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Abstract: In this study, Response surface methodology (RSM) and innovative Group Method of Data Handling 
(GMDH) approaches are applied to investigate the optimal process conditions of Zinc Chloride activated cashew 

nut production process. The effects of activation conditions (i.e. activation temperature, activation time, and 
impregnation ratio) on the achievable BET surface areas were studied with the aid of Box Behnken Design (BBD) 
and GMDH. Comparative analysis of RSM and GMDH-type neural models were further researched. During the 
process, the polynomial model equations developed were modified and fine-tuned to predict the highest BET 
surface area(s) using regression analysis and GMDH multi-layered iterative algorithm (MIA). Analysis of Variance 
(ANOVA) revealed that the significant factor(s) were impregnation ratio, impregnation ratio product and the 2-
way interactions (activation temperature and impregnation ratio) for ZnCl2 activated cashew nut shell. The best 

activation conditions for producing highest BET surface area of 504 m2.g-1 was activation temperature (873K), 
activation time (60 min), and impregnation ratio (1.50).The proposed GMDH-type BET model was ascertained to 
be the best model with average correlation coefficient (R) and root mean square error (RMSE) of 0.925 & 32.0 
respectively. Sensitivity analysis conducted for GMDH-type neural network also revealed that the activation 

temperature and activation time with sensitivity values of 90.6% and 74.1% respectively were the most influential 
parameters in the basic (ZnCl2) activation process. The results of this study show that RSM and GMDH-type 
neural network could be applied as effective analytical tools for optimizing the ZCNS manufacturing process. 
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1. INTRODUCTION 
 

Industrial activities are major sources of effluent 
discharges into rivers, water bodies, streams and 
reservoirs causing serious environmental pollution 
(Howard et al., 1986). Many industries including iron 
and steel, battery manufacturing, mining, 
petrochemicals/refineries, tanneries, microelectronics, 
non-ferrous metals, textile & leather, breweries, metal 

processing, pharmaceutical, photographic, glassware,  
electroplating, paints, pulp & paper, pesticides 
manufacturing, dyeing, breweries, ceramics and 
chemical manufacturing generate significant volumes 

of effluent containing pollutants like biodegradable 
organics, cyanide, dissolved inorganic solids, 

suspended solids, phenols, chlorinated organic 
compounds, refractory organics, mineral oil, 
polychlorinated biphenyls (PCBs), dyes and heavy 
metals (Shi, 2009; Dawei, 2012; Ajemba, 2014; 
Kulkarni et al., 2014). Heavy metals are metals with 
molecular weight in the range of 63.5 to 200.6 and 
density greater than 5 g.cm-3 (Wang, 2011). Toxic 

heavy metals such as lead, chromium, mercury, 
arsenic & nickel are considered as major pollutants of 
great environmental significance (Wang., 2011; Singh 
et al., 2011). Wastewaters contaminated with toxic 
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heavy metals ions require exhaustive treatment in 

order to remove the toxic metal ions down to minimal 

(trace) outlet concentrations before discharge into 
receiving water bodies for economic and environmental 
reasons (Okiy, 2006).  
 
Numerous conventional separation techniques exist for 
the removal of toxic heavy metals from aqueous 

solutions/wastewater and these include adsorption, 
chemical precipitation, freeze crystallization, gamma 
irradiation, foam flotation, ultrafiltration, ozonation, 
vapour recovery, reverse osmosis, membrane 
separation, solvent extraction, ion exchange, 
electrodialysis, coagulation, evaporation, 

nanofiltration, flocculation, electrochemical process 
and biosorption methods. Whilst some of these 
treatment technologies have proven successful for 

treatment of heavy metal-contaminated wastewater, 
other methods have a number of downsides limiting 
their use such as fouling, high capital, and operational 
costs as well as the generation of bulk quantities of 

chemical sludge requiring proper disposal into the 
environment (Demirbas, 2008; Nwabanne and Okoye., 
2013; Srivastava et al., 2015; Malik et al., 2016). Amid 
these, adsorption method is considered as an excellent 
option and is widely utilized for the treatment of 
effluent emanating from chemical industries (Akinbiyi, 
2000; Xu et al., 2013). Activated carbon (AC) is the 

adsorbent of choice worldwide due to its high efficiency 
and versatility for adsorbing different pollutants 
present in municipal and industrial wastewater (Gupta 
et al., 2009; Malik et al., 2016). However, the price of 
commercial activated carbons normally produced from 

naturally occurring raw materials (precursors) such as 

lignite, peat, wood, petroleum residues, anthracite, 
and coal varies from 0.8 to 10 Euros per kilogram 
depending on process type and the activation method 
utilized (Stavropoulos and Zabaniotou, 2009). In order 
to reduce these exorbitant material costs, there is need 
for concerted efforts to be directed towards production 
of low-cost activated carbons from agro-wastes such 

as cashew nut shells. 
 
Cashew nut (Anarcadium occidentale L.) is 
predominantly found in Asian, African, and Latin 
American countries such as Vietnam, India, Tanzania, 
Cote d’Ivoire, Nigeria, and Brazil. Nigeria is the world’s 
second largest producer of cashew nuts with an annual 

production of 836,500 Metric Tonnes (Adeigbe et al., 
2015). Cashew nuts are commonly eaten as a snack 
and utilized in preparation of meals, desserts, and 
confectioneries. Nigeria is also a major exporter of 
cashew nuts, with a significant portion of the produce 
being sold to international markets. In fact, Nigeria is 

one of the largest producers and exporters of cashew 
nuts in the world. The export market provides income 
opportunities for farmers and contributes about 24 
billion naira to Nigeria's foreign exchange earnings. 
Nigeria is a major consumer of cashew nuts, both for 
domestic consumption and as an ingredient in various 
dishes (Adeigbe et al., 2015). Cashew nut shells are a 

byproduct of cashew processing and are typically 

discarded. The waste shells are hard and contain a 

toxic resin called cardol, which can cause skin irritation 

and other health issues if handled improperly. 
Improper disposal of the shells can lead to land and 
water pollution, as well as create breeding grounds for 
insects and pests. Thus, the proper disposal and 
management of cashew nut shells is a major area of 
environmental concern in Nigeria that requires 

attention and sustainable solutions. Efforts have been 
made to find alternative uses for cashew nut shells to 
mitigate these disposal challenges. For example, some 
companies and entrepreneurs have explored the 
utilization of cashew nut shells for energy generation, 
production of industrial materials like adhesives, or 

conversion into animal feed and organic fertilizers 
(Ademola et al., 2021). However, the scale of these 
initiatives is relatively limited. Hitherto, few studies 

utilizing cashew nut shells for the production of 
activated carbons have been conducted in the past. In 
this study, cashew nut shell was chosen for the 
production of activated carbon.  

 
According to Dyk (2000), the predominant 
characteristic for classifying activated carbons 
industrially is BET surface area. The manufacture of 
activated carbon is also affected by several process 
variables (factors) including activation temperature, 
impregnation ratio, and activation time (Essa et al., 

2013). The classical approach in dealing with many 
factors is the one factor at a time (OFAT) 
experimentation. This method entails studying the 
effect of each parameter on the response of interest by 
successively varying each parameter within a specified 

ambit, while maintaining the other parameters 

constant at the zero (median) level (Elibol, 2002). 
OFAT is painstakingly tedious and does not provide any 
information on the interaction (combined) effects of the 
process variables (factors) (Onu et al., 2021). Instead 
of considering each factor in isolation, it is also possible 
to combine the series of independent studies into one 
study.  

 
Response Surface Methodology (RSM) is a useful tool 
for studying the interaction of two or more parameters 
(factors) on a response. RSM is a compendium of 
mathematical and statistical techniques used for 
process development, upgrading and optimization. 
RSM approach encompasses four major stages (i) the 

design and conduction of experiments for measuring 
the studied response (ii) response surface modeling via 
non-linear model fitting over experimental data (iii) 
visualization of the interactive and main effects of the 
independent variables on the studied response via two-
dimensional (2-D) & three-dimensional (3-D) plots 

and, (iii) process optimization (Essa et al., 2013). A 
major benefit of RSM is the minimal material costs and 
less number of experimental runs needed to assess 
main and interaction effects of several parameters for 
the system under consideration (Montgomery, 2017). 
Interaction effects of the various factors could be 
attained using RSM with design of experiments (DoE). 

Box Behnken design (BBD) is one of the more 
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established statistical experimental designs for RSM 

modeling (Okewale et al., 2015). BBD comprises of the 

factorial 2k level designs and incomplete block designs 
with a number of core factorial runs in the design (nF), 
number of experimental runs at the high and/or low 
values of the factors in the design (ni) and the number 
of runs at the centre (median) point values of the 
factors in the design (n0) (Okewale et al., 2015). The 

BBD design is more suitable when the number of 
factor(s) is between 3 and 4, as minimal numbers of 
experimental runs are needed for optimal response 
(Ozer et al., 2009; Montgomery., 2017). However, 
statistical methods such as RSM are difficult to 
implement for modeling complex and non-linear real-

world problems. Unlike statistical approaches, other 
data driven models such as artificial neural network 
(ANN) feature exceptional ability to handle complex 

(noisy) non-linear problems (Palani et al., 2009; Nkurlu 
et al., 2020). Nonetheless, there are a number of 
drawbacks associated with standard ANN including 
poor model generalization ability (over-fitting), slow 

trial & error process associated with user-led 

specification of network architecture (i.e hidden layers, 

hidden nodes), and network algorithm convergence at 
local minimum. The group method of data handling 
(GMDH) is an improvement over the ANN technique, 
due to the GMDH algorithm’s self-organizing 
(intelligent) control in identification of optimal network 
structure and process modeling (Li et al., 2017).   

 
Group method of data handling (GMDH) is a grouping 
of mathematical modeling and non-linear regression 
algorithms (polynomial neural networks) for 
computational-based modeling of experimental 
dataset(s) characterised by fully automatic 

determination of model structure, hidden nodes, 
number of hidden levels and parametric model 
optimization (Madala & Ivakhneko., 1994; Voss., 

2002). Complex non-linear systems with several inputs 
and one output are modeled with GMDH employing the 
Kolmogarov-Gabor polynominal given as:

 
   

Y =  a0 + ∑ ai

m

i=1

xi  + ∑ ∑ aijxixj  +  ∑ ∑ ∑ aijk

n

i=1

xixjxk …

m

j=1

m

i=1

m

j=1

m

i=1

 
   

(Eq. 1) 

 

The GMDH method was initially proposed in 1968 at the 
Institute of Cybernetics, Kyiv by an Ukrainian scientist 
and mathematician named Professor Alexey 
Grigorevich Ivakhnenko (Stanley, 1981). The GMDH 
analysis protocol is based on an amalgamation of (1) 
the neural approach which uses the threshold logic 

(selection criterion) & network connectionism and, (2) 

the black box concept, which examines non-linear 
input-output variable relationships (Nkurlu et al., 
2020). The external criterion describes the 
requirements for selection of a model of optimal 
complexity that unravels the hidden law from input 
data. Whilst, network connectionism defines the 

mapping accuracy of the region between input and 
output dataset(s)(Li et al., 2017).  
 
GMDH-type neural network is computationally faster, 
circumvents over-fitting problems, objectively selects 
the optimum model, and eliminates the slow trial & 
error process of optimal algorithmic (i.e number of 

hidden layers, neurons) parameters selection required 

for efficient neural network design (Nkurlu et al., 
2020). The novel GMDH has never been utilized before 
for process modeling and optimization in the field of 
engineering. This marks the first time that GMDH is 
applied to model a chemical process such as the 
production of activated carbon from cashew nutshell 

(CNS) with chemical (ZnCl2) activation. In this present 
study, RSM (BBD) and GMDH methods will be 
employed to analyze the alkaline CNS activation 
process and predict the maximum BET surface area of 
ZnCl2-activated cashew nut shell (CNS). 
 
Therefore, this work aims to (i) explore the preparation 

of activated carbons from cashew nut shells with 

chemical (ZnCl2) activation (ii) select optimal CNS 
activated carbons with maximum BET surface areas 
based on RSM (BBD) design (iii) utilise GMDH 
technique for optimizing the manufacture of ZnCl2 
activated CNS under different preparation conditions of 
impregnation ration, time, and activation temperature 

(iv) comparatively analyse the ZnCl2-activated CNS 

production process using BBD with the RSM approach 
and a GMDH-type neural network to determine the 
optimal conditions for maximum achievable BET 
surface area. 
 
2. MATERIALS AND METHODS 

 
2.1. Adsorbent preparation 
The raw cashew nut shells were procured from Eke-
Awka market at Awka South Local Government Area, 
Anambra State in the Eastern part of Nigeria (N: 60 13’ 
8”; E: 70 5’ 13”). Chemical activation of cashew nut shell 
sample with Zinc chloride as reagent was performed 

according to the chemical activation procedure 

reported by Senthil Kumar et al., (2012) and 
Subramaniam & Ponnusamy, (2015) with minor 
modification. The experimental procedure for 
producing the cashew nut shell activated carbon is 
presented in Figure 1. 300 grams of raw cashew nut 
shell sample was pre-treated by washing with 5000 

grams of distilled water and 3945 grams of ethanol to 
remove dirt and other soluble impurities. 
Consequently, the washed avocado pear seed samples 
were dried in a Mermmert oven at a temperature of 
343K for 24 hours. Then, the dried cashew nut shell 
samples were ground into fine particles utilising a 
Jencod grinding machine and sieved using a standard 

Taylor Sieve with mesh size of 300 µm. 300g of cashew 
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nut shell sample was then carbonised at a 973K for 2 

hours. Thereafter, 300 grams of carbonised cashew nut 

shell was mixed with 88.4 grams of 30% Zinc chloride 
reagent according to the impregnation ratios (0.5:1, 
1:1, and 1.5:1) for 2 hours and heated in a Mermmert 
oven at 378K for 24 hours. The dried zinc chloride 
impregnated cashew nut shell was then thermally 
activated in a Muffle furnace at different activation 

temperatures (873K, 1023K,  and 1173K) and times 
(60, 90, and 120 minutes). The ZnCl2 treated sample 
was cooled, and repeatedly washed to remove 
disorganised carbon, products of decomposition and 

traces of sulphuric acid. The activated carbon samples 

were also transferred to a beaker containing 250 ml 

solution of HCl (about 0.1mol) for 1 hour and washed 
again with distilled water till a pH of 6-7 is achieved. 
The washed activated carbon sample was filtered with 
Whatman No.1 filter paper and dried in a Mermmert 
oven at 353K for 3 hours before usage. Textural 
characterisation of the Zinc chloride activated carbon 

sample was performed using a Quantachrome 
NOVA4200e BET Analyzer (Anton-Paar GmbH, Austria) 
to determine the texture feature (BET surface area).

 
 

 
 

Figure 1: Flowchart showing the method of producing Zinc chloride activated carbon from cashew nut shells. 
 
2.1.1. Design of experiment (DOE) for APS activation 
by BBD modeling 
Box Behnken (BBD) design was chosen for accurate 
and precise experimental data collection in only few 

runs to allow for adequate approximation of the 
response surface (Montgomery, 2017). The effect of 
independent variables (activation temperature, time 

and impregnation ratio) on the production of optimal 
APS activated carbons with highest achievable BET 
surface area (response variable) was studied using Box 

Behnken (BBD) design. The lower and upper limits of 
the independent variables (factors) chosen for the BBD 
are shown in Table 1.  
 

The ranges of the independent variables were chosen 
based on literature reviews and prior studies (Essa et 
al., 2013; Buasri et al., 2023). For the BBD design, the 

total number of experimental runs was determined 
using Eq. (2) (Melvin et al., 2015). 

 
N = K2 + K + +CP Eq. (2) 

 
Where, N is the number of experimental runs, CP is the 

replicate number of the central point, and K is the 
factor number.  
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Table 1: Independent Variables and Their Levels for Box Behnken Experimental design. 

 

Independent Variable(s) Range and Level 

-1 0 +1 

Activation temperature (A, 
0C) 

600 750 900 

Activation time (B, min) 60 90 120 

Impregnation ratio (C, 
Activating agent: raw 

material) 

0.5 1.0 1.5 

 
To improve the effectiveness of the BBD design and 
minimize random errors, the factorial and incomplete 
block (IBD) experimental runs were performed in 

triplets. In accordant with 9 centre (null) points, 

leading to a total of 54 experimental runs were utilized 
in the response surface methodology (RSM) analysis. 
The factorial points gave an equal variation of the high 
and low values, while the null points gave the estimate 
of experimental error and ensured reproducibility of the 
data (Essa et al., 2013; Onu et al., 2021).  

 
The Behnken design is an orthogonal design, with 
values of the experimental factors (points) at the 
midpoint of the edges and the centre of a multi-
dimensional sphere defining the experimental domain 
(Douglas and Montgomery, 2007; Anderson and 
Whitcomb., 2016). Box Behnken Experimental Design 

being of spherical (cubic) design, the independent 

variables were coded for low, medium, and high 
settings, as -1, 0, and +1 and uniformly spaced 
(Douglas and Montgomery, 2007) as afore-presented 

in Table 1.  

 
The statistical analysis was carried out using Design 
Expert Software version 13 (STAT-EASE Inc, USA) to 
predict the response of the studied system. The fifteen 
(15) experimental runs were performed in a random 
manner to avert systematic error. The analysis of 

variance (ANOVA) test was also used to evaluate the 
accuracy of the approximating polynomial model.  
 
Furthermore, the reduction empirical model utilized in 
describing the ZnCl2–CNS fabrication process is 
represented by the ensuing second-order 
approximating polynomial model equation, in terms of 

coded factors:
 

 

Y =  b0 + ∑ bi

n

i=1

Xi  +  ∑ bii Xi
2

n

i=1

 + ∑ ∑ bi,jXiXj  +  E

n

i=2

n−1

i=1

 
Eq. (3) 

 
Where, Y is the predicted dependent variable, b0 is the 
constant coefficient (intercept), n is the number of 
patterns, bi, bij, and bii are the regression coefficients 

of the linear, and interaction terms respectively, Xi, and 
Xj are the independent factors studied, i, and j are 
index numbers, and E is the error term. 
 
2.1.2. GMDH-type neural network 
 

GMDH-type neural network is structured as a feed-
forward neural network with multi-layered bi-nodal 
polynomial activation function(s) as depicted in Figure 

2. GMDH can be presumed to be a polynomial network 
(Ayoub et al., 2019). The GMDH analysis protocol 
harnesses the benefits of multi-layered neural 
networks and self-organizing ability to select the 
intrinsic affiliation(s) between input data and network 
(output) predictions. 
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Figure 2: Schematic diagram of GMDH algorithm (Adapted from Li et al., 2017 p.9). 
 
In Figure 2, xi is the initial input variable, yi(k) is the 
output of the partial polynomials. G is the partial 
polynomials with quadratic polynomial for each two 
input variables. The partial polynomials are obtained by 
fitting the input data. xi(k) is the mediator, filtered by 

each layer criteria from yi(k), used as the input variable 
in the subsequent layer (Li et al., 2017). 
 
During GMDH network design, the input dataset is split 

into training and test dataset(s). The training data is 
utilised to estimate the coefficients of the polynomial 

model, and the test data to choose the optimum model 
structure. The least squares minimization method is 
then applied to determine the polynomial coefficients 
for each of the nodal models. When all the possible 
outputs have been calculated, the estimated values of 
the neurons are crosschecked against the test data. 
The neurons whose mean-square-errors (MSE) are 

below the threshold (external criterion) were selected 
and the neuron with the smallest mean-square-error 
attained (minMSE1) also retained. The retained nodes 
are combined together to provide another set of inputs 
into the succeeding layer. The new layer’s nodes are 
checked for compliance with the external criterion 

(MSE). The neurons with acceptable measure of fit are 

kept and the remaining neurons disposed. The best 
neurons are combined and assigned to nodes in the 
subsequent layer. Thereafter, the neurons estimated 
values are checked against test data to evaluate 
measure of fit and the process is continued iteratively 
until the optimal output node with smallest MSE 

achieved is selected. The quadratic polynomial 
connected to the optimal neuron is the non-physical 
model of the system (Voss, 2002; Nkurlu et al., 2020).  

 
The experimental data collected for GMDH analysis was 
a statistic of evaluated BET surface areas for CNS 
activated carbon produced under different alkaline 
activation conditions. To improve GMDH modeling, the 

experimental dataset(s) were quadrupled to give a 
total of sixty (60) data-points (Onu et al., 2021), which 
were utilized in the GMDH analysis. The input dataset 
was subdivided into training and testing dataset(s), 

resulting in 51 training points utilized in estimation of 
the nodal polynomial equations, and 9 testing points 

utilized for ascertaining the fitness of the estimated 
polynomial equations in the network model.  
 
The neural model training was carried out using GMDH 
source code which automates the training process. 
 
3. RESULTS 

 
3.1. Response surface modeling of CNS basic 
(ZnCl2) activation process  
 
A total of 54 experimental runs of Box Behnken (BBD) 
design were conducted by using the prepared activated 

carbon samples and the BET surface area(s) were 

measured. The Sequential Model Sum of Squares 
(SMSS) measures the desirability of each model for the 
activation process based on the Sum of Squares (SS) 
value, where appropriateness of the model for the 
process increases as the SS value increases (See Table 
2). Consequently, the quadratic model was suggested 

by Design Expert Software for optimizing the 
achievable BET surface areas of produced ZnCl2-
activated carbon(s). 
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Table 2: Sequential Model Sum of Squares Analysis [Type 1] for ZnCl2 activated cashew nut shell. 

 

Source 
Sum of 
Squares 

df Mean Square F-value p-value  

Mean 
 
5671257.41 

 
1 

 
5671257.41 

   

Linear 
 
62129.44 

 
3 

 
20709.81 

 
3.43 

 
0.024 

 

2FI 
 
81834.17 

 
3 

 
27278.06 

 
5.82 

 
0.00183 

 

Quadratic 
 
153816.44 

 
3 

 
51272.15 

 
33.85 

 
1.69e-11 

 
Suggested 

Cubic 
 
66652.97 

 
3 

 
22217.66 

    

Residual 
 
0 

 
41 

 
0 

   

Total 

 

6035690.43 

 

 
54 

 

111772.05 

   

 
The main and interaction effects were estimated by 
performing the Analysis of Variance (ANOVA). The 
significance probability value (P-value) was utilized to 
determine the model terms that are statistically 

significant. If the P-value is less than 0.05 it is safe to 
conclude that the effect (factor) under consideration is 

significant at the 95% confidence level. The final model 
for the response was obtained by retaining only the 
significant factors (P < 0.05) based on the probability-
test. The results of the ANOVA Analysis for the ZnCl2 

activated carbons are presented in Table 3. 

 
Table 3: ANOVA Analysis for ZnCl2 activated carbon. 

 

Source Sum of 

Squares 

df Mean Square F-value P-value 

Model 2.978E+05 9 33086.67 21.84 < 0.0001 

A-Activation 
temperature 

1968.78 1 1968.78 1.30 0.2604 

B-Activation 
time 

48356.97 1 48356.97 31.92 < 0.0001 

C-Impregnation 
ratio 

8638.04 1 8638.04 5.70 0.0213 

AB 774.51 1 774.51 0.5113 0.4784 

AC 80599.21 1 80599.21 53.21 < 0.0001 

BC 0.2139 1 0.2139 0.0001 0.9906 

A² 79093.85 1 79093.85 52.21 < 0.0001 

B² 432.94 1 432.94 0.2858 0.5956 

C² 58504.03 1 58504.03 38.62 < 0.0001 

Residual 66652.97 44 1514.84 
  

Lack of Fit 66652.97 3 22217.66 
  

Pure Error 0.0000 41 0.0000 
  

Cor Total 3.644E+05 53 
   

 
The estimated response for BET surface area of ZnCl2 
activated cashew nutshell (CNS) is represented by Eq.  
4: 
 

BETArea = -1870.73 + 6.11×A – 3.70×B + 201.59×C + 0.00155×A×B – 0.946×A×C 
+ 0.0086×B×C – 0.0035×A² + 0.00648×B2 + 271×C2 

 

Eq. (4) 

 
From the ANOVA for ZnCl2-CNS presented in Table 3, 
it was observed that the P-value for the response 
surface model was less than 0.05 (p-value < 0.0001). 
This indicates that the second order polynomial model 

is significant at the 95% confidence level. likewise, 
from the ANOVA results shown in Table 4, it can be 
concluded that the linear effects, Activation 
temperature (A), Impregnation ratio (C), the 2-way 
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interactions A*C (Impregnation ratio and Activation 

temperature), and the square effects A*A (Activation 

temperature product), C*C (Impregnation ratio 
product) had a statistically significant effect on the 
response, as all their P-values were not greater than 
0.1 (Montgomery., 2017). On the other hand, the 
linear effect A (Activation temperature), 2-way 
interactions A*B (Activation temperature and 

Activation time), B*C (Activation time and 
Impregnation ratio), and the square effects B*B 

(Activation time product) were found to be insignificant 

as their P-values were greater than 0.1 (Montgomery, 

2017). Consequently, the conclusion can be reached 
that the studied response does not have any correlation 
with a change in these linear or combined independent 
variables i.e. A, A*B, B*C and B*B at specified values 
of the other variables (B&C), C, A, and (A&C) for the 
range of variables examined in Table 3. Therefore, 

eliminating all the insignificant terms, the final model 
is obtained as: 

 

BETArea = -1870.73 – 3.70×B + 201.59×C – 0.946×A×C – 0.0035×A² +  271×C2 

 

Eq. (5) 

 
The results of predicted response and experimental response are shown in Table 4.  
 

Table 4: Model Predicted and Experimental BET Surface area for ZnCl2 -activated CNS. 

 

Point BET Surface 
Area 

(Predicted) 

BET Surface 
Area 

(Actual) 

STD Error 
Fit 

Square 
Residual 

1 297.920 356.52 1.67387 3433.95 

2 299.693 285.53 -0.40455 200.58 

3 202.097 216.26 0.40455 200.58 

4 231.700 173.10 -1.67387 3433.95 

5 223.647 174.60 -1.40100 2405.63 

6 381.285 405.00 0.67741 562.41 

7 400.215 376.50 -0.67741 562.41 

8 273.953 323.00 1.40100 2405.63 

9 428.153 418.60 -0.27310 91.254 

10 345.987 392.50 1.36911 2163.45 

11 462.513 416.00 -1.36911 2163.45 

12 380.863 393.60 0.37312 162.23 

13 330.800 330.80 -0.00000 1.292E-26 

14 330.800 330.80 -0.00000 1.292E-26 

15 330.800 330.80 -0.00000 1.292E-26 

16 297.920 356.52 1.67387 3433.95 

17 299.693 285.53 -0.40455 200.58 

18 202.097 216.26 0.40455 200.58 

19 231.700 173.10 -1.67387 3433.95 

20 223.647 174.60 -1.40100 2405.63 

21 381.285 405.00 0.67741 562.41 

22 400.215 376.50 -0.67741 562.41 

23 273.953 323.00 1.40100 2405.63 

24 428.153 418.60 -0.27310 91.254 

25 345.987 392.50 1.36911 2163.45 

26 462.513 416.00 -1.36911 2163.45 

27 380.863 393.60 0.37312 162.23 

28 330.800 330.80 -0.00000 1.292E-26 

29 330.800 330.80 -0.00000 1.292E-26 

30 330.800 330.80 -0.00000 1.292E-26 

31 297.920 356.52 1.67387 3433.95 

32 299.693 285.53 -0.40455 200.58 

33 202.097 216.26 0.40455 200.58 

34 231.700 173.10 -1.67387 3433.95 

35 223.647 174.60 -1.40100 2405.63 

36 381.285 405.00 0.67741 562.41 

37 400.215 376.50 -0.67741 562.41 

38 273.953 323.00 1.40100 2405.63 
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Point BET Surface 
Area 

(Predicted) 

BET Surface 
Area 

(Actual) 

STD Error 
Fit 

Square 
Residual 

39 428.153 418.60 -0.27310 91.25 

40 345.987 392.50 1.36911 2163.46 

41 462.513 416.00 -1.36911 2163.46 

42 380.863 393.60 0.37312 162.23 

43 330.800 330.80 -0.00000 1.292E-26 

44 330.800 330.80 -0.00000 1.292E-26 

45 330.800 330.80 -0.00000 1.292E-26 

46 297.920 356.52 1.67387 3433.95 

47 299.693 285.53 -0.40455 200.58 

48 202.097 216.26 0.40455 200.58 

49 231.700 173.10 -1.67387 3433.95 

50 223.647 174.60 -1.40100 2405.63 

51 381.285 405.00 0.67741 562.41 

52 400.215 376.50 -0.67741 562.41 

53 273.953 323.00 1.40100 2405.63 

54 428.153 418.60 -0.27310 91.25 

 RMSE= 35.1 

 
The graphical plot of the measured BET surface area against predicted BET surface area is shown in Figure 3. 
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Figure 3: Plot of RSM predicted BET surface area against experimental data. 
 
Figure 3 shows that the data points are un-evenly 

distributed about the 450 line without forming a definite 

pattern, indicating normality in the data values 
(minimum residual errors). Thus, signifying that the 
response surface model is adequate for predicting 
achievable surface area(s) of ZnCl2-activated CNS. The 
high (correlation coefficient) R value of 0.90, confirmed 
that the achievable BET surface area for ZnCl2-CNS 
activation can be predicted satisfactorily by the 

response model.  

 

The normal plot of residuals depicted in Figure 4 was 

also utilised to check if the process data are normally 
distributed. The distribution of data points was similar 
at both the left and right portions of the plot, indicating 
normal distribution of the error residuals. This implies 
that there are no signs of problems with the process 
model or data (Antony, 2003). 
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Figure 4: Normal Probability Plot of Residuals for the ZnCl2 activated CNS. 
 
The statistical significance of the estimated linear 

factors, interactions, and their products on the 
achievable BET surface area (studied response), in 
order of significance is represented by the Pareto 
diagram shown in Figure 5. The vertical (red) line 

indicates the magnitude of the least statistically 

significant effect for a 95% confidence level and the 
corresponding t-test value is equal to 2.015. Any factor 
or its interaction that transcends the vertical line is 
considered significant (Montgomery, 2017). 

 

 
 

Figure 5: The Pareto plot for ZnCl2 activated CNS. 

 
Figure 5 shows that the most influential factors 
influencing the achievable BET surface area of ZnCl2-
activated CNS were the linear effect B (Activation 
time), 2-way interactions A*C (Activation temperature 
and Impregnation ratio), and the square effect C*C 
(Impregnation ratio product). Noteworthy, Prominent 

interactions are integral in attainment of overall 
process optimization.   

 
The three dimensional (3-D) response surface plots 
generated to visualize the relationship between the 
independent variables (activation temperature, time, 
impregnation ratio) and response of interest (BET 
surface area) in terms of main, and interaction effects 

and also facilitate optimization of the ZnCl2 activated 
CNS production process are showcased in Figure 6. 
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Each of the response diagrams were plotted as a 

function of two process variables in their respective 

ranges (-1 to 1), with the third independent variable(s) 

was maintained at median (zero) level. 

 
 

 

  
 

Figure 6: Response surface plots of BET surface area for (a) Impregnation ratio = 1.0 (b) Activation 
time = 90 min, and (c) Activation temperature = 750 0C. 

 

 

From Fig 6a, it is evident that the BET surface area of 
ZnCl2 activated carbon showed a slight decreasing 
trend with increase in activation temperature. 
Likewise, the estimated BET surface area of ZnCl2 
activated carbon showed a decreasing trend with 

increase in activation time. In Figure 6b, the BET 
surface area of ZnCl2 activated carbon showed an 
increasing trend with increase in activation 
temperature, whilst the BET surface area of ZnCl2 

activated carbon initially showed decreasing trend with 
increasing impregnation ratio towards a minimum, and 
subsequently plateaued to a constant level. It is also 

apparent from Figure 6c, that the BET surface area of 

ZnCl2 activated carbon showed a decreasing trend with 
increasing activation time. Whereas, estimated BET 
surface area showed an increasing trend with increase 
in impregnation ratio towards a maximum level. 
Notably, the adsorption capacity of the prepared 

activated carbons is contingent on impregnation ratio, 
which produces additional surface active (binding) sites 
(Marsh and Reinoso, 2006). Consequently, it is 
important that impregnation ratio is considered in 
future optimization studies.  
 
From the statistical optimization, the optimum BET 

surface area attained for ZnCl2 activated CNS was 

c b 

a 
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504m2.g-1 for activation temperature of 873K, 

activation time of 60min, and impregnation ratio of 

1.50 respectively. Lastly, additional experimental 
run(s) using the optimal conditions was carried out, 

and the empirical BET surface area for ZnCl2 activated 

CNS was found to be 492m2.g-1 (See Table 5). These 

results validated the polynomial model explicated with 
RSM. 

 
Table 5: Predicted and Observed Value(s) of BET surface area for ZnCl2 activated CNS utilizing optimal 

activation conditions. 
 

                                Optimal Conditions  BET Surface Area (m2/g) 

No of 
Replicates  

Activation 
Time, min 

Activation 
Temperature, K 

Impregnation 
ratio 

Experimental Predicted 

 
1 

 
60 

 
873 

 
1.50 

 
492 

 
504 

 
 

3.1.2. Modeling of the CNS base (ZnCl2) activation 
process using GMDH 
 
The GMDH-type neural model was implemented in 
MATLAB R2018a version 9.4. The architecture of the 
built GMDH network consists of one input layer, two 

hidden layers, in combination with one output layer as 

shown in Figure 7. A total of two neurons were included 
in the first layer, and one neuron in the second layer of 
the model. After completion of network training using 
the training dataset with three inputs (activation time, 
activation temperature and impregnation ratio), the 
simulated (output) result was checked with the test 

data to determine its computation accuracy.  
 

 
 

Figure 7: Architecture of proposed GMDH-type BET neural network. 
 
The regression plots of training, overall, and evaluation 
are displayed in Figure 8 for the GMDH-type neural 

model. The optimal model for ZCNS activation 
corresponded to correlation coefficient (R) of 0.864 for 
training, and 0.932 for testing yielding an average R 
value of 0.925, indicating strong connection between 

the input values and GMDH-type neural network 
predictions for achievable surface area (Nkurlu et al., 

2020). This finding is also corroborated by the 
relatively low value obtained for the performance 
function (RMSE = 32.0). 
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Figure 8: GMDH Regression plots for (a) overall (b) training, and testing data. 

 
The GMDH-type neural model was further studied by 
comparing the GMDH prediction (outputs) and 

experimental outcomes (targets) for achievable BET 
surface area(s), as depicted in Figure 9. 

 

 
 

Figure 9: Cross-plot of experimental (target) and simulated (output) results for the ZCNS activation process. 
 

 a 

  b 
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From Figure 9, it is lucid that the target (experimental) 

and simulated (output) values match well, as 

confirmed by the moderately low value of the error 
function (RMSE=32.0) hitherto obtained. Hence, the 
GMDH-type neural model was able to successfully map 
the experimental domain, allowing for reasonably 
accurate estimate(s) of intermittent variations in the 
achievable BET surface area(s) of ZCNS. 

 
3.1.3. Comparative Analysis of GMDH-type and RSM 
BET models  

 

The efficiency of the created RSM (BBD) and GMDH-

type BET neural models in predicting the achievable 
BET surface areas were evaluated using standard 
statistical indices-squared loss function and root mean 
squared error (RMSE) as shown in Table 6 (Ayoub et 
al., 2019; Chebii et al., 2022). The performance index-
squared loss function is a good indicator of model 

predictive ability, because it is very sensitive to outliers 
and non-negative (Gokcesu, and Gokcesu., 2023).  

 
 

Table 6: Comparison of GMDH-type and RSM BET models for ZCNS activation process. 

 

 
Run No 

             RSM                        GMDH 

Square Residual Square Residual 

1 3433.95 7747.10 

2 200.58 48.78 

3 200.58 1417.92 

4 3433.95 1655.27 

5 2405.63 1448.49 

6 562.41 417.059 

7 562.41 528.18 

8 2405.63 229.34 

9 
91.25 257.031 

10 
2163.45 65.191 

11 2163.45 0.0767 

12 162.23 10.31 

13 1.29E-26 21.634 

14 1.29E-26 21.634 

15 1.29E-26 21.634 

16 3433.95 7747.10 

17 200.58 48.790 

18 200.58 1417.92 

19 3433.95 1655.27 

20 2405.63 1448.49 

21 562.41 417.06 

22 562.41 528.18 

23 2405.63 229.344 

24 91.25 257.031 

25 2163.45 65.191 

26 2163.45 0.0767 

27 162.23 10.307 

28 1.29E-26 21.634 

29 1.29E-26 21.634 

30 1.29E-26 21.634 

31 3433.95 7747.10 

32 200.58 48.787 

33 200.58 1417.92 

34 3433.95 1655.27 

35 2405.63 1448.49 

36 562.41 417.06 

37 562.41 528.178 

38 2405.63 229.344 

39 91.254 257.031 

40 2163.45 65.191 

41 2163.45 0.0767 

42 162.23 10.307 
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Run No 

             RSM                        GMDH 

Square Residual Square Residual 

43 1.29E-26 21.634 

44 1.29E-26 21.634 

45 1.29E-26 21.634 

46 3433.95 7747.10 

47 200.58 48.79 

48 200.58 1417.92 

49 3433.95 1655.27 

50 2405.63 1448.49 

51 562.41 417.06 

52 562.41 528.178 

53 2405.63 229.344 

54 91.25 257.031 

 RMSE= 35.10 RMSE = 32.0 

 
The RSM and GMDH-type BET models generated 

squared-error residual values ranging from 1.29×10-26 
to 3434, and 7.67×10-2 to 7747 respectively for 
achievable BET surface area(s). The lower value(s) of 
the loss function ascertained for RSM BET model, 
suggests that the RSM BET predictive model performs 
better than GMDH. Consequently, the comparatively 

higher squared-error residual values obtained for 
GMDH, necessitated further error analysis. From Table 
7, Root mean squared error (RMSE) values of 32.0 and 
35.10 respectively were also recorded for the GMDH-
type and RSM BET models. According to Chebii et al., 
(2022), RMSE is a standard statistical index for 
valuating the performance of nonlinear regression 

models. The lower RMSE value ascertained for GMDH, 

confirmed that GMDH model is the more appropriate 
model for predicting the achievable surface area of 
ZCNS. Overall, RSM and GMDH techniques have been 
evidenced to be effective methods for delineating the 
ZnCl2-activated CNS production process. 
 

4. SENSITIVITY ANALYSIS 
 
Sensitivity analysis was carried out to investigate the 
influence of activation parameters (impregnation ratio, 
activation time, & activation temperature) on the 
predicted BET surface experimental data conducted 
utilising Eq. (6) (Nkurlu et al., 2020): 

 

S =
1

N
∑ (

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑖𝑛𝑝𝑢𝑡
)

i

N

i=1

× 100 
Eq. (6) 

 
Where N is the total number of experimental runs, i is 
the respective data point, and S is sensitivity value. 
The lower the S value, the less the activation (process) 
variable affected the simulated BET surface area value. 

Contrariwise, the higher the S value, the greater the 
input activation variable influences the simulated BET 
surface area of ZCNS (Nkurlu et al., 2020).  

 

 
 

Figure 10: Effect of GMDH input variables on ZnCl2-CNS activation process. 
 
From Figure 10, both activation temperature and time 
had more significant impact on GMDH BET predictive 

model than impregnation ratio with S values of 90.6% 
and 74.1% respectively. The low S value of 36.9% 

obtained for impregnation ratio signifies that this input 
had little effect on the BET surface area prediction(s). 

 
5. CONCLUSIONS 

0

10

20

30

40

50

60

70

80

90

100

Act. Temperature Act. Time Imp.Ratio

S
e
n

s
it

iv
it

y
(
S

)



Okiy, K. V., Nwabanne, J. T. (2024), JOTCSB, 7(1), 25-42.  RESEARCH ARTICLE 

40 

 

 

In this study, Box Behnken design (BBD) of Response 

Surface Methodology (RSM)) and novel Group Method 
of Data Handling (GMDH) approaches were employed 
to optimize the conditions for production of ZCNS with 
high BET surface areas. The RSM and GMDH-type 
neural models obtained via regression analysis and 
multi-layered iterative algorithm (MIA) respectively, 

predicted the response of interest ((BET surface area) 
fairly accurately. The highest BET surface area for 
ZCNS obtained from RSM optimisation was estimated 
to be 504 m2.g-1 attained at optimal process conditions 
of activation time (60 min), impregnation ratio (1.50), 
and activation temperature (873K). The optimal 

GMDH-type BET model was identified to consist of 3 
input variables, and 2 hidden layer(s) having two and 
one neuron(s) respectively. The root mean square 

error (RMSE) and correlation coefficient (R) were 
chosen as statistical indices for evaluating the 
predictive models performance. With the least RMSE 
(32.0), and highest correlation coefficient (0.925), The 

GMDH-type BET model proved to be better compared 
to the RSM model. These findings confirmed that 
GMDH-type BET model has the best analytical 
performance. Lastly, the sensitivity analysis outcome 
unveiled that activation temperature and activation 
time had a predominant influence on the performance 
of the GMDH-type BET neural model. 
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