TITLE: ON DIGITAL H-GROUPS

AUTHORS: Sibel DEMIRALP, Essam HAMOUDA

PAGES: 42-50

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/635053

JOURNAL OF UNIVERSAL MATHEMATICS Vol.2 No.1 pp.42-50 (2019) ISSN-2618-5660

ON DIGITAL H-GROUPS

S.DEMIRALP AND ESSAM H. HAMOUDA

ABSTRACT. In this paper, specific properties of digital H-spaces and digital H-groups are studied. It is shown that there is a contravariant functor from the homotopy category of the pointed digital images to the category of groups and homomorphisms. Then it is proven that a pointed digital image having the same digital homotopy type as a digital H-group is itself a digital H-group.

1. INTRODUCTION

The purpose of digital topology is to study the topological properties of discrete objects, such as compactness, connectedness. Digital topology was first studied in [14] by the computer image analysis researcher Rosenfeld. Following years researchers studied the digital versions of many concepts of algebraic topology. Digital homotopy and digital fundamental group are defined in [4] by Boxer. Digital H-space is defined in [7] by Ege and Karaca. H-spaces are an important concept of homotopy theory. An H-space consists of a pointed topological space P with a continuous multiplication $m: X \times X \to X$ and with a constant map $c: X \to X$, such that $m \circ (c, 1_X) \simeq 1_X \simeq m \circ (1_X, c)$. A group structure can be established on H-space, called H-group, by homotopy group operations which are similar to group operations.

2. Preliminaries

Let \mathbb{Z} be the set of all integers and \mathbb{Z}^n the set of all lattice points in Euclidean n-dimensional space. A finite subset X of \mathbb{Z}^n with an adjacency relation κ is called a digital image, denoted by (X, κ) .

For a positive integer t with $1 \le t \le n$, two distinct points $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n) \in \mathbb{Z}^n$ are κ_t -adjacent if,

i) there are at most t distinct indices i such that $|x_i - y_i| \neq 1$, and

ii) for all indices j, if $|x_j - y_j| \neq 1$, then $x_j = y_j$.

Consider the following statements for the commonly used adjacency relations:

(1) $p, q \in \mathbb{Z}$ are 2-adjacent if |p - q| = 1

Date: Review October 11, 2018, accepted January 26, 2019.

²⁰⁰⁰ Mathematics Subject Classification. Primary 55P45, 68R99; Secondary 55P65, 55P10. Key words and phrases. Digital image, Digital homotopy, Digital H-space, Digital H-group.

ON DIGITAL H-GROUPS

- (2) $p,q\in\mathbb{Z}^2$ are 8-adjacent if they are distinct and differ by at most 1 each coordinate.
- (3) $p,q\in\mathbb{Z}^2$ are 4-adjacent if they are 8-adjacent and differ by exactly one coordinate.
- (4) $p,q \in \mathbb{Z}^3$ are 26-adjacent if they distinct and differ by at most 1 each coordinate.
- (5) $p,q\in\mathbb{Z}^3$ are 18-adjacent if they are 26-adjacent and differ by at most two coordinates.
- (6) $p,q\in\mathbb{Z}^3$ are 6-adjacent if they are 18-adjacent and differ by exactly one coordinate.

A digital interval is a set of the form $[a, b]_{\mathbb{Z}} = \{z \in \mathbb{Z} \mid a \le z \le b\}.$

The adjacency relation on cartesian product of two digital image is defined as follows.

Definition 2.1. [8] For two digital image (X, κ_1) and (Y, κ_2) , the κ^* -adjacency on the product image $X \times Y$ is obtained as follows: $x_1, x_2 \in (X, \kappa_1), y_1, y_2 \in (Y, \kappa_2)$, then (x_1, y_1) and (x_2, y_2) are κ^* -adjacent if and only if one of the following is satisfied:

- (1) $x_1 = x_2$ and y_1 and y_2 are κ_2 -adjacent,
- (2) x_1 and x_2 are κ_1 -adjacent and $y_1 = y_2$,
- (3) x_1 and x_2 are κ_1 -adjacent and y_1 and y_2 are κ_2 -adjacent.

Definition 2.2. [6] Let (X, κ_1) and (Y, κ_2) be digital images. Then the function $f: X \to Y$ is (κ_1, κ_2) -continuous if and only if for every $\{x_0, x_1\} \subset X$ such that x_0 and x_1 are κ_1 -adjacent, either $f(x_0) = f(x_1)$ or $f(x_0)$ and $f(x_1)$ are κ_2 -adjacent.

Example 2.3. Let $f : \mathbb{Z}^2 \to \mathbb{Z}$ be defined as $f(x) = x_1 + x_2$, for all $x = (x_1, x_2) \in \mathbb{Z}^2$. Then it is clear that f is (4, 2)-continuous. However it isn't (8, 2)-continuous, because $x = (x_1, x_2)$ and $y = (x_1 + 1, x_2 + 1)$ are 8-adjacent but $f(x) = x_1 + x_2$ and $f(y) = x_1 + x_2 + 2$ are not 2-adjacent.

Definition 2.4. [4] Let (X, κ_1) and (Y, κ_2) be two digital image and f and g be (κ_1, κ_2) -continuous functions. If

- (1) there exist a function $F : X \times [0,m]_{\mathbb{Z}} \to Y$, such that, for all $x \in X$, F(x,0) = f(x) and F(x,m) = g(x),
- (2) the induced function $F_x: [0,m]_{\mathbb{Z}} \to Y$, $F_x(t) = F(x,t)$ for all $x \in X$ and for all $t \in [0,m]_{\mathbb{Z}}$, is $(2,\kappa_2)$ -continuous and
- (3) the induced function $F_t: X \to Y$, $F_t(x) = F(x,t)$ for all $x \in X$ and for all $t \in [0,m]_{\mathbb{Z}}$, is (κ_1, κ_2) -continuous,

then f and g are said to be digitally (κ_1, κ_2) -homotopic and F is called a digital (κ_1, κ_2) -homotopy between f and g, written $f \stackrel{F}{\simeq}_{(\kappa_1, \kappa_2)} g$ (or $f \simeq_{(\kappa_1, \kappa_2)} g$, for short).

The notation [f] is used to denote the digital homotopy class of (κ_1, κ_2) -continuous function $f: X \to Y$, i.e.

 $[f] = \{g : X \to Y \mid g \text{ is } (\kappa_1, \kappa_2) \text{-continuous and } f \simeq_{(\kappa_1, \kappa_2)} g \}.$

The set of all digital homotopy classes of (κ_1, κ_2) -continuous functions is denoted by $[(X, \kappa_1), (Y, \kappa_2)]$, i.e.

 $[(X,\kappa_1),(Y,\kappa_2)]=\{[f]\mid f:(X,\kappa_1)\to (Y,\kappa_2) \text{ is } (\kappa_1,\kappa_2)\text{-continuous}\}.$

For a digital image (X, κ) and its subset (A, κ) , (X, A, κ) is called a digital image pair with κ -adjacency. Also, if A is a singleton set $\{p\}$, then (X, p, κ) is called a pointed digital image.

Definition 2.5. [4] Let (X, κ_1) and (Y, κ_2) be two digital image and f be a (κ_1, κ_2) continuous function and g be a (κ_2, κ_1) -continuous function, such that

$$f \circ g \simeq_{(\kappa_2,\kappa_2)} 1_Y$$
 and $g \circ f \simeq_{(\kappa_1,\kappa_1)} 1_X$.

Then (X, κ_1) and (Y, κ_2) are said to be same (κ_1, κ_2) -homotopy type or (κ_1, κ_2) -homotopy equivalent. Also f and g are called (κ_1, κ_2) -equivalences.

3. DIGITAL H-SPACES

In this section some properties of digital H-spaces and digital H-groups are investigated. It is shown that the set of homotopy classes of digitally continuous functions, from a homotopy associative digital H-space to a pointed digital image, is semigroup. Then it is proven that a pointed digital image having the same homotopy type as an abelian digital H-group is itself an abelian digital H-group. Also it is shown that there is a contravariant functor from the homotopy category of the pointed digital images to the category of abelian groups and homomorphisms.

Definition 3.1. [7] Let (X, p, κ) be a pointed digital image. For a digital continuous multiplication $\mu : X \times X \to X$ and the digital constant map $c : X \to X$, defined by c(x) = p, if $\mu \circ (c, 1_X) \simeq_{(\kappa,\kappa)} \mu \circ (1_X, c) \simeq_{(\kappa,\kappa)} 1_X$, then (X, p, κ) is called a digital H-space.

Example 3.2. Let $(\mathbb{Z}, 0, 2)$ be pointed digital image and let $\mu : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined as $\mu(x, y) = x + y$. It is clear that μ is (4, 2)-continuous.

$$\begin{array}{lll} \mu \circ (c, 1_X) \left(x \right) & = & \mu \left(c(x), 1_X(x) \right) \left(x \right) = \mu \left(0, x \right) = 0 + x = x \\ \mu \circ \left(1_X, c \right) \left(x \right) & = & \mu \left(1_X(x), c(x) \right) (x) = \mu \left(x, 0 \right) = x + 0 = x \end{array}$$

where $c : \mathbb{Z} \to \mathbb{Z}$ is a constant map, c(x) = 0. Therefore

$$\mu \circ (c, 1_X) \simeq_{(2,2)} 1_X \simeq_{(2,2)} \mu \circ (1_X, c).$$

Consequently $(\mathbb{Z}, 0, 2)$ is a digital H-space.

Definition 3.3. [7] Let (X, p, κ) be a digital H-space. If

 $\mu \circ (1_X \times \mu) \simeq_{(\kappa^*,\kappa)} \mu \circ (\mu \times 1_X)$

then μ is called digital homotopy associative.

If there exists a map $\eta: (X, p, \kappa) \to (X, p, \kappa)$ such that,

$$\mu \circ (\eta, 1_X) \simeq_{(\kappa, \kappa)} \mu \circ (1_X, \eta) \simeq_{(\kappa, \kappa)} c$$

then η is called a digital homotopy inverse for μ .

If there exists a map $T: X \times X \to X \times X$, T(x, y) = (y, x), such that

$$\mu \circ T \simeq_{(\kappa^*,\kappa)} \mu$$

then μ is called digital homotopy commutative and (X, p, κ) is called abelian digital H-space.

Theorem 3.4. Let (X, p, κ_1) be a digital H-space with digital homotopy associative multiplication μ and (Y, q, κ_2) be a pointed digital image. Then $[(Y, q, \kappa_2), (X, p, \kappa_1)]$ is a semigroup with identity.

Proof. For any $[f], [g] \in [(Y, q, \kappa_2), (X, p, \kappa_1)]$, let define the product

$$[f] \bullet [g] = [\mu \circ (f \times g) \circ \triangle]$$

where $\triangle: Y \to Y \times Y, \triangle(y) = (y, y)$. Let [f] = [f'] and [g] = [g'], then there exist (κ_2, κ_1) -homotopies H and G such that $f \stackrel{G}{\simeq}_{(\kappa_2, \kappa_1)} f'$ and $g \stackrel{H}{\simeq}_{(\kappa_2, \kappa_1)} g'$. Define a digital homotopy $F: Y \times [0, m]_{\mathbb{Z}} \to X$ as $F = \mu \circ (G, H)$. Then

$$F(y,0) = \mu \circ (G,H) (y,0) = \mu (G(y,0), H(y,0)) = \mu (f(y), g(y)) = (\mu \circ (f \times g) \circ \triangle) (y)$$

and similarly $F(y,m) = (\mu \circ (f' \times g') \circ \triangle)(y)$. So

$$(\mu \circ (f \times g) \circ \bigtriangleup) \stackrel{F}{\simeq}_{(\kappa_2,\kappa_1)} (\mu \circ (f' \times g') \circ \bigtriangleup).$$

Then

$$[f] \bullet [g] = [\mu \circ (f \times g) \circ \triangle]$$

= $[\mu \circ (f' \times g') \circ \triangle]$
= $[f'] \bullet [g'].$

Consequently " \bullet " is well defined.

Let $c: (X, p, \kappa_1) \to (X, p, \kappa_1)$ be the constant map $c(x) = p, \forall x \in X$. Let define a map $e: (Y, q, \kappa_2) \to (X, p, \kappa_1)$ such that e(y) = p, for all $y \in Y$. Then

$$(\mu \circ (e \times f) \circ \triangle) (y) = \mu (p, f(y)) = (\mu \circ (c, 1_X) \circ f) (y)$$

and since $\mu \circ (c, 1_X) \simeq_{(\kappa_1, \kappa_1)} 1_X$, then $[e] \bullet [f] = [\mu \circ (e \times f) \circ \triangle] = [f]$. So [e] is the identity element of $[(Y, q, \kappa_2), (X, p, \kappa_1)]$.

Let $[f], [g], [h] \in [(Y, q, \kappa_2), (X, p, \kappa_1)].$

$$\begin{split} [f] \bullet ([g] \bullet [h]) &= [f] \bullet [\mu \circ (g \times h) \circ \Delta] \\ &= [\mu \circ (f \times (\mu \circ (g \times h) \circ \Delta)) \circ \Delta] \\ &= [\mu \circ (1_X \times \mu) \circ (f \times g \times h) \circ (1_X \times \Delta) \circ \Delta] \\ &= [\mu \circ (\mu \times 1_X) \circ (f \times g \times h) \circ (1_X \times \Delta) \circ \Delta] \\ &= [\mu \circ ((\mu \circ (f \times g) \circ \Delta) \times h) \circ \Delta] \\ &= ([f] \bullet [g]) \bullet [h] \,. \end{split}$$

Therefore "•" is digital homotopy associative.

Theorem 3.5. [7] Let (X, p, κ_1) be a digital H-space and (Y, q, κ_2) be a pointed digital image. If (X, p, κ_1) and (Y, q, κ_2) have the same (κ_1, κ_2) -homotopy type, then (Y, q, κ_2) is a digital H-space.

Definition 3.6. Let (X, p, κ_1) and (Y, q, κ_2) be digital H-spaces. A map $f : X \to Y$ is called a digital H-homomorphism if $f \circ \mu \simeq_{(\kappa_1, \kappa_2)} \eta \circ (f \times f)$, where $\eta : Y \times Y \to Y$.

Theorem 3.7. Let (X, p, κ_1) be a digital H-space and (Y, q, κ_2) have the same (κ_1, κ_2) -homotopy type with X. Then digital (κ_1, κ_2) -equivalences are digital H-homomorphisms.

Proof. Let $f: X \to Y$ be a (κ_1, κ_2) -continuous function and let $g: Y \to X$ be a (κ_2, κ_1) -continuous function, such that $f \circ g \simeq_{(\kappa_2, \kappa_2)} 1_Y$ and $g \circ f \simeq_{(\kappa_1, \kappa_1)} 1_X$. Let μ be (κ^*, κ_1) -continuous multiplication of (X, p, κ_1) , then (Y, q, κ_2) is a digital H-space with the (κ^*, κ_2) - continuous multiplication $\eta = f \circ \mu \circ (g \times g)$. Then

$$g \circ \eta = g \circ (f \circ \mu \circ (g \times g)) \simeq_{(\kappa^*, \kappa_1)} 1_X \circ \mu \circ (g \times g) = \mu \circ (g \times g).$$

So g is a digital H-homomorphism. Also,

$$\eta \circ (f \times f) = f \circ \mu \circ (g \times g) \circ (f \times f) \simeq_{(\kappa^*, \kappa_2)} f \circ \mu \circ 1_{X \times X} = f \circ \mu.$$

Therefore f is a digital H-homomorphism.

Definition 3.8. A digital H-group is a digital H-space (X, p, κ) with the digital homotopy associative multiplication μ and digital homotopy inverse η .

It is clear that $(\mathbb{Z}, 0, 2)$ in Example 7 is an abelian digital H-group.

Theorem 3.9. Let (X, p, κ_1) be a digital H-group. If (X, p, κ_1) and (Y, q, κ_2) have the same (κ_1, κ_2) -homotopy type, then (Y, q, κ_2) is a digital H-group.

Proof. Let $f: X \to Y$ be a (κ_1, κ_2) -continuous function and let $g: Y \to X$ be a (κ_2, κ_1) -continuous function, such that $f \circ g \simeq_{(\kappa_2, \kappa_2)} 1_Y$ and $g \circ f \simeq_{(\kappa_1, \kappa_1)} 1_X$. Let $\eta = f \circ \mu \circ (g \times g)$ be digital continuous multiplication of (Y, q, κ_2) where $\mu: X \times X \to X$. Then (Y, q, κ_2) is a digital H-space. Since $f \circ g \simeq_{(\kappa_2, \kappa_2)} 1_Y$,

$$\eta \times 1_Y = (f \circ \mu \circ (g \times g)) \times 1_Y \simeq_{(\kappa^*, \kappa_2)} (f \times f) \circ (\mu \times 1_X) \circ (g \times g \times g)$$

$$1_Y \times \eta = 1_Y \times (f \circ \mu \circ (g \times g)) \simeq_{(\kappa^*, \kappa_2)} (f \times f) \circ (1_X \times \mu) \circ (g \times g \times g)$$

As (X, p, κ_1) is a digital H-group, μ is digital homotopy associative. Then,

$$\begin{split} \eta \circ (\eta \times 1_Y) &\simeq _{(\kappa^*,\kappa_2)} f \circ \mu \circ (g \times g) \circ (f \times f) \circ (\mu \times 1_X) \circ (g \times g \times g) \\ &\simeq _{(\kappa^*,\kappa_2)} f \circ \mu \circ 1_{X \times X} \circ (\mu \times 1_X) \circ (g \times g \times g) \\ &= f \circ (\mu \circ (\mu \times 1_X)) \circ (g \times g \times g) \\ &\simeq _{(\kappa^*,\kappa_2)} f \circ (\mu \circ (1_X \times \mu)) \circ (g \times g \times g) \\ &= f \circ \mu \circ 1_{X \times X} \circ (1_X \times \mu) \circ (g \times g \times g) \\ &\simeq _{(\kappa^*,\kappa_2)} f \circ \mu \circ (g \times g) \circ (f \times f) \circ (1_X \times \mu) \circ (g \times g \times g) \\ &\simeq _{(\kappa^*,\kappa_2)} \eta \circ (1_Y \times \eta) \,. \end{split}$$

Therefore η is digital homotopy associative.

Let $\theta : (X, p, \kappa_1) \to (X, p, \kappa_1)$ be digital homotopy inverse for μ and $\theta' = f \circ \theta \circ g$. Then,

$$\begin{split} \eta \circ (\theta', 1_Y) &= (f \circ \mu) \circ (g \times g) \circ (\theta', 1_Y) \\ &= (f \circ \mu) \circ (g \times g) \circ (f \circ \theta \circ g, 1_Y) \\ &= (f \circ \mu) \circ (g \circ f \circ \theta \circ g, g \circ 1_Y) \\ &\simeq (\kappa_{2}, \kappa_{2}) (f \circ \mu) \circ (1_X \circ \theta \circ g, g) \\ &= f \circ (\mu \circ (\theta, 1_X)) \circ g \\ &\simeq (\kappa_{2}, \kappa_{2}) f \circ c \circ g \\ &\simeq (\kappa_{2}, \kappa_{2}) c', \end{split}$$

where $c': (Y, q, \kappa_2) \to (Y, q, \kappa_2), c'(y) = q, \forall y \in Y$. Similarly, $\eta \circ (1_Y \circ \theta') \simeq_{(\kappa_2, \kappa_2)} c'$. Hence θ' is a homotopy inverse for (Y, q, κ_2) .

Consequently (Y, q, κ_2) is a digital H-group.

Theorem 3.10. Let (X, p, κ_1) be an abelian digital H-group. If (X, p, κ_1) and (Y, q, κ_2) have the same (κ_1, κ_2) -homotopy type, then (Y, q, κ_2) is an abelian digital H-group.

Proof. Let $f: X \to Y$ be a (κ_1, κ_2) -continuous function and let $g: Y \to X$ be a (κ_2, κ_1) -continuous function, such that $f \circ g \simeq_{(\kappa_2, \kappa_2)} 1_Y$ and $g \circ f \simeq_{(\kappa_1, \kappa_1)} 1_X$. Let μ and $\eta = f \circ \mu \circ (g \times g)$ be digital continuous multiplication of (X, p, κ_1) and (Y, q, κ_2) , respectively. As μ is digital homotopy commutative, there exists a function $T: X \times X \to X \times X, T(x_1, x_2) = (x_2, x_1)$ such that $\mu \circ T \simeq_{(\kappa^*, \kappa_1)} \mu$. Now consider the function $T': Y \times Y \to Y \times Y, T'(y_1, y_2) = (y_2, y_1)$. Then,

$$\eta \circ T' = f \circ \mu \circ (g \times g) \circ T' = f \circ \mu \circ T \circ (g \times g) \simeq_{(\kappa^*, \kappa_2)} f \circ \mu \circ (g \times g) = \eta.$$

So η is digital homotopy commutative.

Proposition 1. [7] Let
$$(X, p, \kappa_1)$$
 be a digital image, (Y, q, κ_2) be a digital H-group
with digital continuous multiplication η . Then $[(X, p, \kappa_1), (Y, q, \kappa_2)]$ is a group
under the product $[f] \bullet [g] = [\eta \circ (f \times g) \circ \triangle]$, for all $[f], [g] \in [(X, p, \kappa_1), (Y, q, \kappa_2)]$.
Also if (Y, q, κ_2) is an abelian digital H-group, then

$$([(X, p, \kappa_1), (Y, q, \kappa_2)], \bullet)$$

is abelian.

Theorem 3.11. A homotopy associative digital H-space (X, p, κ) is a digital Hgroup if and only if the map $\varphi : X \times X \to X \times X$ defined by $\varphi(x, y) = (x, xy)$ is a (κ^*, κ^*) -homotopy equivalence.

Proof. Let (X, p, κ) be a digital H-group with digital homotopy inverse $\eta : X \to X$. Consider the digital continuous map $j : X \times X \to X \times X$ defined by $j(x, y) = (x, \eta(x)y)$. Now $(\psi \circ j)(x, y) = \psi(x, \eta(x)y) = (x, x\varphi(x)y)$ implies that $\psi \circ j \simeq_{(\kappa^*, \kappa^*)} 1_{X \times X}$, since η is the digital homotopy inverse. Also

$$j \circ \psi)(x, y) = j(x, xy) = (x, \eta(x)xy)$$

implies $j \circ \psi \simeq_{(\kappa^*,\kappa^*)} 1_{X \times X}$. Hence ψ is (κ^*,κ^*) homotopy equivalence. Conversely, let $\Omega: X \times X \to X \times X$ be the digital homotopy inverse of ψ such that $\psi \circ \Omega \simeq_{(\kappa^*,\kappa^*)} \Omega \circ \psi \simeq_{(\kappa^*,\kappa^*)} 1_{X \times X}$. Now we go ahead to prove that (X, p, κ_1) is a digital H-group. Define $\varphi: X \to X$ by the composite

$$X \xrightarrow{i_1} X \times X \xrightarrow{M} X \times X \xrightarrow{p_2} X$$

where $i_1 : X \to X \times X$ is defined by $i_1(x) = (x, p)$ and $pi : X \times X \to X$ are the projections. Let $\mu : X \times X \to X$ be the digital continuous multiplication of (X, p, κ) , then $p_1 \circ \psi = p_1, p_2 \circ \psi = \mu$ and therefore

$$p_1 \simeq {}_{(\kappa^*,\kappa)} p_1 \circ \psi \circ \Omega = p_1 \circ \Omega$$
$$p_2 \simeq {}_{(\kappa^*,\kappa)} p_2 \circ \psi \circ \Omega = \mu \circ \Omega.$$

In particular, $p_1 \circ \Omega \circ i_1 \simeq_{(\kappa,\kappa)} p_1 \circ i_1 = 1_X$. Hence

$$\mu \circ (1_X, \varphi) = \mu \circ (p_1 \circ \Omega \circ i_1, p_2 \circ \Omega \circ i_1)$$
$$= \mu \circ (p_1, p_2) \circ (\Omega \circ i_1)$$
$$= \mu \circ \Omega \circ i_1 \simeq_{(\kappa, \kappa)} p_2 \circ i_1 = c$$

where $c: X \to X$, c(x) = p is the digital constant map. Similarly,

$$\mu \circ (\varphi, 1_X) \simeq_{(\kappa, \kappa)} c.$$

Hence (X, p, κ) is a homotopy associative digital H-space such that φ is the digital homotopy inverse. Consequently, (X, p, κ) is a digital H-group.

Definition 3.12. [16] Let \mathcal{C} and \mathcal{D} be two categories. A contravariant functor T from \mathcal{C} to \mathcal{D} is a mapping which associates to every object X of \mathcal{C} an object T(X) of \mathcal{D} and associates to every morphism $f: X \to Y$ of C a morphism

$$T(f): T(Y) \to T(X)$$

of D such that, $T(1_X) = 1_{T(X)}$ and T(gf) = T(f)T(g).

Theorem 3.13. [15] For any category C and object Y of C, there is a contravariant functor Π^Y from C to the category of sets and functions which associates to an object X of C the set $\Pi^Y(X) = \hom(X,Y)$ and to a morphism $f: X \to X'$ the function $\Pi^Y(f) = f^* : \hom(X',Y) \to \hom(X,Y)$ defined by $f^*(g') = g' \circ f$, for $g': X' \to Y$.

Definition 3.14. The category whose objects are pointed digital images and the set of morphisms is $hom((X, p, \kappa_1), (Y, q, \kappa_2)) = [(X, p, \kappa_1), (Y, q, \kappa_2)]$ is called the homotopy category of the pointed digital images.

Theorem 3.15. Let (X, p, κ) be a digital H-space with the digital continuous multiplication μ and (Y, q, κ_1) and (Z, r, κ_2) be any pointed digital images. Then there exists a homomorphism from $[(Z, r, \kappa_2), (X, p, \kappa)]$ to $[(Y, q, \kappa_1), (X, p, \kappa)]$.

Proof. Let $h: (Y, q, \kappa_1) \to (Z, r, \kappa_2)$ be a map and $[g], [g'] \in [(Z, r, \kappa_2), (X, p, \kappa)]$. Let define $h^*: [(Z, r, \kappa_2), (X, p, \kappa)] \to [(Y, q, \kappa_1), (X, p, \kappa)]$ as $h^*([g]) = [g \circ h]$. Then

$$\begin{aligned} h^*\left([g] \bullet [g']\right) &= h^*\left([\mu \circ (g \times g') \circ \bigtriangleup]\right) \\ &= \left[\mu \circ (g \times g') \circ \bigtriangleup \circ h\right] \\ &= \left[\mu \circ ((g \circ h) \times (g' \circ h)) \circ \bigtriangleup\right] \\ &= \left[g \circ h\right] \bullet \left[g' \circ h\right] \\ &= h^*\left([g]\right) \bullet h^*\left([g']\right). \end{aligned}$$

Therefore h^{*} is a homomorphism.

Theorem 3.16. Let (Y, q, κ) be a digital H-group, then Π^Y is a contravariant functor from the homotopy category of the pointed digital images to the category of groups and homomorphisms.

 \Box

Proof. Let (X, p, κ_1) and (Z, r, κ_2) be objects and $[f] \in [(X, p, \kappa_1), (Z, r, \kappa_2)]$ is a morphism of the homotopy category of the pointed digital images.

 $\begin{array}{l} \Pi^{Y} \; ((X,p,\kappa_{1})) = \hom \left((X,p,\kappa_{1}), (Y,q,\kappa) \right) = \left[(X,p,\kappa_{1}), (Y,q,\kappa) \right]. \\ \text{Therefore } \Pi^{Y} \; ((X,p,\kappa_{1})) \text{ is a group.} \end{array}$

$$\begin{split} \Pi^{Y}\left([f]\right) &= f^{*}: \hom\left((Z, r, \kappa_{2}), (Y, q, \kappa)\right) \to \hom\left((X, p, \kappa_{1}), (Y, q, \kappa)\right) \\ &\Rightarrow f^{*}: \left[(Z, r, \kappa_{2}), (Y, q, \kappa)\right] \to \left[(X, p, \kappa_{1}), (Y, q, \kappa)\right] \end{split}$$

is a function defined as, $f^*([g]) = [g \circ f]$, for any $[g] \in [(Z, r, \kappa_2), (Y, q, \kappa)]$. So, f^* is a morphism between groups. Also by Theorem 19, f^* is a homomorphism.

Let show that Π^{Y} is a contravariant functor.

Let $[h] \in [(Z, r, \kappa_2) \to (W, t, \kappa_3)]$. For any morphism $[h'] \in [(W, t, \kappa_3), (Y, q, \kappa)]$,

$$\Pi^{Y} ([h]) ([h']) = [h' \circ h]$$

$$\Pi^{Y} ([f]) ([h' \circ h]) = [(h' \circ h) \circ f]$$

$$= [h' \circ (h \circ f)]$$

$$= \Pi^{Y} ([h \circ f]) ([h']).$$

Thus,

$$\Pi^{Y}([f])([h' \circ h]) = \Pi^{Y}([f])(\Pi^{Y}([h])([h'])) = (\Pi^{Y}([f]) \circ \Pi^{Y}([h]))([h']).$$

So, $\Pi^{Y}\left(\left[h\circ f\right]\right)=\Pi^{Y}\left(\left[f\right]\right)\circ\Pi^{Y}\left(\left[h\right]\right).$

Let $[1_X] \in [(X, p, \kappa_1), (X, p, \kappa_1)]$ be the unit morphism of the digital homotopy category of pointed digital images. Then,

$$\Pi^{Y}([1_{X}]) = 1_{X}^{*}: [(X, p, \kappa_{1}), (Y, q, \kappa)], \ 1_{X}^{*}[(h)] = [h].$$

Consequently Π^{Y} is a contravariant functor.

Corollary 3.17. Let (Y, q, κ) be an abelian digital H-group, then Π^Y is a contravariant functor from the homotopy category of the pointed digital images to the category of abelian groups and homomorphisms.

Theorem 3.18. Let (Y, q, κ_1) and (Z, r, κ_2) be digital H-spaces with the multiplications μ and η , respectively, and $h : (Y, q, \kappa_1) \to (Z, r, \kappa_2)$ be a digital H-homomorphism. Then there exist a homomorphism from $[(X, p, \kappa), (Y, q, \kappa_1)]$ to $[(X, p, \kappa), (Z, r, \kappa_2)]$ for any pointed digital image (X, p, κ) .

Proof. Let $[g], [g'] \in [(X, p, \kappa), (Y, q, \kappa_1)]$ and

$$h_*: \left[\left(X, p, \kappa \right), \left(Y, q, \kappa_1 \right) \right] \to \left[\left(X, p, \kappa \right), \left(Z, r, \kappa_2 \right) \right]$$

be a map such that $h_*([g]) = [h \circ g]$. Then

$$h_*\left([g]\bullet[g']\right)=h_*\left([\mu\circ(g\times g')\circ\bigtriangleup]\right)=[h\circ\mu\circ(g\times g')\circ\bigtriangleup].$$

Since h is a digital homomorphism, then $\eta \circ (h \times h) \simeq_{(\kappa^*,\kappa_2)} h \circ \mu$. So

$$\begin{aligned} [h \circ \mu \circ (g \times g') \circ \triangle] &= [\eta \circ (h \times h) \circ (g \times g') \circ \triangle] \\ &= [h \circ g] \bullet [h \circ g'] \\ &= h_* ([g]) \bullet h_* ([g']) \,. \end{aligned}$$

Therefore h_* is a homomorphism.

Corollary 3.19. Let (X, p, κ) be a digital H-space and (Y, q, κ_1) be a digital image. If (X, p, κ) and (Y, q, κ_1) have the same (κ, κ_1) -homotopy type, then there exist homotopy equivalences $f : (X, p, \kappa) \to (Y, q, \kappa_1)$ and $g : (Y, q, \kappa_1) \to (X, p, \kappa)$. For any digital image (Z, r, κ_2)

- (1) since f is a digital H-homomorphism, then there exist a homomorphism from $[(Z, r, \kappa_2), (X, p, \kappa)]$ to $[(Z, r, \kappa_2), (Y, q, \kappa_1)]$
- (2) since g is a digital H-homomorphism, then there exist a homomorphism from $[(Z, r, \kappa_2), (Y, q, \kappa_1)]$ to $[(Z, r, \kappa_2), (X, p, \kappa)]$.

References

[1] R. Ayala, E. Domínguez, A. R. Francés, and A. Quintero, Homotopy in digital spaces. Discrete Applied Mathematics, 125(1), 3-24,(2003)

[2] L. Boxer, Digitally continuous functions, Pattern Recognition Letters 15.8, 833-839, (1994).

[3] L. Boxer, A classical construction for the digital fundamental group. Journal of Mathematical Imaging and Vision, 10(1), 51-62,(1999).

[4] L. Boxer, Properties of digital homotopy, Journal of Mathematical Imaging and Vision, 22(1), 19-26, (2005).

[5] O. Ege and I. Karaca, Digital H-spaces. In International Symposium on Computing in Science & Engineering. Proceedings . GEDIZ University, Engineering and Architecture Faculty. p. 133, (2013, January).

[6] O. Ege and I. Karaca, Banach fixed point theorem for digital images. J. Nonlinear Sci. Appl, 8(3), 237-245, (2015).

[7] Ö. Ege and I. Karaca, Some properties of digital H-spaces. Turkish Journal of Electrical Engineering & Computer Sciences, 24(3), 1930-1941, (2016).

[8] S. E. Han, Non-product property of the digital fundamental group. Information Sciences 171(1-3), 73-91,(2005).

[9] S. E. Han, Remarks on digital homotopy equivalence. Honam Mathematical Journal, 29(1), 101-118, (2007).

[10] S. E. Han, KD-(k_0 , k_1)-homotopy equivalence and its applications. Journal of the Korean Mathematical Society, 47(5), 1031-1054, (2010).

[11] T. Y: Kong, Roscoe, A. W. and Rosenfeld, A., Concepts of digital topology. Topology and its Applications, 46(3), 219-262, (1992).

[12] A. Mutlu, B. Mutlu and S. Öztunç, On Digital Homotopy of Digital Paths, International Research Journal of Pure Algebra 2(6), 147-154, (2012).

[13] S. Öztunç, S. and Mutlu, A. Categories in digital images. Am. J. Math. Stat, 3(1), 62-66, (2013).

[14] A. Rosenfeld, Digital topology, The American Mathematical Monthly, 86(8)621-630, (1979).

[15] R. M. Switzer, Algebraic topology-homotopy and homology, Springer. (2017).

[16] E. H. Spanier, Algebraic topology, Springer Science & Business Media 55(1) (1989).

[17] T. Yung Kong, A digital fundamental group, Computers & Graphics 13.2, 159-166,(1989)

(author one) KASTAMONU UNIVERSITY, DEPARTMENT OF MATHEMATICS, KASTAMONU, TURKEY *E-mail address*, author one: sdemiralp@kastamonu.edu.tr

(author two) Beni-Suef University, Department of Basic Science, Faculty of Industrial Education, Egypt

E-mail address, author two: essam.salim@techedu.bsu.edu.eg