiction. Therefore we have f = c, where c is a nonzero
constant. So the graph parameterizes as

x (1, 0, 0) + (0, y, cg (y))

which is locally a cylindrical ruled surface of type 3. The result follows by integrating (15).

2. Case (∂H/∂y)(x, y) = 0. We set H(x, y) = h(x), for some smooth function h(x). Then, follows

h (x) =
fg′′

2
[
1− (fg′)2

]3/2 (16)

in which f cannot be constant function because otherwise the left hand side is a function of x
and the other side is a function of y. In such a case, divide (16) with f/2 and derivative with
respect to y, obtaining (

3g′g′′2 − g′2g′′′
)
f2 + g′′′ = 0

Here is clear that the coefficients are not zero all, which is not possible. This completes the
proof.

4. The Graphs of Type 2

Consider the graph x(y, z) = f(y)g(z), (y, z) ∈ I × J. Then,

r (y, z) = (f (y) g (z) , y, z) , (s, t) ∈ I × J ⊂ R2

The Gaussian curvature is

K(y, z) =
fgf ′′g′′ − (f ′g′)2[
(fg′)2 − (f ′g)2

]2 (17)

Here we point out f ′, g′ ̸= 0 on I × J because K is a non-constant function in our case.
Thus we present the following result:

Theorem 4.1. If the Gaussian curvature K of the graph x(y, z) = f(y)g(z) is a non-constant function
of one variable then, up to a change in the roles of the functions f, g, f (y) = aeby and the following
autonomous differential equation holds

gg′′ − g′2 = c
(
g′2 − (cg)2

)2
, a, b ∈ R, a, b, c ̸= 0

Furthermore, K = c
(
ab−1eby

)−2
.
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Proof. Assume K is a non-constant function of one variable. Notice that the roles of f and g in
Equation (17) are symmetric and therefore we only focus on the case K = k (y). We previously observe
the following cases:

1. Case f (y) = cy + d, c, d ∈ R, c ̸= 0. Then, Equation (17) is now

±
√

−k(y) =
cg′

(fg′)2 − (cg)2
(18)

The partial derivative of (18) with respect to z is

−cg′2g′′f2 − c3g2g′′ + 2c3gg′2 = 0

which is a polynomial equation of degree 2 on f . Because k is nonzero function, the coefficients
are not zero all, which is a contradiction. Then, f cannot be a linear function. Similarly, if g is
a linear function then we easily arrive the contradiction f ′ = 0. This discussion gives us that f
and g must be non-linear functions.

2. Case f ′ = cfd, c, d ∈ R, c, d ̸= 0.. Then, the following two sub-cases are provided:

(a) Subcase d = 1. Then, f(y) = aecy, a ∈ R, a ̸= 0. Equation (17) is

c−2f2k(y) =
gg′′ − g′2

[g′2 − (cg)2]2
(19)

where the left hand side is a function of y and the other hand side is a function of z. Then,
there exists a nonzero constant λ such that c−2f2k(y) = λ and

gg′′ − g′2 = λ
(
g′2 − (cg)2

)2
which gives the result.

(b) Subcase d ̸= 1. Equation (17) imply that

(c2f2d−4)−1k(y) =
dgg′′ − g′2

(g′2 − c2f2d−2g2)
2 (20)

Letting dgg′′ − g′2 = T and next derivating with respect to z of Equation (20) we obtain

T ′g′2 − 4Tg′g′′ − c2
(
T ′g2 − 4Tgg′

)
f2d−2 = 0

which is polynomial equation on f . Using the equality of coefficients we derive following
equations

T ′g′2 − 4Tg′g′′ = 0

T ′g2 − 4Tgg′ = 0

From these equations, we have the contradiction g′ = bg, b = const.

3. Case that f is neither a linear function nor of the form f ′ = cfd. Then, derivating of (17) with
respect to z

ff ′′ [(g′g′′ + gg′′′
) (

g′2 − g2
)
− 4gg′′

(
g′g′′ − gg′

)]
+ 4f ′2g′2

(
g′g′′ − gg′

)
− 2f ′2g′g′′

(
g′2 − g2

)
= 0

Since f ′ ̸= 0, we obtain

ff ′′

f ′2 =
−4g′2 (g′g′′ − gg′) + 2g′g′′(g′2 − g2)

(g′g′′ + gg′′′) (g′2 − g2)− 4gg′′ (g′g′′ − gg′)

The left hand side is a function of y while the other side is a function of z. Then, both hand
sides are a constant, which contradicts with our assumption.
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The mean curvature of the graph x(y, z) = f(y)g(z) is given by

H =
(fg′)2f ′′g − 2fg(f ′g′)2 + (f ′g)2fg′′

2 [(fg′)2 − (f ′g)2]3/2
(21)

Apart from the previous results, we could not completely solve our problem when H(y, z) is noncon-
stant and

∂H(y, z)

∂y
= 0 or

∂H(y, z)

∂z
= 0 (22)

But we have an example indicating the existence of the graphs x(y, z) = f(y)g(z) when Equation (22)
holds.

Example 4.2. Let a, b, c ∈ R−{0}, up to a change in the roles of the functions f, g, g(z) = aebz and

f(y) = c exp

±
∫ y

((
2a

∫ y

h(s)ds

)−2

+ a−2

)−1/2

ds

 (23)

Then, the mean curvature of the graph x(y, z) = f(y)g(z) only depends on the variable y.

For the solution of Example, we set α = f
f ′ and β = g

g′ . Then, Equation (21) is now

H(x, y) = − αβ(α′ + β′)

2(α2 − β2)
3/2

(24)

Up to a change in the roles of the functions f, g, suppose that β is constant, or equivalently, g(z) = aebz,
for some nonzero constants a, b. Equation (24) is

−2aH(x, y) =
αα′

(α2 − a−2)3/2
(25)

which means that H(x, y) only depends on the variable y. Put H(x, y) = h(y), for some smooth
function h(y). Integrating Equation (25) gives the result of Example.

5. Conclusion

In this paper factorable surfaces are classified when the mean and Gaussian curvatures are functions
of one variable in the pseudo-Galilean space. We have obtained that if the Gaussian curvature K of
the graph z (x, y) = f (x) g (y) is a non-constant function of one variable then it is a negative function
of the form K = k (x). Furthermore, the graph is a cylindrical ruled surface of type 3 and if the mean
curvature H of the graph z (x, y) = f (x) g (y) is a non-constant function of one variable then it is
of the form H = h (y) and the graph is a cylindrical ruled surface of type 3. Also we have shown
that there does not exist a graph x(y, z) = f(y)g(z) in G1

3 when its mean curvature depends on one
variable.
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