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Abstract − This paper presents the roots of elliptic scator numbers in S1+n, which includes
both the fundamental 2π symmetry and the π-pair symmetry for n ≥ 2. Here, the scator
set S1+n is a subset of R1+n with the scator product and the multiplicative representation.
These roots are expressed in terms of both additive (rectangular) and multiplicative (polar)
variables. Additionally, the paper provides a comprehensive description of square roots in
S1+2, which includes a geometrical representation in three-dimensional space that provides a
clear visualization of the concept and makes it easier to understand and interpret. Finally,
the paper handles whether the aspects should be further investigated.

Keywords Roots, non-distributive algebras, hypercomplex numbers
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1. Introduction

Due to the extra number of dimensions, hypercomplex number systems generally have a larger set of
roots than those obtained in the complex plane. However, the number of roots varies considerably
depending on the algebraic system [1]. The existence of roots and the obtention of their actual value
are two different problems, just as in polynomial real algebra. Formulae to find the roots in diverse
systems is subject to active research [2].

Scator algebra is an extension of complex algebra to higher dimensions where the real axis is unique,
but there can be an arbitrary number n of hyperimaginary units. In the scator context, the scalar
component corresponds to the real part, and each of the n director components corresponds to the
imaginary part of a different complex set. In this sense, there are n copies of the complex set embedded
in a 1+n dimensional scator algebra, just as in Clifford algebras. A geometric representation of scator
elements is possible in Argand type diagrams with the appropriate increase of extra imaginary axes. In
accordance with Froebenius Theorem and accord with other algebraic systems, not all group properties
can be satisfied for scators for n ≥ 2. Scator algebra is endowed with addition and product operations
and a main second-order involution. However, a peculiarity of the scator system is that the product
is generally not distributive over addition. The scator product definition gives rise to two branches,
elliptic and hyperbolic [3], that are, to some extent, related to Clifford algebras and higher dimensional
versions of complex and perplex algebras [4]. This communication is devoted to the description of
roots of elliptic scators, also referred to as imaginary or cuspheric scators.
1mfg@xanum.uam.mx (Corresponding Author)
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A general description of the roots of elliptic scators relies on two main theorems that give rise to the
Victoria equations in the multiplicative and additive representations. The former establishes that an
exponent 1

q distributes over the scator component factors. The latter translates this result to the
additive representation retaining the multiplicative (angle) variables. The Victoria equation in the
additive representation may be viewed as a higher dimensional version of the de Moivre theorem.
In [5], these theorems were presented, and several cases were expounded with particular emphasis in
the roots of unity. An asset of scator roots is that their number is always finite, contrasting with some
infinite solutions obtained in Clifford algebras [6].

In the present communication, the multiplicity of roots is treated in general in the multiplicative
(polar) and additive (rectangular) representations in Sections 2 and 3. Particular attention is given to
the π-pair symmetry overseen in the seminal publication [5]. The reader may choose to skip the two
initial sections in the first approach, where arbitrary S1+n dimensions and q roots are undertaken. In
the remaining manuscript, square roots in S1+2 are treated in detail. In Section 4, square roots in the
additive representation are expounded using multiplicative angle variables and additive rectangular
variables. In Section 5, the geometric representation of scators and their construction via the addition
or product of their components is described. In Subsection 5.1, the geometric visualization of the
square root in S1+2 is presented. Conclusions are drawn in the last section.

2. Scators Roots

Scator elements in the multiplicative representation are written as a product of exponentials

o
φ = φ0

n∏
j=1

eφj ěj ∈ S1+n

where the multiplicative scalar φ0 and the multiplicative director coefficients φj , for j from 1 to n ∈ N,
are real quantities and ěj /∈ R. The scator set S1+n is a subset of R1+n where the scator product
and the multiplicative representation exist. The product of two scators is evaluated by performing
the multiplicative scalars product and the addition of the multiplicative director coefficients with the
same director unit,

o
α

o
β =

(
α0

n∏
j=1

exp (αj ěj)
)(

β0

n∏
j=1

exp (βj ěj)
)

= α0β0

n∏
j=1

exp [(αj + βj) ěj ]

The components having the same director ěj satisfy the addition theorem for exponents. In contrast,
components with different director units ěl and ěm (l ̸= m) do not, i.e., exp (αlěl) exp (βměm) ̸=
exp (αlěl + βměm). An expression for the exponential of a scator with 1+2 components has been
derived in [7]. The conjugate of the scator o

φ = φ0
∏n

j=1 eφj ěj is obtained by taking the negative of

the director components o
φ

∗
≡ φ0

∏n
j=1 e−φj ěj . The magnitude of a scator o

φ is
∥∥ o
φ
∥∥ =

√
o
φ

o
φ

∗
= φ0, the

multiplicative scalar thus represents the scator magnitude. The multiplicative inverse o
φ

−1
= o

φ
∗∥∥ o

φ
∥∥−2

exists, if the scator magnitude is not zero. The additive representation of scator elements is

o
φ = f0 +

n∑
j=1

fj ěj

where the additive scalar component f0 and the additive director components fj , for j from 1 to n ∈ N,
are real quantities and ěj /∈ R. The scator set S1+n requires that the additive scalar component must
be different from zero, if two or more additive director components are not zero,

S1+n =
{

o
φ = f0 +

n∑
j=1

fj ěj : f0 ̸= 0 if ∃ fjfl ̸= 0, for any j ̸= l
}
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The multiplicative and additive representations are related by

o
φ = φ0

n∏
j=1

eφj ěj = φ0

n∏
k=1

cos (φk) + φ0

n∑
j=1

n∏
k ̸=j

cos (φk) sin (φj) ěj = f0 +
n∑

j=1
fj ěj

If f0 ̸= 0, then the magnitude in terms of additive variables is given by

∥∥ o
φ
∥∥ = |f0|

n∏
j=1

√√√√1 +
f2

j

f2
0

(1)

and if f0 = 0, then
∥∥ o
φ
∥∥ = |fj |. A constant magnitude generates the cusphere isometric surface. Other

relevant properties of elliptic scator algebra are summarized in [7].

In S1+1, the multiplicity of roots is due to the trigonometric functions 2π periodicity. Scators with a
single director component are isomorphic to the set of complex numbers, i.e., S1+1 ∼= C. Thus, the q

roots familiar from complex algebra are reproduced, for each ěj , if all the other director components
vanish. In S1+2 or higher dimensions (S1+n, n ≥ 2), the 2π trigonometric functions periodicity can
be applied to each of the n φj ’s. Then, there are q roots per each of the n hypercomplex director
directions. According to this reasoning, Corollary 1 in [5] stated incorrectly: “There are at most qn

different roots for a scator o
φ ∈ S1+n raised to the power 1

q ”. In scator algebra, when two or more hyper-
imaginary units are present, the arguments of two multiplicative components can be simultaneously
modified by π. Their product leaving the element invariant. This symmetry increases the multiplicity
of the roots. These assertions are formulated in the following propositions.

Definition 2.1. The π-pair transformation symmetry requires the simultaneous displacement by π of
the argument of two multiplicative director components of a scator element. Given o

φ = φ0
∏n

j=1 eφj ěj ∈
S1+n, a π-pair transformation o

φ → o
φ

′
is

o
φ

′
= φ0

n∏
j ̸=l,m

eφj ěj e(φl±π)ěle(φm±π)ěm

for any l, m pair from 1 to n.

Proposition 2.2. Elliptic scators are invariant under π-pair transformations.

Proof.
For the components ěl and ěm of a scator o

φ = φ0
∏n

j=1 eφj ěj ,

o
φ = φ0

n∏
j ̸=l,m

eφj ěj eφlěleφměm ∈ S1+n

Perform a π-pair displacement of the components ěl and ěm

o
φ

′
= φ0

n∏
j ̸=l,m

eφj ěj e(φl±π)ěle(φm±π)ěm = φ0

n∏
j ̸=l,m

eφj ěj eφlěleφměme±πěle±πěm

then
o
φ

′
= o

φe±πěle±πěm = o
φ (−1) (−1) = o

φ

This π-pair displacement can be carried over an arbitrary pair of components. Therefore,

o
φ

′
= φ0

n∏
j=1

e(φj+σjπ)ěj = o
φ

for σj = 1 applied in pairs. If σj = 0, then the jth component is unaltered.
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Corollary 2.3. The π-pair displacement of components k and l and subsequent π-pair displacement
of k and m is equal to the π-pair displacement of l and m.

Proof.
The k and l π-pair displacement is

φ0

n∏
j ̸=k,l,m

eφj ěj exp ((φk + π) ěk) exp ((φl + π) ěl) exp (φměm)

and the subsequent k and m π-pair displacement is

φ0

n∏
j ̸=k,l,m

eφj ěj exp ((φk + π + π) ěk) exp ((φl + π) ěl) exp ((φm + π) ěm)

Due to the 2π symmetry this scator is equal to

φ0

n∏
j ̸=k,l,m

eφj ěj exp (φkěk) exp ((φl + π) ěl) exp ((φm + π) ěm)

that is the l and m π-pair displacement.

In the multiplicative representation, Theorem 1 in [5] established the roots of a scator due to the 2π

trigonometric periodicity. This theorem can now be extended to include the roots arising from the
π-pair symmetry.

Theorem 2.4. In the multiplicative representation, for a scator o
φ = φ0

∏n
j=1 eφj ěj ∈ S1+n raised to

the power 1
q such that q ∈ Z, the exponent 1

q distributes over the scator component factors

o
φ

1
q =

(
φ0

n∏
j=1

eφj ěj

) 1
q

= φ
1
q

0

n∏
j=1

e
1
q

(φj+2πrj+σjπ)ěj (2)

where rj ∈ Z, from 0 to q − 1 and σj is 0 or 1, the sum of all σj is even, for j from 1 to n.

Proof.
Let o

φ =
o
ζ

q

. From the distributivity of an integer exponent over the scator factors, stated in Theorem
3 [7],

o
φ = φ0

n∏
j=1

exp ((φj + 2πrj + σjπ) ěj) =
(

ζ0

n∏
j=1

exp (ζj ěj)
)q

= ζq
0

n∏
j=1

exp (qζj ěj)

equating components, φ0 = ζq
0 and φj + 2πrj + σjπ = qζj , where rj ∈ Z takes values from 0 to q − 1

and σj = 0 or 1 in pairs, for each subindex j. The 2πrj addend in the argument makes explicit
the fundamental symmetry of the exponential function with unit directors that satisfy ěj ěj = −1.
Whereas the even sum of σj exhibits the π-pair symmetry of components couples. Evaluate the above
equation to the power 1

q ,

o
φ

1
q =

(
φ0

n∏
j=1

exp (φj ěj)
) 1

q

= ζ0

n∏
j=1

exp (ζj ěj)

Substitute ζj = φj+2πrj+σjπ
q and ζ0 = φ

1
q

0 , Equation 2,

o
φ

1
q =

(
φ0

n∏
j=1

exp (φj ěj)
) 1

q

= φ
1
q

0

n∏
j=1

exp
(1

q
(φj + 2πrj + σjπ) ěj

)
is obtained.

Corollary 2.5. A scator o
φ ∈ S1+n to the power 1

q has at most 2pqn different roots, where p is the
number of different π-pair possibilities.
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Proof.
For rj ∈ Z, from 0 to q − 1, there are q possible arguments for each of the n director components.
Therefore, there are qn possible permutations. For each of them, there is a number p of π-pair
possibilities, where every π-pair has two possible values. Thus, there are 2p qn possible configurations.

In many cases, the number of different roots is less than 2pqn, either because some root values are
repeated or involve only a single director component. Restricted to S1+2, o

φ = φ0eφxěxeφy ěy , where
in low dimensions x, y, z lower case roman letters are used instead of numbering the subindices. The
multiplicative Victoria Equation 2 is then

o
φ

1
q =

(
φ0eφxěxeφy ěy

) 1
q = φ

1
q

0 e
1
q

(φx+2πrx+σπ)ěxe
1
q

(φy+2πry+σπ)ěy (3)

where rx, ry ∈ Z, from 0 to q − 1 and σ = 0, 1. For S1+2, there is only one π-pair possibility, both
components with either 0 or π phase shift. Thus, there are at most 2q2 roots in S1+2.

3. Roots in the Additive Representation

Theorem 2 in [5] establishes the equation for the roots of scator numbers with the multiplicity due to
the fundamental 2π symmetry of the trigonometric functions. This theorem is extended here in order
to encompass the roots arising from the π-pair symmetry.

Theorem 3.1. A scator o
φ ∈ S1+n raised to the power 1

q , q ∈ Z, in the additive representation satisfies
the Victoria equation

o
φ

1
q =

(
φ0
∏n

k=1 cos φk +
∑n

j=1 φ0
∏n

k ̸=j cos φk sin φj ěj

) 1
q

=
o
ζr1r2···rn,σ1σ2···σn

= φ
1
q

0
∏n

k=1 cos
(

1
q (φk + 2πrk + σkπ)

)
+
∑n

j=1 φ
1
q

0
∏n

k ̸=j cos
(

1
q (φk + 2πrk + σkπ)

)
sin
(

1
q (φj + 2πrj + σjπ)

)
ěj

(4)

for rj ∈ Z, from 0 to q − 1, and σk, σj = 0 or 1, where
∑n

k=1 σk is even for j, k from 1 to n. Provided
that the q products of

o
ζ

q

r1r2···rn,σ1σ2···σn
and its n components are associative for a given set of rj ’s and

σ-pairs ,
o
ζr1r2···rn,σ1σ2···σn

is a root of o
φ =

o
ζ

q

r1r2···rn,σ1σ2···σn
.

Proof.
The sum of σk is even if the value of 1 is always assigned in pairs. For each pair σl = σm = 1,
l ̸= m from 1 to n, the φl and φm arguments of the trigonometric functions are displaced by π.
The scator o

φ = φ0
∏n

k=1 cos φk +
∑n

j=1 φ0
∏n

k ̸=j cos φk sin φj ěj is left unchanged by this transfor-
mation since cos (φl + π) cos (φm + π) = cos φl cos φm, cos (φm + π) sin (φl + π) = cos φm sin φl and
cos (φl + π) sin (φm + π) = cos φl sin φm. For odd n director dimension, the remaining unpaired φj

should not be displaced to leave o
φ invariant. This π-pair symmetry is carried through to the RHS of

Equation 4. Write the scator o
φ =

o
ζ

q

r1r2···rn,σ1σ2···σn
in the additive representation with multiplicative

variables

φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj =
(

ζ0

n∏
k=1

cos ζk +
n∑

j=1
ζ0

n∏
k ̸=j

cos ζk sin ζj ěj

)q

(5)

From Theorem 4 in [7], that generalizes De Moivre formula to S1+n scator space, provided that the
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product of the factors and its components are associative,

φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj = ζq
0

n∏
k=1

cos (qζk) +
n∑

j=1
ζq

0

n∏
k ̸=j

cos (qζk) sin (qζj) ěj (6)

Equating the additive scalar components

φ0

n∏
k=1

cos (φk + 2πrk + σkπ) = ζq
0

n∏
k=1

cos (qζk) (7)

whereas for each j director component

φ0

n∏
k ̸=j

cos (φk + 2πrk + σkπ) sin (φj + 2πrj + σjπ) ěj = ζq
0

n∏
k ̸=j

cos (qζk) sin (qζj) ěj

where the fundamental 2π symmetry of the trigonometric functions as well as the π-pair symmetry
are written explicitly, each rj ∈ Z goes from 0 to q − 1 and σl = σm = 0, 1 are set in pairs with
equal values, any unpaired σ is set equal to zero. If all ěj coefficients are zero except one, say the
ěl coefficient, φ0 sin (φl + 2πrl + σlπ) = ζq

0 sin (qζl) and the relationship between angles is straightfor-
ward. In this case, σl is unpaired and equal to zero. If two or more ěj coefficients are different from
zero, cos (φj + 2πrj + σjπ) ̸= 0 and cos (qζj) ̸= 0 for all j, since o

φ ∈ S1+n. The products can then be
completed for all k and each of the ěj equations become

φ0

n∏
k=1

cos (φk + 2πrk + σkπ) tan (φj + 2πrj + σjπ) ěj = ζq
0

n∏
k=1

cos (qζk) tan (qζj) ěj

With the use of Equation 7,

tan (qζj) = tan (φj + 2πrj + σjπ) ⇒ ζj = 1
q

(φj + 2πrj + σjπ) (8)

for all j from 1 to n. Replace the angles ζk = 1
q (φk + 2πrk + σjπ) in Equation 7, to find ζ0 = φ

1
q

0 .
Evaluate Equation 5 to the power 1

q ,

o
φ

1
q =

(
φ0

n∏
k=1

cos φk +
n∑

j=1
φ0

n∏
k ̸=j

cos φk sin φj ěj

) 1
q

=
o
ζr1r2···rn,σ1σ2···σn

= ζ0
n∏

k=1
cos ζk +

n∑
j=1

ζ0
n∏

k ̸=j
cos ζk sin ζj ěj

Rewrite the ζj variables in terms of φj from Equation 8 to obtain,

o
φ

1
q =

o
ζr1r2···rn,σ1σ2···σn

=
(

φ
1
q

0

n∏
k=1

cos
(1

q
(φk + 2πrk + σkπ)

)

+
n∑

j=1
φ

1
q

0

n∏
k ̸=j

cos
(1

q
(φk + 2πrk + σkπ)

)
sin
(1

q
(φj + 2πrj + σjπ)

)
ěj

)

The derivation of Equation 6 from Equation 5 required associativity of the
o
ζ

q

r1r2···rn
products. How-

ever, due to the multi-valued inversion that followed, it is possible that for certain
o
ζr1r2···rn,σ1σ2···σn

solutions, some of the q products of
o
ζ

q

r1r2···rn,σ1σ2···σn
do not satisfy associativity. From [8] Theorem 2.1,

associativity is insured if all possible product pairs have a non vanishing additive scalar component.
For each

o
ζr1r2···rn,σ1σ2···σn

to be a root,
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o
ζ

q

r1r2···rn,σ1σ2···σn
=
[
φ

1
q

0
n∏

k=1
cos

(
1
q (φk + 2πrk + σkπ)

)
+

n∑
j=1

φ
1
q

0
n∏

k ̸=j
cos

(
1
q (φk + 2πrk + σkπ)

)
sin
(

1
q (φj + 2πrj + σjπ)

)
ěj

]q

=
n∏

j=1

(
cos

(
1
q (φk + 2πrk + σkπ)

)
+ sin

(
1
q (φj + 2πrj + σjπ)

)
ěj

)q

(9)

must be associative. Thus, none of the q × n products should give a scator with zero additive scalar
component if two or more director coefficients are different from zero, then

o
ζr1r2···rn,σ1σ2···σn

satisfies
o
ζ

q

r1r2···rn,σ1σ2···σn
= o

φ.

The scator roots are identical in the multiplicative representation (Theorem 2.4) or the additive
representation (Theorem 3.1), unless obstructed by the lack of associativity. Recall that associativity
is not an issue in the multiplicative representation. However, in the additive representation, non-
associative products can lead to spurious roots. This problem is discussed at length in [5].

4. Square Roots in 1+2 Dimensions

Lemma 4.1. The square roots of o
φ = φ0 cos φx cos φy + φ0 cos φy sin φx ěx + φ0 cos φx sin φy ěy, are

o
φ

1
2 =

o
ζ±,0 = ±φ

1
2
0

(
cos φx

2 cos φy

2 + cos φy

2 sin φx

2 ěx + cos φx

2 sin φy

2 ěy

)
(10)

and from the π-pair symmetry
o
φ

1
2 =

o
ζ±,1 = ±φ

1
2
0

(
sin φx

2 sin φy

2 − sin φy

2 cos φx

2 ěx − sin φx

2 cos φy

2 ěy

)
(11)

Proof.
For q = 2 in S1+2, from the Victoria Equation 4 in Theorem 3.1, the roots of o

φ are
o
φ

1
2 = φ

1
2
0 cos

(φx

2 + σπ
2 + πrx

)
cos

(φy

2 + σπ
2 + πry

)
+ φ

1
2
0 cos

(φy

2 + σπ
2 + πry

)
sin
(φx

2 + σπ
2 + πrx

)
ěx

+φ
1
2
0 cos

(φx

2 + σπ
2 + πrx

)
sin
(φy

2 + σπ
2 + πry

)
ěy

=
o
ζrxry ,σ

for rx, ry, σ = 0, 1. In this particular case, the rx, ry different values change the sign of all components,
− for rx ̸= ry and + for rx = ry. This degeneracy halves the number of roots arising from the 2π

symmetry from qn = 4 to 2,
o
φ

1
2 = ±φ

1
2
0
[
cos

(φx

2 + σπ
2
)

cos
(φy

2 + σπ
2
)

+ cos
(φy

2 + σπ
2
)

sin
(φx

2 + σπ
2
)

ěx

+ cos
(φx

2 + σπ
2
)

sin
(φy

2 + σπ
2
)

ěy
]

=
o
ζ±,σ

(12)

The multiplicity coming from the π-pair symmetry is 2p = 2, since there is only one possible pairing.
Hence, the total number of possibly different square roots is 4. If σ = 0 in Equation 12, two of the
square roots are given by Equation 10. If σ = 1, the other two square roots, since cos

(φj

2 + π
2
)

=
− sin φj

2 and sin
(φj

2 + π
2
)

= cos φj

2 , are given by Equation 11.

In the subsets S1+1, where either the ěx or ěy coefficient is different from zero, there are two roots
since these subspaces are isomorphic to the complex plane. In [5], it was wrongly stated that “For
elements o

φ ∈ S1+n \ S1+0, there are only two different square roots in the additive representation”.
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The π-pair symmetry now included, has corrected this mistake. There can be, as shown above, up
to four different square roots in S1+2 \ S1+1. The number of 2pqn roots in S1+n for n > 2 increase
considerably due to the π-pair p different pairing possibilities as well as the n dimensions.

4.1. Square roots with additive variables

Lemma 4.2. The square roots of o
φ = s + x ěx + y ěy are√

o
φ =

o
ζ±,0

= ±1
2

√
1
|s|

[√(√
s2 + x2 + s

) (√
s2 + y2 + s

)
+sgnx

√(√
s2 + x2 − s

) (√
s2 + y2 + s

)
ěx

+sgny

√(√
s2 + x2 + s

) (√
s2 + y2 − s

)
ěy

]
(13)

and for the π-pair symmetry√
o
φ =

o
ζ±,1

= ±1
2

√
1
|s|

[
sgnx sgny

√(√
s2 + x2 − s

) (√
s2 + y2 − s

)
−sgny

√(√
s2 + x2 + s

) (√
s2 + y2 − s

)
ěx

−sgnx

√(√
s2 + x2 − s

) (√
s2 + y2 + s

)
ěy

]
(14)

Proof.
The scator o

φ = φ0 cos φx cos φy + φ0 cos φy sin φx ěx + φ0 cos φx sin φy ěy in terms of additive variables
is o

φ = s + x ěx + y ěy. The relationship between multiplicative and additive variables is

s = φ0 cos φx cos φy, x = φ0 cos φy sin φx, y = φ0 cos φx sin φy.

From the quotient of the directors over the scalar coefficient
x

s
= tan φx, ⇒ cos φx = s√

s2 + x2
and y

s
= tan φy, ⇒ cos φy = s√

s2 + y2 (15)

In order to write the square roots in terms of the additive variables, rewrite the half angles in terms
of angles cos φ

2 = 1√
2
√

1 + cos φ and sin φ
2 = 1√

2
√

1 − cos φ. These substitutions put together give

cos
(

φx

2

)
cos

(
φy

2

)
= 1

2

√√√√(1 + s√
s2 + x2

)(
1 + s√

s2 + y2

)
(16)

sin
(

φx

2

)
cos

(
φy

2

)
= sgnx

2

√√√√(1 − s√
s2 + x2

)(
1 + s√

s2 + y2

)
(17)

sin
(

φy

2

)
cos

(
φx

2

)
= sgny

2

√√√√(1 + s√
s2 + x2

)(
1 − s√

s2 + y2

)
(18)

sin
(

φx

2

)
sin
(

φy

2

)
= sgnx sgny

2

√√√√(1 − s√
s2 + x2

)(
1 − s√

s2 + y2

)
(19)
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where sgn is the sign function. The scator magnitude from Equation 1 is

∥∥ o
φ
∥∥ = φ0 = |s|

√
1 + x2

s2

√
1 + y2

s2 = 1
|s|
√

s2 + x2
√

s2 + y2

Evaluate the product of the magnitude’s square root

√
φ0 =

√
1
|s|
√

s2 + x2
√

s2 + y2

times Equations 16-19. Substitution in Equation 10, Lemma 4.1, gives Equation 13. The π-pair
multiplicity is obtained from substitution in Equation 11.

If x or y are zero, the usual square root of a complex number is recovered. For example, from Equation
13, if y = 0,

√
o
φ = ±

(
1√
2

√√
s2 + x2 + s + sgnx√

2

√√
s2 + x2 − s ěx

)
. The x or y zero limit does not

make sense for
o
ζ±,1, because these novel roots arise from the π-pair symmetry that requires at least

two nonvanishing director components.

Corollary 4.3. The square roots of o
φ = s + x ěx + y ěy lie on the plane

(cos φx − cos φy) S + sin φx X − sin φy Y = 0 (20)

that in additive variables is

s

(√
s2 + x2 −

√
s2 + y2

)
S − x

√
s2 + y2 X + y

√
s2 + x2 Y = 0 (21)

Proof.
Since the roots come in ± pairs, zero must be on the plane where the roots lie. Let this plane be
a0S + axX + ayY = 0. Substitute the positive value of the roots Equations 10 and 11, upon division
by cos φx

2 cos φy

2 , the equations are

a0 + tan φx

2 ax + tan φy

2 ay = 0 and a0 − cot φx

2 ax − cot φy

2 ay = 0

Write the semiangles in terms of angles tan θ
2 = sin θ

1+cos θ and cot θ
2 = sin θ

1−cos θ . Isolate sin φy ay and add
the two equations

2a0 +
[(1 + cos φy)

1 + cos φx
− (1 − cos φy)

1 − cos φx

]
sin φxax = 0

Upon rearrangement

ax = − sin φx

(cos φy − cos φx)a0, ay = − sin φy

(cos φx − cos φy)a0

where ay follows an analogous procedure. From

a0S − sin φx

(cos φy − cos φx)X − sin φy

(cos φx − cos φy)a0Y = 0

Equation 20 is obtained. A similar procedure starting with Equations 13 and 14 gives Equation 21.

This result is particular to square roots. Higher order roots no longer lie on a plane as evinced by
cube and higher order roots in [5].

In the multiplicative representation, the square roots in S1+2 from Equation 3 with q = 2, are

o
φ

1
2 =

(
φ0eφxěxeφy ěy

) 1
2

= φ
1
2
0 e( φx

2 +σ π
2 +πrx)ěxe( φy

2 +σ π
2 +πry)ěy (22)

for σ = 0, 1 and rx = 0, 1 and ry = 0, 1. The eπrxěx and eπry ěy factors introduce a minus sign if
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rx ̸= ry. The four possibly distinct square roots of a scator o
φ = φ0eφxěxeφy ěy are

o
φ

1
2 = ±φ

1
2
0 e

φx
2 ěxe

φy
2 ěy , ±φ

1
2
0 e( φx

2 + π
2 )ěxe( φy

2 + π
2 )ěy (23)

5. Geometric visualization

The scalar and the two director components of a scator o
φ ∈ S1+2 can be depicted in orthogonal

directions in a three dimensional space as shown in Figure 1.

Figure 1. Geometrical representation of the unit magnitude (φ0 = 1) scator o
φ = cos φx cos φy +

cos φy sin φx ěx + cos φx sin φy ěy. In additive variables o
φ = s + x ěx + y ěy.

1. The additive components of a scator o
φ = s+x ěx +y ěy can be represented as directed line segments

in the s, ěx, ěy axes respectively.

2. In terms of the multiplicative variables:

(a) φ0 is the distance given by the scator magnitude of the point o
φ to the origin,

(b) φx is the angle that the projection of the point o
φ onto the s, x plane makes with the positive

scalar axis and,

(c) φy is the angle of the projection onto the s, y plane with the positive scalar axis.

3. A scator can be constructed from the sum of its components, o
φ = (s) + (x ěx) + (y ěy). This

procedure is visualized with dash-dot blue lines in Figure 1. The tip of the o
φ scator does not match

the sum of the three components because the scator magnitude is not an Euclidean magnitude.

4. A scator can also be constructed by the sum of two scators with a scalar component, o
φsx = s+x ěx =

cos φyeφxěx and o
φsy = s + y ěy = cos φxeφy ěy . o

φsx and o
φsy are depicted by green dashed lines with

arrows in Figure 1. However, the additive inverse of the scalar component has to be added to achieve
the appropriate result o

φsx+ o
φsy −s = 2s+x ěx+y ěy −s = s+x ěx+y ěy. Having a scalar and a director

component, permits the representation in polar coordinates. Notice that the o
φsx and o

φsy scators have a
somewhat smaller magnitude than their counterparts in the multiplicative representation. The scators
eφxěx = cos φx + sin φxěx and eφy ěy = cos φy + sin φyěy have been depicted in the figure ending with
a dot. The scators o

φsx = s + x ěx and eφxěx are collinear, thus are o
φsy = s + y ěy and eφy ěy .
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5. Scators can also be constructed from the product of their components,
o
φ = s + x ěx + y ěy = 1

s

o
φsx

o
φsy = 1

s
(s + x ěx) (s + y ěy)

provided that product with the multiplicative inverse of the additive scalar component is included.
In the multiplicative representation, o

φ = φ0eφxěxeφy ěy is equal to the product of the multiplicative
director components o

φ = o
φx

o
φy =

(√
φ0eφxěx

) (√
φ0eφy ěy

)
, where the magnitude has been symmet-

rically split between components. This product can be seen as a rotation of the √
φ0eφxěx scator by

φy in the ěy direction (plane depicted in semitransparent yellow). It can of course be seen the other
way around, a rotation in the ěx direction (plane depicted in semitransparent green) of the scator
√

φ0eφy ěy .

This last property of scators is in sharp contrast with vector elements, where the product of components
cannot be used to construct a several component vector.

Scator products geometrically represent rotations, although the term rotation is a bit of an abuse. The
product of an arbitrary scator with a unit scator geometrically represents a rotation that preserves
the scator magnitude. However, they are not rotations in the Euclidean sense because the Euclidean
metric is not preserved. For this reason, the end point of the scator o

φ is not equal to the end point
of the three components sum. In contrast, the tip of each of the o

φsx or o
φsy scators coincides with the

sum s + xěx or s + yěx respectively, since the scator magnitude in 1 + 1 dimensions is equal to the
Euclidean magnitude.

5.1. Geometric representation of the square root

The scator square roots involve halving the φx and φy angles and taking the square root of the
magnitude φ0. Some of the square roots also involve adding a π and/or a π

2 term to the argument.
The scator angles and half angles without any other terms are geometrically depicted in Figure 2.

Figure 2. Geometrical representation of a square root
√

o
φ of a scator o

φ. The φx and φy angles are
halved and the square root of the magnitude is evaluated.

A scator o
φ (in green) is projected in the s, ěx and s, ěy planes (green dotted lines). The angles φx

and φy are the angles that these projections make with respect to the scalar s axis. These angles are
halved and represent the projections of the resultant scator

√
o
φ (in red). A unit magnitude scator is

assumed, so that the tip of both scators must lie on the unit cusphere surface.
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The projection of o
φ in the s, ěx plane (green dotted line) is the scator o

φx = eφxěx . It is a unit
magnitude hypotenuse with projections cos φx and sin φx in the s and ěx axes, that correspond to the
additive representation of this scator o

φx = eφxěx = cos φx + sin φx ěx. The scator magnitude of o
φx,

from Equation 1 is
∥∥ o
φ
∥∥ = |f0|

√
1 + f2

x

f2
0

=
√

f2
0 + f2

x , equal to the Pythagorean identity. The scator

magnitude
√

s2 + x2 in S1+1 is identical to the Euclidean magnitude. Thus, a right angle triangle
where the tip of the hypotenuse matches the sum of the directed catheti is obtained.

An analogous result is obtained for the projection of o
φ in the s, ěy plane (green dotted line), o

φy =
eφy ěy = cos φy +sin φy ěy. Again, a unit magnitude hypotenuse is made up from a right angle triangle,
but this time in the s, ěy plane.

The product of these two projections o
φ = o

φx
o
φy =

(
eφxěx

) (
eφy ěy

)
, construct the o

φ scator. Its additive
representation is o

φ = cos φx cos φy + cos φy sin φx ěx + cos φx sin φy ěy. Its magnitude, from Equation
1 is ∥∥ o

φ
∥∥ = |s|

√
1 + x2

s2

√
1 + y2

s2 =

√
s2 + x2 + y2 + x2y2

s2

It is no longer the sum of three squares but has the x2y2

s2 term. The magnitude of this scator is one,∥∥ o
φ
∥∥ =

√
cos2 φx cos2 φy + cos2 φy sin2 φx + cos2 φx sin2 φy + sin2 φx sin2 φy = 1

where the last term x2y2

s2 = cos2 φy sin2 φx cos2 φx sin2 φy

cos2 φx cos2 φy
is crucial to attain this result. The tip of the

scator o
φ = s + x ěx + y ěy, cannot match the tip of the directed sum of the three components (That

would imply a magnitude
√

s2 + x2 + y2).

The o
φ scator root (in red) is now the product of the two projection scators e

φx
2 ěx and e

φy
2 ěy . It also

has unit magnitude and is leaned closer to the s axis in both ěx and ěy as expected for smaller angles.

Figure 3. Roots (green points) of o
φ = cos π

6 cos π
5 + cos π

5 sin π
6 ěx + cos π

6 sin π
5 ěy (red point). The

origin is located at the black point. The
(
2
√

3 − 1 −
√

5
)

s + 2 x − 2
√

5
2 −

√
5

2 y = 0 plane is shown in
semitransparent yellow. The four roots lie on this plane but not the o

φ scator (red).
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Consider as a numeric example, the scator

o
φ =

√
3

8
(√

5 + 1
)

+ 1
8
(√

5 + 1
)

ěx + 1
4

√
3
2
(
5 −

√
5
)

ěy

where the values have been chosen so that the two different angles are rational (relative primes)
functions of π. From Equation 13, two roots are given by

o
ζ±,0 = ±


(√

3 + 1
)√

5 +
√

5
8 +

(√
3 − 1

)√
5 +

√
5

8 ěx +

(√
3 + 1

) (√
5 − 1

)
8
√

2
ěy


and the other two π-pair symmetry roots from Equation 14 are

o
ζ±,π = ±


(√

3 − 1
) (√

5 − 1
)

8
√

2
−

(√
3 + 1

) (√
5 − 1

)
8
√

2
ěx −

(√
3 − 1

)
8

√
5 +

√
5 ěy


This scator in multiplicative variables is

o
φ = cos π

6 cos π

5 + cos π

5 sin π

6 ěx + cos π

6 sin π

5 ěy

Its roots from Equations 10 and 11 are
o
φ

1
2 =

o
ζ±,0 = ±

(
cos π

12 cos π

10 + cos π

10 sin π

12 ěx + cos π

12 sin π

10 ěy

)
and

o
φ

1
2 =

o
ζ±,1 = ±

(
sin π

12 sin π

10 − sin π

10 cos π

12 ěx − sin π

12 cos π

10 ěy

)
These roots are depicted in Figure 3. The equation of the plane where the four roots lie, from Equation
21 is (

2
√

3 − 1 −
√

5
)

s + 2 x − 2

√
5
2 −

√
5

2 y = 0

Figure 4. Projections of the roots (green points) of o
φ (red point) in the s, ěx (left) and s, ěy (right)

planes.

The halving of the angles is not at all evident in the three dimensional plot. However, in Figure 4,
where the projections in the s, ěx and s, ěy planes are shown, the angle division is clearly depicted.
Furthermore, the other three roots,

o
ζ−,0,

o
ζ+,1 and

o
ζ−,1 are seen as π, π

2 and π+ π
2 rotations respectively

of the first root.
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6. Conclusion

Scator roots exist in S1+n, and their values in the multiplicative and additive representations are
given in closed forms by the Victoria equations in Theorems 2.4 and 3.1. These extended versions of
previous theorems exhaust all possible values for the roots of a scator. The multiplicity of the qth root
of a scator o

φ ∈ S1+n is at most 2pqn, where p is the number of different π-pair possibilities (Corollary
2.5). The qth root of a scator involves the division of the scator angles by q. The φj angles are the
multiplicative director components of the scator. They can be represented geometrically as the angle
of the projections in the s, ěj planes. The square root of a scator in S1+2 has at most four different
values that are contained in a plane (Corollary 4.3). Their values are given by Lemmas 4.1 and 4.2.
These roots can be nicely depicted in three-dimensional space with the s, x ěx and y ěy components
drawn in orthogonal axes. The geometric construction of a scator by adding its components is not
surprising since vectors and other algebraic structures exhibit this feature. However, the construction
of a 1 + n dimensional scator via the product of its 1 + 1 components is quite novel and uncommon in
most algebraic structures.

In future studies, the square roots obtained here may be successfully used to find the inverse orbits
in the quadratic iteration dynamic scator space. Thus, an algorithm for visualizing the scator fractal
Julia sets in 1+2D may be provided. Moreover, this square roots inverse visualization procedure
may be implemented. We believe the present results also pave the way for studies on considering
higher-order roots and evaluating square roots in higher dimensional scator spaces.
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