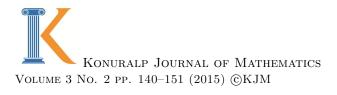
PAPER DETAILS

TITLE: ON RIGHT INVERSE \$\Gamma\$-SEMIGROUP

AUTHORS: Sumanta CHATTOPADHYAY

PAGES: 140-151

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/507490



ON RIGHT INVERSE Γ -SEMIGROUP

SUMANTA CHATTOPADHYAY

ABSTRACT. Let $S=\{a,b,c,\dots\}$ and $\Gamma=\{\alpha,\beta,\gamma,\dots\}$ be two nonempty sets. S is called a Γ -semigroup if $a\alpha b\in S$, for all $\alpha\in \Gamma$ and $a,b\in S$ and $(a\alpha b)\beta c=a\alpha (b\beta c)$, for all $a,b,c\in S$ and for all $\alpha,\beta\in \Gamma$. An element $e\in S$ is said to be α -idempotent for some $\alpha\in \Gamma$ if $e\alpha e=e$. A Γ - semigroup S is called regular Γ -semigroup if each element of S is regular i.e, for each $a\in S$ there exists an element $x\in S$ and there exist $\alpha,\beta\in \Gamma$ such that $a=a\alpha x\beta a$. A regular Γ -semigroup S is called a right inverse Γ -semigroup if for any α -idempotent e and e-idempotent e on regular e-semigroup and ip - congruence pair on right inverse e-semigroup and investigate some results relating this pair.

1. Introduction

Let $S = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two nonempty sets. S is called a Γ -semigroup if

(i) $a\alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and

(ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

A semigroup can be considered to be a Γ -semigroup in the following sense. Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. Let us extend the binary operation defined on S to $S \cup \{1\}$ by defining 11 = 1 and 1a = a1 for all $a \in S$. It can be shown that $S \cup \{1\}$ is a semigroup with identity element 1. Let $\Gamma = \{1\}$. If we take ab = a1b, it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$.

In [8] we introduced right inverse Γ -semigroup. In [2] Gomes introduced the notion of congruence pair on inverse semigroup and studied some of its properties. In this paper we introduce the notion of ip - congruence on regular Γ -semigroup, ip - congruence pair on right inverse Γ -semigroup and studied some of its properties. We now recall some definition and results.

Date : July 25, 2014 and, in revised form, April 28, 2015.

 $^{2000\} Mathematics\ Subject\ Classification.\ 20 M17.$

 $Key\ words\ and\ phrases.$ Γ-Semigroup, right orthodox Γ-Semigroup, right inverse Γ - semigroup, left partial congruence, ip - congruence, normal subsemigroup, ip - congruence pair.

Definition 1.1. Let S be a Γ -semigroup. An element $a \in S$ is said to be regular if $a \in a\Gamma S\Gamma a$ where $a\Gamma S\Gamma a = \{a\alpha b\beta a : b \in S, \alpha, \beta \in \Gamma\}$. S is said to be regular if every element of S is regular.

Example 1.1. [8] Let M be the set of all 3×2 matrices and Γ be the set of all 2×3 matrices over a field. Then M is a regular Γ semigroup.

Example 1.2. Let S be a set of all negative rational numbers. Obviously S is not a semigroup under usual product of rational numbers. Let $\Gamma = \{-\frac{1}{p}: p \text{ is prime }\}$. Let $a,b,c\in S$ and $\alpha\in\Gamma$. Now if $a\alpha b$ is equal to the usual product of rational numbers a,α,b , then $a\alpha b\in S$ and $(a\alpha b)\beta c=a\alpha (b\beta c)$. Hence S is a Γ-semigroup. Let $a=\frac{m}{n}\in S$ where m>0 and n<0. Suppose $m=p_1p_2,\ldots,p_k$ where p_i 's are prime. Now $\frac{p_1p_2,\ldots,p_k}{n}(-\frac{1}{p_1})\frac{n}{p_2,\ldots,p_{k-1}}(-\frac{1}{p_k})\frac{m}{n}=\frac{p_1p_2,\ldots,p_k}{n}$. Thus taking $b=\frac{n}{p_2,\ldots,p_{k-1}}$, $\alpha=(-\frac{1}{p_1})$ and $\beta=(-\frac{1}{p_k})$ we can say that a is regular. Hence S is a regular Γ-semigroup.

Definition 1.2. Let S be a Γ -semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α -idempotent if $e\alpha e = e$. The set of all α -idempotents is denoted by E_{α} and we denote $\bigcup_{\alpha \in \Gamma} E_{\alpha}$ by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.3. Let S be a Γ -semigroup and $a, b \in S$, $\alpha, \beta \in \Gamma$. b is said to be an (α, β) -inverse of a if $a = a\alpha b\beta a$ and $b = b\beta a\alpha b$. This is denoted by $b \in V_{\alpha}^{\beta}(a)$.

Theorem 1.1. Let S be a regular Γ -semigroup and $a \in S$. Then $V_{\alpha}^{\beta}(a)$ is non-empty for some $\alpha, \beta \in \Gamma$.

Proof: Since S is regular there exist $b \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha b\beta a$. Now we consider the element $b\beta a\alpha b$. $a\alpha(b\beta a\alpha b)\beta a = (a\alpha b\beta a)\alpha b\beta a = a\alpha b\beta a = a$ and $(b\beta a\alpha b)\beta a\alpha(b\beta a\alpha b) = b\beta(a\alpha b)\beta a)\alpha b\beta a\alpha b = b\beta a\alpha b\beta a\alpha b$. Hence $b\beta a\alpha b \in V_{\alpha}^{\beta}(a)$.

Definition 1.4. Let S be a Γ -semigroup. An equivalence relation ρ on S is said to be a right (left) congruence on S if $(a,b) \in \rho$ implies $(a\alpha c,b\alpha c) \in \rho$, $((c\alpha a,c\alpha b) \in \rho)$ for all $a,b,c \in S$ and for all $\alpha \in \Gamma$. An equivalence relation which is both left and right congruence on S is called congruence on S.

Definition 1.5. A regular Γ -semigroup S is called a right orthodox Γ -semigroup if for any α -idempotent e and β -idempotent f of S, $e\alpha f$ is a β -idempotent.

Definition 1.6. A regular Γ -semigroup M is a right orthodox Γ -semigroup if and only if for $a,b \in S$, $\alpha_1,\alpha_2,\beta_1,\beta_2 \in \Gamma$, $a' \in V_{\alpha_1}^{\alpha_2}(a)$ and $b' \in V_{\beta_1}^{\beta_2}(b)$, we have $b'\beta_2a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1b)$.

Definition 1.7. A regular Γ -semigroup S is called a right inverse Γ -semigroup if for any α -idempotent e and β -idempotent f of S, $e\alpha f\beta e = f\beta e$.

Theorem 1.2. Every right inverse Γ -semigroup is a right orthodox Γ -semigroup.

Theorem 1.3. Let S be a regular Γ -semigroup and E_{α} be the set of all α -idempotents in S. Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Then

$$RS(e,f) = \left\{ g \in V_{\beta}^{\alpha}(e\alpha f) \cap E_{\alpha} : g\alpha e = f\beta g = g \right\}$$

is non-empty.

Proof: Since S is regular, there exist $b \in S$ and $\gamma, \delta \in \Gamma$ such that $e\alpha f \gamma b\delta e\alpha f = e\alpha f$ and $b\delta e\alpha f \gamma b = b$. Now $(e\alpha f)\beta(f\gamma b\delta e)\alpha(e\alpha f) = e\alpha f \gamma b\delta e\alpha f = e\alpha f$ and $(f\gamma b\delta e)\alpha(e\alpha f)\beta(f\gamma b\delta e) = f\gamma b\delta e\alpha f \gamma b\delta e = f\gamma b\delta e$. Hence $f\gamma b\delta e \in V_{\beta}^{\alpha}(e\alpha f)$. Thus $V_{\beta}^{\alpha}(e\alpha f) \neq \phi$. Now let $x \in V_{\beta}^{\alpha}(e\alpha f)$ and setting $g = f\beta x\alpha e$ we have $g\alpha g = (f\beta x\alpha e)\alpha(f\beta x\alpha e) = f\beta(x\alpha e)\alpha f\beta x)\alpha e = f\beta x\alpha e = g$. Thus $g \in E_{\alpha}$.

Again $g\alpha e\alpha f\beta g=f\beta x\alpha e\alpha e\alpha f\beta f\beta x\alpha e=f\beta x\alpha e=f\beta x\alpha e=g$ and $e\alpha f\beta g\alpha e\alpha f=e\alpha f\beta f\beta x\alpha e\alpha e\alpha f=e\alpha f\beta x\alpha e\alpha f=e\alpha f$ implies that $g\in V^\alpha_\beta(e\alpha f)$. Hence $g\alpha e=f\beta x\alpha e\alpha e=f\beta x\alpha e=g$ and $f\beta g=f\beta f\beta x\alpha e=f\beta x\alpha e=g$. Therefore $RS(e,f)\neq\emptyset$.

Definition 1.8. Let S be a regular Γ - semigroup and e and f be α and β - idempotents respectively. Then the set RS(e, f) described in the above Theorem is called the right sandwich set of e and f.

Theorem 1.4. Let S be a regular Γ -semigroup and e and f be α and β -idempotents respectively. Then the set $RS(e,f)=\{g\in V^{\alpha}_{\beta}(e\alpha f):g\alpha e=g=f\beta g\ and\ e\alpha g\alpha f=e\alpha f\}.$

Proof: Let $P = \{g \in V_{\beta}^{\alpha}(e\alpha f) : g\alpha e = g = f\beta g \text{ and } e\alpha g\alpha f = e\alpha f\}$ and let $g \in RS(e,f)$. Then $g \in E_{\alpha}, g\alpha e = g = f\beta g$ and $g \in V_{\beta}^{\alpha}(e\alpha f)$. Now $e\alpha g\alpha f = e\alpha g\alpha e\alpha f\beta g\alpha f = e\alpha f\beta g\alpha e\alpha f\beta g\alpha e\alpha f = e\alpha f\beta g\alpha e\alpha f = e\alpha f$. Hence $RS(e,f) \subseteq P$. Next let $g \in P$. Now $g\alpha g = g\alpha e\alpha f\beta g = g$. Hence $g \in E_{\alpha}$, which shows that $P \subseteq RS(e,f)$ and hence the proof.

Theorem 1.5. Let S be a regular Γ - semigroup and $a, b \in S$. If $a' \in V_{\alpha}^{\beta}(a), b' \in V_{\gamma}^{\delta}(b)$ and $g \in RS(a'\beta a, b\gamma b')$ then $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$.

Proof: Let $e = a'\beta a$ and $f = b\gamma b'$. Then e is an α -idempotent and f is a δ -idempotent and also g is an α -idempotent. Now $(a\alpha b)\gamma(b'\delta g\alpha a')\beta(a\alpha b) = a\alpha f\delta g\alpha e\alpha b = a\alpha g\alpha b = a\alpha a'\beta a\alpha g\alpha b\gamma b'\delta b = a\alpha e\alpha g\alpha e\alpha b = a\alpha e\alpha f\delta b = a\alpha a'\beta a\alpha b$ $\gamma b'\delta b = a\alpha b$. Again $(b'\delta g\alpha a')\beta(a\alpha b)\gamma(b'\delta g\alpha a') = b'\delta g\alpha e\alpha f\delta g\alpha a' = b'\delta g\alpha g\alpha a' = b'\delta g\alpha a'$. Hence $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$.

Corollary 1.1. For $a, b \in S$, if $V_{\alpha}^{\beta}(a)$ and $V_{\gamma}^{\delta}(b)$ are nonempty then $V_{\gamma}^{\beta}(a\alpha b)$ is nonempty.

Proof: Let $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$ then we know that $RS(a'\beta a, b\gamma b') \neq \phi$. For $g \in RS(a'\beta a, b\gamma b')$ and hence we get $b'\delta g\alpha a' \in V_{\gamma}^{\beta}(a\alpha b)$. Hence the proof.

2. IP- CONGRUENCE PAIR ON RIGHT INVERSE Γ -SEMIGROUP

In this section we characterize some congruences on a right inverse Γ - semigroup S.

Definition 2.1. Let S be a Γ-semigroup. A nonempty subset K of S is said to be partial Γ-subsemigroup if for $a, b \in K$, $a\alpha b \in K$, whenever $V_{\alpha}^{\beta}(a) \neq \phi$. for $\alpha, \beta \in \Gamma$.

Definition 2.2. A partial Γ -subsemigroup K of S is said to be regular if $V_{\alpha}^{\beta}(k) \subseteq K$ for all $k \in K$ and $\alpha, \beta \in \Gamma$.

Definition 2.3. A partial Γ -subsemigroup K is said to be full if $E(S) \subseteq K$ where E(S) is the set of all idempotent elements of S.

Definition 2.4. A partial Γ -subsemigroup K of S is said to be self conjugate if for all $a \in S, k \in K$ and $a' \in V_{\alpha}^{\beta}(a), a'\beta k\gamma a \in K$ whenever $V_{\gamma}^{\delta}(k) \neq \phi$ for some $\delta \in \Gamma$.

Definition 2.5. A partial Γ -subsemigroup K of S is said to be normal if it is regular, full and self conjugate.

Definition 2.6. An equivalence relation ρ on S is said to be left partial congruence if $(a,b) \in \rho$ implies $(c\alpha_3 a, c\alpha_3 b) \in \rho$ whenever $V_{\alpha_3}^{\beta_3}(c)$ is nonempty. Note that every left congruence is a left partial congruence.

Here we consider these left partial congruence which satisfy the following condition:

 $(a,b) \in \rho$ implies $(a\alpha_1c,b\alpha_2c) \in \rho$ whenever each of the sets $V_{\alpha_1}^{\beta_1}(a), V_{\alpha_2}^{\beta_2}(b)$ is nonempty for $\alpha_i, \beta_i \in \Gamma, i = 1, 2$. We call this left partial congruence as inverse related partial congruence (ip - congruence).

Example 2.1. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. S denotes the set of all mappings from A to B. Here members of S will be described by the images of the elements 1, 2, 3. For example the map $1 \to 4, 2 \to 5, 3 \to 4$ will be written as (4, 5, 4) and (5, 5, 4) denotes the map $1 \to 5, 2 \to 5, 3 \to 4$. A map from B to A will be described in the same fashion. For example (1, 2) denotes $4 \to 1, 5 \to 2$. Now $S = \{(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)\}$ and let $\Gamma = \{(1, 1), (1, 2), (2, 3), (3, 1)\}$. Let $f, g \in S$ and $\alpha \in \Gamma$. We define $f \circ g$ by $(f \circ g)(a) = f \circ (g(a))$ for all $a \in A$. So $f \circ g$ is a mapping from A to B and hence $f \circ g \in S$ and we can show that $(f \circ g)\beta h = f \circ (g \beta h)$ for all $f, g, h \in S$ and $\alpha, \beta \in \Gamma$. Hence S is a Γ -semigroup.

We can also show that it is right inverse. We now give a partition $S = \bigcup_{1 \le i \le 5} S_i$

and let ρ be the equivalence relation yielded by the partition where each S_i is given by:

```
S_1 = \{(4,4,4)\},\
S_2 = \{(5,5,5)\},\
S_3 = \{(4,5,4), (5,4,5)\},\
S_4 = \{(4,5,5), (5,4,4)\},\
S_5 = \{(4,4,5), (5,5,4)\}.
Here we see that (4,5,4)\rho(5,4,5) but (4,5,4)(3,1)(4,4,4) = (4,4,4) and (5,4,5)
(3,1)(4,4,4) = (5,5,5) i.e \rho is not a congruence.
   Now for f \in S we observe the following cases:
(a) (4,4,4)\alpha f = (4,4,4) for all \alpha \in \Gamma,
(b) (5,5,5)\alpha f = (5,5,5) for all \alpha \in \Gamma,
(c) (4,5,4)(1,2)f = f and (4,5,4)(2,3)f = f',
   (5,4,5)(2,3)f=f\ \ and\ (5,4,5)(1,2)f=f',
(d) (4,4,5)(2,3)f = f \text{ and } (4,4,5)(3,1)f = f',
   (5,5,4)(3,1)f = f and (5,5,4)(2,3)f = f',
(e) (4,5,5)(1,2)f = f and (4,5,5)(3,1)f = f',
   (5,4,4)(3,1)f = f and (5,4,4)(1,2)f = f',
```

From the above cases we can easily verify that ρ is a ip - congruence on S.

Definition 2.7. An ip - congruence ξ on E(S) of S is said to be normal if for any α -idempotent e and β -idempotent $f, a \in S$ and $a' \in V_{\gamma}^{\delta}(a), (e, f) \in \xi$ implies $(a'\delta e\alpha a, a'\delta f\beta a) \in \xi$ whenever $a'\delta e\alpha a, a'\delta f\beta a \in E(S)$.

Let ρ be an ip - congruence on a regular Γ - semigroup S then we can define a binary operation on S/ρ as $(a\rho)(b\rho)=(a\alpha b)\rho$ whenever $V_{\alpha}^{\beta}(a)$ exists for some $\beta\in\Gamma$. This is well defined because if $a\rho=a'\rho$ and $b\rho=b'\rho$ then

```
\begin{array}{lll} (a\rho)(b\rho) & = & (a\alpha b)\rho \; (\mathrm{Since} \; V_{\alpha}^{\beta}(a) \neq \phi \; \mathrm{for \; some} \; \alpha, \beta \in \Gamma) \\ & = & (a\alpha b')\rho \\ & = & (a'\alpha_{_1}b')\rho (\mathrm{Since} \; V_{\alpha_{_1}}^{\beta_{_1}}(a') \neq \phi \; \mathrm{for \; some} \; \alpha_{_1}, \beta_{_1} \in \Gamma) \\ & = & (a'\rho)(b'\rho). \end{array}
```

The operation is easily seen to be associative, and so S/ρ is a semigroup.

Definition 2.8. Let ρ be an ip - congruence on a regular Γ -semigroup S. Let $\alpha \in \Gamma$, then the subset $\{a \in S : a\rho \in E(S/\rho)\}$ of S is called kernel of ρ and it is denoted by K.

Definition 2.9. Let ρ be an ip - congruence on a regular Γ -semigroup S. Then the restriction of ρ to the subset E(S) is called the trace of ρ and it is denoted by $tr\rho$.

We now treat S as a right inverse Γ -semigroup throughout the paper.

Definition 2.10. A pair (ξ, K) consisting of a normal ip - congruence ξ on E(S) and a normal partial Γ - subsemigroup K of S is said to be ip - congruence pair for S if for all $a, b \in S, a' \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$

```
(i) e\gamma a \in K, (e, a\alpha a') \in \xi \Rightarrow a \in K
(ii) a \in K \Rightarrow (a\alpha e\gamma a', e\gamma a\alpha a') \in \xi
```

Given a pair (ξ, K) we define a relation $\rho_{(\xi, K)}$ on S by $(a, b) \in \rho_{(\xi, K)}$ if and only if there exist $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\alpha}^{\delta}(b)$ such that $a\alpha b' \in K$, $(a'\beta a, b'\delta b) \in \xi$.

Theorem 2.1. Let S be a right inverse Γ -semigroup. Then for an ip - congruence pair (ξ, K) and a μ -idempotent $e, a\alpha b \in K$ implies $a\alpha e\mu b \in K$ for all $a, b \in S$ and $V_{\alpha}^{\beta}(a) \neq \phi$ for some $\beta \in \Gamma$.

Proof: Let $a\alpha b \in K$. Since S is regular there exist $\gamma, \delta \in \Gamma$ such that $V_{\gamma}^{\delta}(b) \neq \phi$. Then by Corollary 1.1 , $V_{\gamma}^{\beta}(a\alpha b) \neq \phi$. Let $b' \in V_{\gamma}^{\delta}(b)$. Then $b\gamma b'$ is a δ -idempotent and since S is a right inverse Γ-semigroup $(b\gamma b')\delta e\mu(b\gamma b') = e\mu(b\gamma b')$. Now $a\alpha e\mu b = a\alpha e\mu b\gamma b'\delta b = a\alpha(b\gamma b')\delta e\mu(b\gamma b')\delta b = (a\alpha b)\gamma(b'\delta e\mu b)$. Since S is right inverse Γ-semigroup $b'\delta e\mu b \in E_{\gamma} \subseteq K$. Since K is a partial Γ-subsemigroup and $a\alpha b \in K$, $(a\alpha b)\gamma(b'\delta e\mu b) \in K$. So $a\alpha e\mu b \in K$.

Theorem 2.2. Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that $(a, b) \in \rho_{(\xi, K)}$, then there exist $a' \in V_{\alpha}^{\beta}(a)$ and $b' \in V_{\gamma}^{\delta}(b)$ such that

- (i) $a\alpha b' \in K$ and $(a'\beta a, b'\delta b) \in \xi$
- (ii) $b\gamma a' \in K$ and so $(b, a) \in \rho_{(\xi, K)}$
- (iii) $(b\gamma b', a\alpha a'\beta b\gamma b') \in \xi$ and $(a\alpha a', b\gamma b'\delta a\alpha a') \in \xi$

Proof: (i) Let $a, b \in S$ and $(a, b) \in \rho_{(\xi, K)}$. Then (i) follows from definition of $\rho_{(\xi, K)}$. Now from (i) we have $a\alpha b' \in K$ and $(a'\beta a, b'\delta b) \in \xi$. Let $g \in RS(b'\delta b, a'\beta a)$, then g is a γ -idempotent. So by Theorem 1.5 we have $a\alpha g\gamma b' \in V_{\beta}^{\delta}(b\gamma a')$. Also by Theorem 2.1 $a\alpha g\gamma b' \in K$ since $a\alpha b' \in K$ and $g \in E_{\gamma}$. On the other hand $b\gamma a' \in V_{\beta}^{\delta}(a\alpha g\gamma b')$ and so $b\gamma a' \in K$, since K is a normal subsemigroup of S. Therefore $(b, a) \in \rho_{(\xi, K)}$ since ξ is symmetric. Hence (ii) follows.

Again for $g \in RS(b'\delta b, a'\beta a)$, $g = g\gamma b'\delta b = a'\beta a\alpha g$ and $(b'\delta b)\gamma g\gamma(a'\beta a) = (b'\delta b)\gamma(a'\beta a)$ by Theorem 1.4. Hence $b\gamma g\gamma b' \in E_{\delta}$. Now $b'\delta b = (b'\delta b)\gamma(b'\delta b) \xi(b'\delta b)\gamma(b'\delta b)$

 $(a'\beta a)=(b'\delta b)\gamma g\gamma(a'\beta a)\ \xi\ (b'\delta b)\gamma g\gamma(b'\delta b)$ and so by normality of ξ we have $b\gamma(b'\delta b)\gamma b'\ \xi\ b\gamma(b'\delta b\gamma g\gamma b'\delta b)\gamma b'$ i.e $b\gamma b'\ \xi\ b\gamma g\gamma b'$. Now $a\alpha g\gamma b'\in V^\delta_\beta(b\gamma a')$ and so we have

```
b\gamma b' \quad \xi \quad b\gamma g\gamma b' \\ = \quad b\gamma (a'\beta a\alpha g)\gamma b' \text{ (Since } g \in RS(b'\delta b, a'\beta a)\text{)} \\ = \quad (b\gamma a')\beta (a\alpha a'\beta a)\alpha g\gamma b' \\ = \quad (b\gamma a')\beta (a\alpha a')\beta (a\alpha g\gamma b') \text{ (Since } a\alpha a' \in E_\beta \text{ and } b\gamma a' \in K) \\ \xi \quad (a\alpha a')\beta (b\gamma a')\beta (a\alpha g\gamma b') \text{ (by Definition 2.6 and } a\alpha g\gamma b' \in V_\beta^\delta(b\gamma a')\text{)} \\ = \quad a\alpha a'\beta b\gamma g\gamma b' \\ \xi \quad (a\alpha a')\beta (b\gamma b').
```

Similarly interchanging the role of a and b we can get the second relation.

Theorem 2.3. Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that $a, b \in \rho_{(\xi, K)}$, then for all $a^* \in V_{\alpha}^{\beta}(a)$ and $b^* \in V_{\gamma}^{\delta}(b)$, $a\alpha b^* \in K$ and $(a^*\beta a, b^*\delta b) \in \xi$

Proof: Since $(a,b) \in \rho_{(\xi,K)}$, there exist $a' \in V_{\alpha_1}^{\beta_1}(a)$ and $b' \in V_{\gamma_1}^{\delta_1}(b)$ such that all the three conditions of Theorem 2.2 are satisfied. Now

```
\begin{array}{rcl} a'\beta_1 a &=& a'\beta_1 a\alpha a^*\beta a \\ &=& a'\beta_1 a\alpha a^*\beta a\alpha_1 a'\beta_1 a \\ &\xi &a'\beta_1 a\alpha_1 a^*\beta a\alpha a'\beta_1 a \text{ (Since } \xi \text{ is an ip - congruence and } V_{\alpha}^{\beta}(a) \text{ and } \\ &V_{\alpha_1}^{\beta_1}(a) \text{ are nonempty.)} \\ &=& (a'\beta_1 a)\alpha_1 (a^*\beta a)\alpha(a'\beta_1 a) \\ &=& (a^*\beta a)\alpha(a'\beta a) \\ &\xi &a^*\beta a\alpha_1 a'\beta a \text{ (Since } \xi \text{ is an ip - congruence and } V_{\alpha}^{\beta}(a) \text{ and } V_{\alpha_1}^{\beta_1}(a) \\ &&\text{are nonempty.)} \\ &=& a^*\beta a \end{array}
```

Similarly we can show that $(b'\delta_1b, b^*\delta b) \in \xi$. Hence we have $a^*\beta a \xi a'\beta_1 a \xi b'\delta_1 b \xi b^*\delta b$. Hence $(a^*\beta a, b^*\delta b) \in \xi$. We now prove that $a\alpha b^* \in K$. To prove this we proceed by five steps.

```
Step1: b\gamma_1 a' \in K.

Step2: b'\delta_1 a \in K.

Step3: b^*\delta a \in K.

Step4: (b\gamma b^*, a\alpha a^*\beta b\gamma b^*) \in \xi.

Step5: a\alpha b^* \in K.
```

Let $g \in RS(b'\delta_1b, a'\beta_1a)$, then g is a γ_1 -idempotent and we have $a\alpha_1g\gamma_1b' \in V_{\beta_1}^{\delta_1}(b\gamma_1a')$. Also since $a\alpha_1b' \in K$ and $g \in E_{\gamma_1}$, by Theorem 2.1 $a\alpha_1g\gamma_1b' \in K$. On the other hand $b\gamma_1a' \in V_{\delta_1}^{\beta_1}(a\alpha_1g\gamma_1b')$. Since K is regular we have $b\gamma_1a' \in K$.

Let $h \in RS(b\gamma_1b', a\alpha_1a')$. Then $a'\beta_1h\delta_1b \in V_{\alpha_1}^{\gamma_1}(b'\delta_1a)$ i.e, $b'\delta_1a \in V_{\gamma_1}^{\alpha_1}(a'\beta_1h\delta_1b)$. Now since $b\gamma_1a' \in K$ and K is full self conjugate partial Γ -subsemigroup of S, we have

```
\begin{array}{ll} (b'\delta_1b)\gamma_1(a'\beta_1a)\alpha_1(a'\beta_1h\delta_1b)=b'\delta_1((b\gamma_1a')\beta_1h)\delta_1b\in K.\\ \text{Now}\\ h\delta_1(a\alpha_1a')&=&(a\alpha_1a')\beta_1h\delta_1(a\alpha_1a')\\ &\xi&(b\gamma_1b')\delta_1(a\alpha_1a')\beta_1h\delta_1(a\alpha_1a') (\text{By Theorem 2.2})\\ &=&(b\gamma b')\delta_1h\delta_1(a\alpha a') \text{ (Since $S$ is right inverse)}\\ &=&(b\gamma b')\delta_1(a\alpha a') \text{ (Since $h\in RS(b\gamma_1b',a\alpha_1a')$.}\\ &\xi&a\alpha_1a' \text{ (By Theorem 2.2)}. \end{array}
```

Again

$$(a'\beta_1 h\delta_1 b)\gamma_1 (b'\delta_1 a) = a'\beta_1 h\delta_1 a$$

$$\xi \quad a\alpha_1 a'$$

$$\xi \quad (b'\delta_1 b)\gamma_1 (a'\beta_1 a) \text{ (By Theorem 2.2)}.$$

Now since S is a right inverse Γ -semigroup, it is right orthodox and hence $(b'\delta_1b)\gamma_1$ $(a'\beta_1a)$ is an α_1 -idempotent. Thus by Definition 2.10 $a'\beta_1h\delta_1b \in K$ and since K is regular, $b'\delta_1a \in K$.

Now we have $b'\delta_1a\in K$. Hence we get $b'\delta_1(b\gamma b^*)\delta a\in K$ by Theorem 2.1. Again $b^*\delta a=b^*\delta b\gamma b^*\delta a=b^*\delta (b\gamma_1b'\delta_1b)\gamma b^*\delta a=(b^*\delta b)\gamma_1(b'\delta b\gamma b^*\delta a)\in K$ since $b^*\delta b\in E_\gamma\subseteq K$, $V_{\gamma_1}^{\delta_1}(b)$ is nonempty and K is a partial Γ -subsemigroup.

We now prove step 4.

$$\begin{array}{lll} b\gamma b^* &=& (b\gamma_1b')\delta_1(b\gamma b^*) \\ & \xi & (a\alpha_1a')\beta_1(b\gamma_1b')\delta_1(b\gamma b^*) \\ &=& (a\alpha a^*)\beta(a\alpha_1a')\beta_1(b\gamma_1b')\delta_1(b\gamma b^*) \\ & \xi & (a\alpha a^*)\beta(b\gamma_1b')\delta_1(b\gamma b^*) \\ &=& (a\alpha a^*)\beta(b\gamma b^*). \end{array}$$

Finally we show the last step. Now we have $b^*\delta a \in K$. Since $a^* \in V_\alpha^\beta(a)$ and $b^* \in V_\gamma^\delta(b)$, we have $(a^*\beta b) \in V_\alpha^\gamma(b^*\delta a)$ and hence $a^*\beta b \in K$, since K is regular. Let $x \in RS(a^*\beta a, b^*\delta b)$. Then $b\gamma x\alpha a^* \in V_\delta^\beta(a\alpha b^*)$. Now $((a\alpha a^*)\beta(b\gamma b^*))\delta(b\gamma x\alpha a^*) = a\alpha a^*\beta b\gamma x\alpha a^* = a\alpha((a^*\beta b)\gamma x)\alpha a^* \in K$, since $a^*\beta b \in K$, $x \in E_\alpha \subseteq K$ and hence $(a^*\beta b)\gamma x \in K$ and also K is self conjugate. Again

$$x\alpha(b^*\delta b) = (b^*\delta b)\gamma x\alpha(b^*\delta b) \text{ (Since } S \text{ is right inverse)}$$

$$\xi \quad ((b^*\delta b\gamma(a^*\beta a))\alpha x\alpha(b^*\delta b) \text{ (Since } (a^*\beta a, b^*\delta b) \in \xi$$

$$= (b^*\delta b)\gamma(a^*\beta a)\alpha(b^*\delta b) \text{ (Since } x \in RS(a^*\beta a, b^*\delta b).)$$

$$\xi \quad ((b^*\delta b)\gamma(b^*\delta b)\gamma(b^*\delta b) \text{ (Since } \xi \text{ is an ip - congruence and}$$

$$(a^*\beta a, b^*\delta b) \in \xi)$$

$$= b^*\delta b.$$

Thus

$$\begin{array}{rcl} b\gamma x\alpha b^* & = & b\gamma(x\alpha(b^*\delta b))\gamma b^* \\ & \xi & b\gamma(b^*b)\gamma b^* \\ & = & b\gamma b^*. \end{array}$$

Now

$$\begin{array}{rcl} (b\gamma x\alpha a^*)\beta(a\alpha b^*) & = & b\gamma(x\alpha(a^*\beta a))\alpha b^* \\ & = & b\gamma x\alpha b^* \\ & \xi & b\gamma b^* \\ & \xi & (a\alpha a^*)\beta(b\gamma b^*). \end{array}$$

Again since S is a right inverse Γ -semigroup, $(a\alpha a^*)\beta(b\gamma b^*)$ is a δ -idempotent and by Definition 2.10(i) $b\gamma x\alpha a^*\in K$ and hence $a\alpha b^*\in K$ since K is regular. Hence the Theorem.

Remark 2.1. From the previous Theorem, we can say that in the definition 3.11 of $\rho_{(\varepsilon,K)}$ and in the Theorem 2.2 "there exist" can be substituted by "for all".

Theorem 2.4. Let (ξ,K) be an ip - congruence pair for S and $a,b,c\in S$ and let $a'\in V_{\alpha_1}^{\beta_1}(a),\ b'\in V_{\alpha_2}^{\beta_2}(b),c'\in V_{\alpha_3}^{\beta_3}(c),g\in RS(c'\beta_3c,a\alpha_1a'),h\in RS(c'\beta_3c,b\alpha_2b').$ Then $(a'\beta_1a,b'\beta_2b)\in \xi,\ a\alpha_1b'\in K$ implies $(a'\beta_1g\alpha_3a,b'\beta_2h\alpha_3b)\in \xi.$

Proof: Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that for some $a' \in V_{\alpha_1}^{\beta_1}(a)$, $b' \in V_{\alpha_2}^{\beta_2}(b)$, $(a'\beta_1 a, b'\beta_2 b) \in \xi$ and $a\alpha_1 b' \in K$. Given $c \in S$

and $c' \in V_{\alpha_3}^{\beta_3}(c)$, let $g \in RS(c'\beta_3c, a\alpha_1a')$ and $h \in RS(c'\beta_3c, b\alpha_2b')$. Then g and h are α_3 -idempotents. Choose an arbitrary element $x \in RS(a'\beta_1a, b'\beta_2b)$. Then $b\alpha_2x\alpha_1a' \in V_{\beta_2}^{\beta_1}(a\alpha_1b')$. So $a\alpha_1b'\beta_2b\alpha_2x\alpha_1a' \in E_{\beta_1}$. Also let $t \in RS(g, a\alpha_1b'\beta_2b\alpha_2x\alpha_1a')$ then $t \in E_{\alpha_3}$ and $t = t\alpha_3g$ and hence $b\alpha_2x\alpha_1a'\beta_1t\alpha_3g \in V_{\beta_2}^{\alpha_3}(g\alpha_3a\alpha_1b')$ and $b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b' = (b\alpha_2x\alpha_1a')\beta_1(t\alpha_3g)\alpha_3a\alpha_1b' = (b\alpha_2x\alpha_1a'\beta_1t\alpha_3g)\alpha_3(g\alpha_3a\alpha_1b')$ of E_{β_2} . On the other hand $b\alpha_2x\alpha_1a' \in K$, since it is an (β_2,β_1) -inverse of $a\alpha_1b'$ which belongs to K. Now since (ξ,K) is an ip - congruence pair for S, by definition we have $((b\alpha_2x\alpha_1a')\beta_1t\alpha_3(a\alpha_1b'), t\alpha_3b\alpha_2x\alpha_1a'\beta_1a\alpha_1b') \in \xi$. Again since $x\alpha_1(a'\beta_1a) = x$ we get

$$(2.1) \qquad (b\alpha_2 x \alpha_1 a' \beta_1 t \alpha_3 a \alpha_1 b', t \alpha_3 b \alpha_2 x \alpha_1 b') \in \xi$$

for all $x \in RS(a'\beta_1 a, b'\beta_2 b)$

Now since ξ is an ip - congruence and $(a'\beta_1a,b'\beta_2b) \in \xi$, we have $b'\beta_2b\alpha_2x\alpha_1b'\beta_2b$ ξ $a'\beta_1a\alpha_1x\alpha_1b'\beta_2b = a'\beta_1a\alpha_1b'\beta_2b$ ξ $b'\beta_2b\alpha_2b'\beta_2b = b'\beta_2b$. Again and hence $(b\alpha_2x\alpha_1b')\beta_2(b\alpha_2x\alpha_1b') = b\alpha_2x\alpha_1(b'\beta_2b\alpha_2x)\alpha_1b' = b\alpha_2x\alpha_1b'$ and hence $b\alpha_2x\alpha_1b' \in E_{\beta_2}$. Hence ξ is normal, we have $(b\alpha_2(b'\beta_2b\alpha_2x\alpha_1b'\beta_2b)\alpha_2b', b\alpha_2(b'\beta_2b)\alpha_2b') \in \xi$ which implies

$$(b\alpha_2 x \alpha_1 b', b\alpha_2 b') \in \xi$$

Similarly we can show that

$$(2.3) (a\alpha_1 x \alpha_1 a', a\alpha_1 a') \in \xi$$

Using (2.1)and(2.2) we get
$$(2.4) (b\alpha_2 x\alpha_1 a'\beta_1 t\alpha_3 a\alpha_1 b', t\alpha_3 b\alpha_1 b') \in \xi$$

Since $a\alpha_1 a'\beta_1 t = a\alpha_1 a'\beta_1((a\alpha_1 b'\beta_2 b\alpha_2 x\alpha_1 a')\beta_1 t) = a\alpha_1 b'\beta_2 b\alpha_2 x\alpha_1 a'\beta_1 t = t$, we have $a'\beta_1 t\alpha_3 a \in E_{\alpha_1}$. Since $(b'\beta_2 b, a'\beta_1 a) \in \xi$, we have

Hence

$$(2.5) (b'\beta_2b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b, a'\beta_1t\alpha_3a) \in \xi$$

Next since $g \in RS(c'\beta_3c, a\alpha_1a')$, $a\alpha_1a'\beta_1g = g$ and hence we have $a'\beta_1g\alpha_3a \in E_{\alpha_1}$. Now since $x \in RS(a'\beta_1a, b'\beta_2b)$, $a\alpha_1b'\beta_2b\alpha_2x\alpha_1a' = a\alpha_1x\alpha_1a' \in E_{\beta_1}$ and hence $t \in RS(g, a\alpha_1x\alpha_1a')$. Thus we have $g\alpha_3t\alpha_3a\alpha_1x\alpha_1a' = g\alpha_3a\alpha_1x\alpha_1a'$. Now by (2.3) we have $((g\alpha_3t)\alpha_3a\alpha_1x\alpha_1a', (g\alpha_3t)\alpha_3a\alpha_1a') \in \xi$ i.e, $(g\alpha_3a\alpha_1x\alpha_1a', g\alpha_3t\alpha_3a\alpha_1a') \in \xi$ since $t \in RS(ga\alpha_1x\alpha_1a')$ and again using (2.3)we have $g\alpha_3a\alpha_1a' \notin g\alpha_3a\alpha_1x\alpha_1a' \notin g\alpha_3a\alpha_1a' \in \xi$ $g\alpha_3t\alpha_3a\alpha_1a'$ i.e, we get $(g\alpha_3a\alpha_1a',g\alpha_3t\alpha_3a\alpha_1a') \in \xi$. Now since S is a right inverse Γ -semigroup $t\alpha_3g\alpha_3t=g\alpha_3t$ and hence we have $g\alpha_3t\alpha_3a\alpha_1a'=t\alpha_3g\alpha_3t\alpha_3a\alpha_1a'=t\alpha_3a\alpha_1a'$ since $t\alpha_3g=t$. Thus $(g\alpha_3a\alpha_1a',t\alpha_3a\alpha_1a') \in \xi$ by transitivity of ξ . Now since ξ is normal, we have $(a'\beta_1(g\alpha_3a\alpha_1a')\beta_1a, a'\beta_1(t\alpha_3a\alpha_1a')\beta_1a) \in \xi$. i.e,

$$(2.6) (a'\beta_1 g\alpha_3 a, a'\beta_1 t\alpha_3 a) \in \xi$$

Again since S is a right inverse Γ -semigroup and the fact that $t \in RS(g, a\alpha_1 x\alpha_1 a')$ and $g \in RS(c'\beta_3 c, a\alpha_1 a')$ we see that

```
\begin{array}{lcl} t\alpha_3b\alpha_2b' & = & b\alpha_2b'\beta_2t\alpha_3b\alpha_2b' \; (\text{Since } S \text{ is right inverse $\Gamma$-semigroup}) \\ & = & b\alpha_2b'\beta_2(t\alpha_3g)\alpha_3(b\alpha_2b') \\ & = & b\alpha_2b'\beta_2(t\alpha_3g\alpha_3c'\beta_3c)\alpha_3b\alpha_2b'. \end{array}
```

Now since $(a'\beta_1 a, b'\beta_2 b) \in \xi$ and $a\alpha_1 b' \in K$, proceeding the same way of Theorem 2.2 we have $(b\alpha_2 b', a\alpha_1 a'\beta_1 b\alpha_2 b') \in \xi$. Now

```
t\alpha_3 b\alpha_2 b' = b\alpha_2 b'\beta_2 t\alpha_3 g\alpha_3 c'\beta_3 c\alpha_3 b\alpha_2 b'
                     \xi b\alpha_2b'\beta_2t\alpha_3g\alpha_3c'\beta_3c\alpha_3(a\alpha_1a'\beta_1b\alpha_2b') (Since
                                                                                                    (b\alpha_2b', a\alpha_1a'\beta_1b\alpha_2b') \in \xi)
                    = b\alpha_2 b'\beta_2 (g\alpha_3 t\alpha_3 g)\alpha_3 c'\beta_3 c\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' (since S is right inverse)
                          b\alpha_2b'\beta_2g\alpha_3t\alpha_3(a\alpha_1a'\beta_1g)\alpha_3c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b' (Since g \in
                                                                                                                     RS(c'\beta_3c,a\alpha_1a'))
                          b\alpha_2 b'\beta_2 g\alpha_3 t\alpha_3 (a\alpha_1 x\alpha_1 a')\beta_1 g\alpha_3 c'\beta_3 c\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' (by (2.3))
                            b\alpha_2b'\beta_2(g\alpha_3(a\alpha_1x\alpha_1a')\beta_1g)\alpha_3c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b' (since t \in
                                                                                                                     RS(g, a\alpha, x\alpha, a'))
                           b\alpha_2b'\beta_2(g\alpha_3(a\alpha_1a')\beta_1g)\alpha_3c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b' (By (2.3))
                     ξ
                          b\alpha_2 b'\beta_2 g\alpha_3 c'\beta_3 c\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' (Since (a\alpha_1 a')\beta_1 g = g)
                          b\alpha_2 b'\beta_2 (c'\beta_3 c\alpha_3 g\alpha_3 c'\beta_3 c)\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' (since S is right
                                                                                                                      inverse)
                          b\alpha_2b'\beta_2c'\beta_3c\alpha_3g\alpha_3(a\alpha_1a'\beta_1c'\beta_3c\alpha_3a\alpha_1a')\beta_1b\alpha_2b' (Since S is right
                                                                                                                               inverse)
                         b\alpha_2b'\beta_2(c'\beta_3c\alpha_3a\alpha_1a')\beta_1c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b' (since g \in
                                                                                                                     RS(c'\beta_3c,a\alpha_1a'))
           b\alpha_2b'\beta_2a\alpha_1a'\beta_1c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b' (since S is right inverse)
            b\alpha_2b'\beta_2c'\beta_3c\alpha_3a\alpha_1a'\beta_1b\alpha_2b
           b\alpha_2b'\beta_2(c'\beta_3c\alpha_3a\alpha_1a')\beta_1b\alpha_2b'
           c'\beta_3 c\alpha_3 a\alpha_1 a'\beta_1 b\alpha_2 b' (Since S is right inverse and hence right orthodox)
           c'\beta_3c\alpha_3b\alpha_2b'
      ξ
            c'\beta_3\alpha_3h\alpha_3b\alpha_2b'(since h \in RS(c'\beta_3c,b\alpha_2b')
            h\alpha_3 c'\beta_3 c\alpha_3 h\alpha_3 b\alpha_2 b' (since S is right inverse)
           h\alpha_3b\alpha_2b' (Since h \in RS(c'\beta_3c,b\alpha_2b'))
```

Hence we have

$$(2.7) (t\alpha_3 b\alpha_2 b', h\alpha_3 b\alpha_2 b') \in \xi$$

Finally from (2.4) and (2.7) we have $(b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b', h\alpha_3b\alpha_2b') \in \xi$ and by normality of ξ we have $(b'\beta_2b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b, b'\beta_2h\alpha_3b\alpha_2b'\beta_2b) \in \xi$ i.e, $(b'\beta_2b\alpha_2x\alpha_1a'\beta_1t\alpha_3a\alpha_1b'\beta_2b, b'\beta_2h\alpha_3b) \in \xi$. It is to be noted that both the elements belong to E_{α_2} . Also by normality of ξ together with (2.5) and (2.6) we have $(a'\beta_1g\alpha_3a, b'\beta_2h\alpha_3b) \in \xi$. Hence the proof.

Theorem 2.5. If (ξ, K) is an ip - congruence pair for S, then $\rho_{(\xi, K)}$ is an ip - congruence with trace ξ and kernel K. Conversely if ρ is an ip - congruence on S then $(tr\rho, Ker\rho)$ is an ip - congruence pair and $\rho = \rho_{(tr\rho, Ker\rho)}$.

Proof. Let (ξ,K) be an ip - congruence pair for S and $\rho_{(\xi,K)}$ and let $\rho=\rho_{(\xi,K)}$. Since $E(S)\subseteq K$ and ξ is reflexive, ρ is also reflexive. Again from Theorem 2.2 and Remark 2.1, we see that ρ is symmetric. We now show that ρ is transitive. For this let us suppose that $(a,b)\in\rho$ and $(b,c)\in\rho$ and let $a'\in V_{\alpha_1}^{\beta_1}(a),\ b'\in V_{\alpha_2}^{\beta_2}(b),c'\in V_{\alpha_3}^{\beta_3}(c)$. Then we have $(a'\beta_1a,b'\beta_2b)\in\xi,(b'\beta_2b,c'\beta_3c)\in\xi,a\alpha_1b'\in K,b\alpha_2c'\in K.$ Since ξ is transitive we have $(a'\beta_1a,c'\beta_3c)\in\xi$. We now show that $a\alpha_1c'\in K$. Now by Theorem 2.2, $b\alpha_2a'\in K$ and $c\alpha_3b'\in K$. Hence $c\alpha_3b'\beta_2b\alpha_2a'\in K$, Since K is a Γ -subsemigroup. Let $g\in RS(c'\beta_3c,b'\beta_2b)$ and $h\in RS(c'\beta_3c,a'\beta_1a)$. By Theorem 2.1 and since $g=g\alpha_3c'\beta_3c\in E_{\alpha_3}$, we have,

$$(2.8) \qquad (c\alpha_3b'\beta_2b)\alpha_2(g\alpha_3c'\beta_3c)\alpha_3a' \in K$$

Again since $b\alpha_2g\alpha_3c'\in V_{\beta_2}^{\beta_3}(c\alpha_3b'), c\alpha_3b'\beta_2b\alpha_2g\alpha_3c'\in E_{\beta_3}$. Now $c'\beta_3c=c'\beta_3c\alpha_3$ $c'\beta_3c$ ξ $c'\beta_3c\alpha_3b'\beta_2b=c'\beta_3c\alpha_3g\alpha_3b'\beta_2b$ ξ $c'\beta_3c\alpha_3g\alpha_3c'\beta_3c=c'\beta_3c\alpha_3g$, since $(b'\beta_2b,c'\beta_3c)\in \xi$ and $g\in RS(c'\beta_3c,b'\beta_2b)$. Also since $c\alpha_3g\alpha_3c'\in E_{\beta_3}$ and ξ is normal, it follows that $(c\alpha_3(c'\beta_3c)\alpha_3c,c\alpha_3(c'\beta_3c\alpha_3g)\alpha_3c')\in \xi$ i.e, $(c\alpha_3c',c\alpha_3g\alpha_3c')\in \xi$. Similarly since $(c'\beta_3c,a'\beta_1a)\in \xi$ and $c\alpha_3h\alpha_3c'\in E_{\beta_3}$ we have $(c\alpha_3c,c\alpha_3h\alpha_3c')\in \xi$. By transitivity of ξ , $(c\alpha_3g\alpha_3c',c\alpha_3h\alpha_3c')\in \xi$. Again $c\alpha_3(b'\beta_2b\alpha_2g)\alpha_3c'=c\alpha_3g\alpha_3c'$ ξ $c\alpha_3h\alpha_3c'=c\alpha_3(a'\beta_1a\alpha_1h)\alpha_3c'$. i.e,

 $(c\alpha_3b'\beta_2b\alpha_2g\alpha_3c',c\alpha_3a'\beta_1a\alpha_1h\alpha_3c') \in \xi. \text{ Again since } b\alpha_2g\alpha_3c' \in V_{\beta_2}^{\beta_3}(c\alpha_3b'),\ c\alpha_3b'$ $\beta_2b\alpha_2g\alpha_3c' \in E_{\beta_3} \text{ and since } a\alpha_1h\alpha_3c' \in V_{\beta_1}^{\beta_3}(c\alpha_3a'), \text{ from (2.8) and Definition 2.10}$ we can say that $c\alpha_3a' \in K$ and by Theorem 2.2 we have $a\alpha_1c' \in K$. Hence ρ is transitive. Hence ρ is an equivalence relation.

We now prove that ρ is an ip - congruence. Let us suppose that $(a,b) \in \rho$. Then for all $a' \in V_{\alpha_1}^{\beta_1}(a), b' \in V_{\alpha_2}^{\beta_2}(b), (a'\beta_1a,b'\beta_2b) \in \xi$ and $a\alpha_1b' \in K$. Let $c \in S$ and $c' \in V_{\alpha_3}^{\beta_3}(c)$. We now prove that $(c\alpha_3a,c\alpha_3b) \in \rho$. Let $g \in RS(c'\beta_3c,a\alpha_1a')$ and $h \in RS(c'\beta_3c,b\alpha_2b')$. Then $a'\beta_1g\alpha_3c' \in V_{\alpha_1}^{\beta_3}(c\alpha_3a)$ and $b'\beta_2h\alpha_3c' \in V_{\alpha_2}^{\beta_3}(c\alpha_3b)$ and by Theorem 2.4 we have $a'\beta_1g\alpha_3c'\beta_3c\alpha_3a = a'\beta_1g\alpha_3a \xi b'\beta_2h\alpha_3b = b'\beta_2h\alpha_3c'\beta_3c\alpha_3b$. Also $(c\alpha_3a)\alpha_1(b'\beta_2h\alpha_3c') = c\alpha_3(a\alpha_1b')\beta_2h\alpha_3c' \in K$ since $a\alpha_1b' \in K$ and $h \in E_{\alpha_3}$ and K is self conjugate. Hence by definition of ρ we have $(c\alpha_3a,c\alpha_3b) \in \rho$. Next we prove that $(a\alpha_1c,b\beta_1c) \in \rho$. For this let $g \in RS(a'\beta_1a,c\alpha_3c')$ and $h \in RS(b'\beta_2b,c\alpha_3c')$. Then $c'\beta_3g\alpha_1a' \in V_{\alpha_3}^{\beta_1}(a\alpha_1c)$ and $c'\beta_3h\alpha_2b' \in V_{\alpha_3}^{\beta_2}(b\alpha_2c)$. Now

```
g\alpha_1 c\alpha_3 c' = g\alpha_1 a'\beta_1 a\alpha_1 c\alpha_3 c' \text{ (Since } g \in RS(a'\beta_1 a, c\alpha_3 c')\text{)}
                         \xi g\alpha_1b'\beta_2b\alpha_2c\alpha_3c'
                                g\alpha_1 b'\beta_2 b\alpha_2 h\alpha_2 c\alpha_3 c' (Since h \in RS(b'\beta_2 b, c\alpha_3 c'))
                                g\alpha_1(a'\beta_1a)\alpha_1h\alpha_2c\alpha_3c' (Since \xi is an ip - congruence and
                                                                                                           (a'\beta_1 a, b'\beta_2 b) \in \xi)
                         = (a'\beta_1 a\alpha_1 g\alpha_1 a'\beta_1 a)\alpha_1 h\alpha_2 c\alpha_3 c' (Since S is right inverse)
                                 a'\beta_1 a\alpha_1 g\alpha_1 a'\beta_1 a\alpha_1 (c\alpha_3 c'\beta_3 h)\alpha_2 c\alpha_3 c' (Since h \in
                                                                                                           RS(b'\beta_2 b, c\alpha_3 c'))
                         = a'\beta_1 a\alpha_1 g\alpha_1 (a'\beta_1 a\alpha_1 c\alpha_3 c')\beta_3 h\alpha_2 c\alpha_3 c'
= a'\beta_1 a\alpha_1 g\alpha_1 (c\alpha_3 c'\beta_3 a'\beta_1 a\alpha_1 c\alpha_3 c')\beta_3 h\alpha_2 c\alpha_3 c' (Since S is
                                                                                                             right inverse)
                              a'\beta_1 a\alpha_1 g\alpha_1 c\alpha_3 c'\beta_3 a'\beta_1 a\alpha_1 h\alpha_2 c\alpha_3 c'(\text{Since } h \in RS(b'\beta_2 b, c\alpha_3 c'))
                         (a'\beta_1 a\alpha_1 c\alpha_2 c'\beta_2 a'\beta_1 a)\alpha_1 h\alpha_2 c\alpha_2 c' (Since g \in RS(a'\beta_1 a, c\alpha_2 c'))
                        c\alpha_3 c'\beta_3 (a'\beta_1 a\alpha_1 h)\alpha_2 c\alpha_3 c' (Since S is right inverse)
                          a'\beta_1 a\alpha_1 h\alpha_2 c\alpha_3 c' (Since S is right inverse and
                                                                                                    hence right orthodox)
                          b'\beta_2b\alpha_2h\alpha_2c\alpha_3c'
                  = b'\beta_2b\alpha_2h\alpha_2b'\beta_2b\alpha_2c\alpha_3c'(Since h \in RS(b'\beta_2b, c\alpha_3c'))
                  \xi h\alpha_2 b'\beta_2 b\alpha_2 c\alpha_3 c' (Since S is right inverse)
                  = h\alpha_2 c\alpha_3 c'.
Hence
```

Now since $g \in RS(a'\beta_1a, c\alpha_3c')$ and $h \in RS(b'\beta_2b, c\alpha_3c'), c'\beta_3h\alpha_2c \in E_{\alpha_3}$ and $c'\beta_3g\alpha_1c \in E_{\alpha_3}$. Again by normality of ξ and by (2.9) we have $(c'\beta_3(g\alpha_1c\alpha_3c')\beta_3c, c'\beta_3(h\alpha_2c\alpha_3c')\beta_3c) \in \xi$. i.e, $(c'\beta_3g\alpha_1c, c'\beta_3h\alpha_3c) \in \xi$. Thus $(c'\beta_3g\alpha_1a')\beta_1(a\alpha_1c) \xi$ $(c'\beta_3h\alpha_2b')\beta_2(b\alpha_2c)$. Finally $(a\alpha_1c)\alpha_3(c'\beta_3h\alpha_2b') = a\alpha_1(c\alpha_3c'\beta_3h)\alpha_2b' \in K$ since $a\alpha_1b' \in K$. Hence $(a\alpha_1c, b\alpha_2c) \in \rho$ by definition of ρ .

 $(g\alpha_1 c\alpha_3 c', h\alpha_2 c\alpha_3 c') \in \xi$

(2.9)

Let us now show that $tr\rho = \xi$. Let us suppose that e be an α -idempotent and f be a β -idempotent are such that $(e, f) \in \rho$. Then by definition of ρ we have $(e, f) \in \xi$, since $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$. Hence $tr\rho \subseteq \xi$. Conversely let $e \in E_{\alpha}$ and $f \in E_{\beta}$ and $(e, f) \in \xi$. We now show that $(e, f) \in \rho$. Since S is right inverse Γ -semigroup, $e\alpha f \in E_{\beta} \subseteq K$. Again considering $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$ we can say that $(e, f) \in \rho$. Hence $\xi = tr\rho$.

Let us now show that $K = ker\rho$. For that let $a \in Ker\rho$. Then there exists an α -idempotent $e \in S$ such that $(a, e) \in \rho$ and hence $(a'\delta a, e) \in \xi$ for all $a' \in V_{\gamma}^{\delta}(a)$ and $a\gamma e \in K$. Then by Theorem 2.2 and Remark 2.1 $e\alpha a' \in K$ and so by definition of (ξ, K) we have $a' \in K$ and hence from regularity of $K, a \in K$.

Conversely suppose that $a \in K$. Let $a' \in V_{\alpha}^{\beta}(a)$ then $(a'\beta a, a'\beta a\alpha a'\beta a) \in \xi$ and $a\alpha a'\beta a \in K$ i.e, $(a, a'\beta a) \in \rho$ by definition of ρ . Thus $a \in Ker\rho$. Hence $K = Ker\rho$.

We now prove the converse part of the Theorem. Let us suppose that ρ is a ip - congruence on S. We show that $(tr\rho, Ker\rho)$ is an ip - congruence pair and $\rho = \rho_{(tr\rho, Ker\rho)}$. Let $a, b \in ker\rho$ and let $V_{\alpha}^{\beta}(a) \neq \phi$. Hence $a\rho = e\rho$ and $b\rho = f\rho$ for some γ -idempotent e and δ -idempotent f. Now $a\rho e$ implies $a\alpha b \rho e\gamma b \rho e\gamma f$. Since S is a right inverse Γ -semigroup $e\gamma f \in E_{\delta}$ and hence $a\alpha b \in Ker\rho$. Thus $Ker\rho$ is a partial Γ -subsemigroup of S. Clearly $Ker\rho$ contains E(S). Let $a \in Ker\rho$ and $a' \in V_{\alpha}^{\beta}(a)$. We show that $a' \in Ker\rho$. Since $a \in Ker\rho$, $a\rho = e\rho$ for some $e \in E_{\gamma}$.

Now $a' = a'\beta a\alpha a' \rho \ a'\beta e\gamma a' = a'\beta e\gamma e\gamma a' \rho \ a'\beta a\alpha e\gamma a' \rho \ a'\beta a\alpha a\alpha a'$. Since $(a'\beta a)\alpha$ $(a\alpha a') \in E_{\beta}, a' \in Ker\rho$. Thus $Ker\rho$ is regular. Next let $a \in S$ and $a' \in V_{\alpha}^{\beta}(a)$ and $k \in Ker\rho$ where $V_{\gamma}^{\delta}(k) \neq \phi$. Since $k \in Ker\rho, k\rho = e\rho$ for some μ -idempotent e. Now since S is a right inverse Γ -semigroup, $(a'\beta e\mu a)\alpha(a'\beta e\mu a) = a'\beta(e\mu a\alpha a'\beta e)\mu a = a'\beta(a\alpha a'\beta e)\mu a = a'\beta e\mu a$ i.e, $a'\beta e\mu a \in E_{\alpha}$.

Now $a'\beta k\gamma a\ \rho\ a'\beta e\mu a$ and hence $a'\beta k\gamma a\in Ker\rho$ i.e, $Ker\rho$ is self conjugate. Thus $Ker\rho$ is a normal partial Γ -subsemigroup of S. We now prove that $(tr\rho, Ker\rho)$ is an ip - congruence pair for S. Since ρ is a ip - congruence and for $a'\in V_{\alpha}^{\beta}(a)$ and $e\in E_{\gamma}, a'\beta e\gamma a\in E_{\alpha}, tr\rho$ is a normal ip - congruence. Now let $a\in S$ and $a'\in V_{\alpha}^{\beta}(a)$ and $e\in E_{\gamma}$ be such that $e\gamma a\in ker\rho$ and $(e,a\alpha a')\in tr\rho$. Now $a\ \rho\ (a\alpha a')\beta a\ \rho\ e\gamma a\ \rho\ f$ for some $f\in E(S)$ since $e\gamma a\in Ker\rho$. Hence condition (i) of Definition 2.10 is satisfied. Next let $a\in Ker\rho$ and $e\in E_{\gamma}$ and let $a'\in V_{\alpha}^{\beta}(a)$. Now since $a\in Ker\rho, a\rho=f\rho$ for some δ -idempotent f and $a'\rho=g\rho$ for some μ -idempotent f.

Now $a\alpha e\gamma a'=a\alpha e\gamma a'\beta a\alpha a'$ ρ $f\delta e\gamma g\mu f\delta g$ ρ $f\delta e\gamma f\delta g$ ρ $e\gamma f\delta g$ ρ $e\gamma a\alpha a'$. Now since $a\alpha e\gamma a', e\gamma a\alpha a'\in E_{\beta}$, we have $(a\alpha e\gamma a', e\gamma a\alpha a')\in tr\rho$. Thus condition (ii) of definition 2.10 is also satisfied. Finally we show that $\rho=\rho_{(tr\rho,Ker\rho)}$ i.e, we prove $(a,b)\in\rho$ if and only if for all $a'\in V_{\alpha_1}^{\beta_1}(a)$ and for all $b'\in V_{\alpha_2}^{\beta_2}(b)$, $a\alpha_1b'\in Ker\rho$ and $(a'\beta_1a,b'\beta_2b)\in tr\rho$. Suppose $(a,b)\in\rho$ and $a'\in V_{\alpha_1}^{\beta_1}(a)$, $b'\in V_{\alpha_2}^{\beta_2}(b)$. Now $a\alpha_1b'\rho$ $a\alpha_2b'$ since $a\alpha_2b'$ is an ip - congruence. Again since $a\alpha_2b'$ is a $a\alpha_2$ -idempotent we can say that $a\alpha_1b'\in Ker\rho$. Now $a'\beta_1a$ $a\alpha_1a'\beta_1b=a'\beta_1b\alpha_2b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ are $a\alpha_1$ -idempotent and $a\alpha_2$ -idempotent respectively, we have $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ are $a\alpha_1$ -idempotent and $a\alpha_2$ -idempotent respectively, we have $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta_2b$ $a\alpha_1a'\beta_1a$ $a\alpha_1b'\beta$

Conversely let $(a,b) \in S$ such that for all $a' \in V_{\alpha_1}^{\beta_1}(a), b' \in V_{\alpha_2}^{\beta_2}(b), (a'\beta_1 a, b'\beta_2 b) \in tr\rho$ and $a\alpha_1 b' \in Ker\rho$.

Now

$$\begin{array}{lcl} (a\alpha_1b')\beta_2(b\alpha_2a')\beta_1(a\alpha_1b') & = & a\alpha_1(b'\beta_2b)\alpha_2(a'\beta_1a)\alpha_1(b'\beta_2b)\alpha_2b' \\ & = & a\alpha_1(a'\beta_1a)\alpha_1(b'\beta_2b)\alpha_2b' \\ & = & a\alpha_1b' \end{array}$$

and

$$\begin{array}{lcl} (b\alpha_2a')\beta_1(a\alpha_1b')\beta_2(b\alpha_2a') & = & b\alpha_2(a'\beta_1a)\alpha_1(b'\beta_2b)\alpha_2(a'\beta_1a)\alpha_1a' \\ & = & b\alpha_2(b'\beta_2b)\alpha_2(a'\beta_1a)\alpha_1a' \\ & = & b\alpha_2a' \end{array}$$

Hence $a\alpha_1b'\in V_{\beta_1}^{\beta_2}(b\alpha_2a')$. Again since $a\alpha_1b'\in Ker\rho, b\alpha_2a'\in Ker\rho$ and let $(a\alpha_1b')\ \rho\ e$ and $(b\alpha_2a')\ \rho\ f$ for γ -idempotent e and δ -idempotent f. Now $a=a\alpha_1(a'\beta_1a)\alpha_1(a'\beta_1a)\ \rho\ a\alpha_1(b'\beta_2b)\alpha_2(a'\beta_1a)\ \rho\ (a\alpha_1b')\beta_2(b\alpha_2a')\beta_1a\ \rho\ e\gamma f\delta a=f\delta e\gamma f\delta a\ \rho\ (b\alpha_2a')\beta_1(a\alpha_1b')\beta_2(b\alpha_2a')\beta_1a=b\alpha_2(a'\beta_1a)\alpha_1(b'\beta_2b)\alpha_2(a'\beta_1a)=b\alpha_2(b'\beta_2b)\alpha_2(a'\beta_1a)\ \rho\ b\alpha_2(b'\beta_2b)\alpha_2(b'\beta_2b)=b.$ i.e, $(a,b)\in\rho$. Hence the proof.

References

- F. Pastijn and M. Petrich., Congruences on regular semigroups, Trans. Amer. Math. Soc., 295(1986), 607-633.
- [2] G.M.S. Gomes., R-unipotent congruences on regular semigroups, emigroup Forum, 31(1985), 265-280.
- [3] J.M. Howie, An introduction to semigroup Theory, Clarendon Press, Oxford, 1995,

- [4] K.S.S. Nambooripad, Structure of regular semigroups I, Mem. Amer. Math. Soc. 22 (1979), no.224.
- [5] M.K. Sen, M.K. and N.K. Saha., On Γ -semigroup I, Bull. Cal. Math. Soc., 78(1986), 180-186.
- [6] N.K. Saha., On Γ -semigroup II, Bull. Cal. Math. Soc, 79(1987), 331-335.
- [7] N.K. Saha., On Γ-semigroup III, Bull. Cal. Math. Soc., 80(1988), 1-12.
- [8] S. Chattopadhyay., Right inverse Γ-semigroup, Bull. Cal. Math. Soc., 93(6),(2001), 435-442.
- [9] S. Chattopadhyav., Right orthodox Γ -semigroup, Southeast Asian Bull. of Mathematics, (2005)29, 1-18.
- [10] S. Chattopadhyay., Sandwich sets on regular Γ -semigroup, Communicated.

Sovarani Memorial College, Jagatballavpur, Howrah -711408, West Bengal, INDIA $E\text{-}mail\ address:\ {\tt chatterjees04@yahoo.co.in}$