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Abstract. In this paper, we study the problem of simultaneous maximization
of the value of expected terminal surplus and, minimization of risks associated

with the terminal surplus in a defined contribution (DC) pension scheme. The

surplus, which is discounted, is solved with dynamic programming techniques.
The pension plan member (PPM) makes a flow of contributions from his or her

stochastic salary into the scheme. The flow of contributions are invested into

a market that is characterized by a cash account, an index bond and a stock.
The efficient frontier for the discounted and real surplus are obtained. Optimal

consumption of the PPM was found to depend on the terminal wealth, random

evolution of minimum pension benefit and ”variance minimizing” parameter.
It was found that as the variance minimizing parameter, tends to zero, the op-

timal consumption tends to negative infinity. The optimal expected discounted
and real surplus, optimal total expected pension benefits and expected min-

imum pension benefits were obtained. We found that the optimal portfolio

depends linearly on the random evolution of PPM’s minimum benefits. Some
numerical examples of the results are established.

Keywords. pension scheme, mean-variance, stochastic funding, defined contri-
bution, efficient frontier, surplus, minimum pension benefits, optimal consumption
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1. Introduction

In this paper, we consider a mean variance portfolio selection problem for a de-
fined contribution pension scheme. We study the optimal surplus process, minimum
pension benefit and optimal total benefit that will accrued to a PPM at terminal
time. The salary process of the PPM is assumed to be stochastic. The flow of
contribution by by the PPM are invested into a market that is composed of cash
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account, index bond and stock. The real and nominal surplus for the stakeholders
(i.e., PPM and PFA) are obtained. The consumption process of the PPM at time, t
is examined in this paper. The optimal investment allocation strategy can be found
by solving a mean and variance optimization problem, see Nkeki (2012). Optimal
surplus, optimal pension benefits, minimum pension benefits and optimal consump-
tion plan in a mean-variance portfolio selection approach for a defined contribution
pension scheme are considered in this paper.

Haberman and Sung (1994), considered a defined benefit (DB) plans and mod-
eled it as linear-quadratic optimal control problems. Markowitz (1952) studied a
meanvariance optimization model and used it to compare securities and portfolios
based in a tradeoff between their expected return and its variance. Colombo and
Haberman (2005) and Huang and Cairns (2005) considered a mean-variance port-
folio problem in pension plans from a static point. Chiu and Li (2006) studied a
dynamic case of the model for asset and liability management under the meanvari-
ance criteria. Josa-Fombellida and Rincon-Zapatero (2008) studied the benefits of
the DB plan by assuming that the benefits are stochastic, modeled by a geometric
Brownian motion. They assumed that benefit is a non-tradeable asset. They also
considered the existence of correlation between the sources of uncertainty in the
benefits and in the asset returns.

Our paper follows the work of Josa-Fombellida and Rincon-Zapatero (2008). In
our own case, we study optimal surplus, minimum pension benefit, optimal total
benefit and optimal consumption plan under the context of a defined contribution
pension plan. We assume that the salary process of a PPM is stochastic and
modeled by a geometric Brownian motion.

There are extensive literature that exist on the area of accumulation phase of
DC pension plan and optimal investment strategies. This can be found in Cains
et.al (2006), Deelstra et.al (2000), Korn and Krekel (2001), Blake et.al (2008),
Battocchio and Menoncin (2004), Boulier et.al (2001), Di Giacinto et.al (2010),
Haberman and Vigna (2002), Vigna (2010), Gao (2008), Devolder et.al (2003),
Nkeki and Nwozo (2012), Nkeki (2013). For optimal portfolio and life-cycle of a
PPM consumption plan, see Nkeki (2011), Nwozo and Nkeki (2011), Merton (1971).

In the context of DC pension plans, the problem of finding the optimal sur-
plus, minimum pension benefits, total pension benefits, and optimal consumption
plan, with stochastic funding in a DC pension scheme under mean-variance effi-
cient approach has not been reported in published articles. Hφjgaard and Vigna
(2007) and Vigna (2010) assumed a constant flow of contributions into the pension
scheme which will not be applicable to a time-dependent salary earners in pension
scheme. We assume that the contribution of the PPM grows as the salary grows
over time. In the literature, the problem of determining the minimum variance
on trading strategy in continuous-time framework has been studied by Richardson
(1989) via the Martingale approach. Bajeux-Besnainou and Portait (1998) used
the same approach in a more general framework. Li and Ng (2000) solved a mean-
variance optimization problem in a discrete-time multi-period framework. Zhou and
Li (2000) considered a mean-variance in a continuous-time framework. They show
the possibility of transforming the difficult problem of mean-variance optimization
problem into a tractable one, by embedding the original problem into a stochas-
tic linear-quadratic control problem, that can be solved using standard methods.
These approaches have been extended and used by many in the financial literature,
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see for instance, Vigna (2010), Bielecky et.al (2005), Hφjgaard and Vigna (2007),
Chiu and Li (2006), Josa-Fombellida and Rincon-Zapatero (2008).

In this paper, we study a mean-variance approach to portfolio selection problem
for optimal surplus, minimum pension benefits, total pension benefits and optimal
consumption plan with stochastic salary of a PPM in accumulation phase of a
DC pension scheme. Nkeki (2012) considered a mean-variance portfolio selection
problem with inflation hedging strategy for a defined contributory pension scheme.
The efficient frontier was obtained for three asset classes which include cash account,
stock and index bond. The paper assumed that the flow of contributions of the PPM
is stochastic. In this paper, we assumed that the salary of the PPM is stochastic.

The remainder of this paper is organized as follows. In section 2, we present
financial market models. In section 3, we presents the pension benefits that will
accrued to PPM. In section 4, we present the expected discounted flow of contri-
butions, discounted wealth, discounted minimum pension benefit and discounted
surplus. Section 5 presents the problem formulation of the paper. In section 6, we
present the optimal portfolio and optimal consumption plan of a PPM. Section 7
presents the efficient frontier of the optimal terminal expected surplus. In section
8, we presents optimal pension benefit for a PPM at retirement. Section 9 presents
the numerical examples of our models. Finally, section 10 concludes the paper.

2. Financial Market

Let (Ω,F ,P) be a probability space. Let F(F) = {Ft : t ∈ [0, T ]}, where
Ft = σ(W I(s),WS(s) : s ≤ t), where WS(t) and W I(t) are Brownian motions
with respect to stock and index bond at time t. The Brownian motions W (t) =
(W I(t),WS(t))′, 0 ≤ t ≤ T is a 2-dimensional process, defined on a given filtered
probability space (Ω,F ,F(F),P), where P is the real world probability measure.

In this paper, we assume that the pension fund administrator (PFA) manage the
fund contributed by the PPMs through pension fund custodians during the planning
interval [0, T ] by means of a portfolio characterized by a cash account with price
process, B(t), index bond with price process, Z(t, I(t)) which is correlated geometric
Brownian motion, generated by source of inflation risks, W I(t), where I(t) is the
price index at time t and has the dynamics: dI(t) = j(t)I(t)dt + σ1(t)I(t)dW I(t),
j(t) the expected inflation index, which is the difference between nominal interest
rate, r(t), real interest rate R(t) (i.e. j(t) = r(t) − R(t) + σ1(t)θI(t)) and σI(t) =
(σ1(t), 0). Z(t, I(t)) is a zero-coupon bond which pays the price index at maturity,
with a payoff

Z(t, I(t)) = Et

[
I(T )

Λ(T )

Λ(t)

]
,

where

Λ(t) = B(t)−1H(t)

and H(t) satisfies the process

(2.1) H(t) = exp(−θ′(t)W (t)− 1

2
‖θ(t)‖2),

which we assume to be martingale in P, and a stock with price process, S(t)
correlated to geometric Brownian motions, W I(t) and WS(t), whose evolutions are
respectively given by the equations:

(2.2) dB(t) = r(t)B(t)dt,B(0) = 1,
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(2.3) dZ(t, I(t)) = Z(t, I(t))((r(t) +σ1(t)θI(t))dt+σ1(t)dW I(t)), Z(0) = z ∈ R+,

(2.4) dS(t) = S(t)(µ(t)dt+σS(t)qdW I(t)+σS(t)
√

1− q2dWS(t)), S(0) = s ∈ R+.

Here r(t) ∈ R+ denotes the short risk-free interest rate, µ(t) ∈ R+ the mean rate
of return of the stock, σS(t) ∈ R the volatility of stock, σ1(t) ∈ R the volatility
of index bond, q ∈ (−1, 1) correlation coefficient of sources of risks from inflation,
W I(t) and stock, WS(t) and θI(t) ∈ R the inflation price of risk. Moreover, σS(t)
and σ1(t) are the volatilities for the stock and index bond respectively, referred to
as the coefficients of the market and are progressively measurable with respect to
the filtration F .

The proportion of fund invested in stock, S(t) at time, t is denoted by ∆S(t) and
proposition fund invested in index bond is ∆I(t). The remainder, 1−∆I(t)−∆S(t) is
invested in cash account at time, t. We suppose the trading strategy {∆(t) : t ≥ 0},
with ∆(t) = (∆I(t),∆S(t)) is a control process adapted to filtration {Ft}t≥0, Ft-
measurable, Markovian, and stationary processes, satisfying

(2.5) E

∫ T

0

∆(t)∆′(t)dt <∞,

where E is the expectation operator. Let C(t) be the consumption rate process at
time t. Then C(t) is an adapted process with respect to {Ft}t≥0, satisfying

(2.6) E

∫ T

0

C(t)2dt <∞.

Let Y (t) be the salary process of a PPM at time t, then Y (t) satisfies the following
stochastic differential equation:

(2.7) dY (t) = Y (t)(β(t)dt+ σY1
(t)dW I(t) + σY2

(t)dWS(t)), Y (0) = y0 ∈ R.

where β(t) ∈ R+ is the expected growth rate of the salary, σY1(t) is volatility of
the salary of a PPM arising from the uncertainty of inflation, W I(t) and σY2

(t)
is volatility of the salary of a PPM arising from the uncertainty of stock market,
WS(t). We can express (2.3), (2.4) and (2.7) in compact form respectively, as
follows:

(2.8) dZ(t, I(t)) = Z(t, I(t))((r(t) + σ1(t)θI(t))dt+ σZ(t)dW (t)), Z(0) = z ∈ R+,

(2.9) dS(t) = S(t)(µ(t)dt+ σ(t)dW (t)), S(0) = s ∈ R+,

(2.10) dY (t) = Y (t)(β(t)dt+ σY (t)dW (t)), Y (0) = y0 ∈ R,

where σZ(t) = (σ1(t), 0), σ(t) = (σS(t)q, σS(t)
√

1− q2), σY (t) = (σY1
(t), σY2

(t))
and W (t) = (W (I(t),W (S(t))′. Suppose the proportion c ∈ R+ of the salary
process is a contribution of the PPM into the scheme, then cY (t) is the gross
amount of fund contributed into the scheme at time t.

Remark 2.1. If the pension PPM’s salary is deterministic, then (2.10) becomes
dY (t) = β(t)Y (t)dt.

Then, the volatility matrix

(2.11) Σ(t) :=

(
σ1(t) 0

qσS(t) σS(t)
√

1− q2

)
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corresponding to the two risky assets and satisfies det(Σ(t)) = σS(t)σ1(t)
√

1− q2 6=
0. Therefore, the market is complete and there exists a unique market price of risks
vector, θ(t) satisfying

(2.12) θ(t) :=

(
θI(t)
θS(t)

)
=

(
θI(t)

µ(t)−r(t)−θI(t)qσS(t)

σS(t)
√

(1−q2)

)
where θS(t) is the market price of stock risks. In this paper, we assume that r(t),
µ(t), σ(t), σS(t), σ1(t), σY (t), σY1

(t), σY2
(t), θI(t), θS(t), q(t), β(t), σZ(t) are

constants in time.
Therefore, the fund, X(t) dynamic evolution under the investment policy ∆ is

(2.13)
dX(t) = (X(t)(r + ∆(t)λ) + c(1− η)Y (t)− C(t))dt+X(t)(Σ′∆′(t))′dW (t),
X(0) = x0 ∈ R+,

where λ = (σ1θI , µ − r)′, η denotes the proportion of PPM’s contribution that is
set aside for administrative cost (AC). It implies that ηcY (t) is the AC at time t
and the net contribution is c(1 − η)Y (t) at time t. We observe that when η = 0,
it implies that the PFA do not charge any management costs. If η = 1, it implies
that the entire contributions by the PPM is taken as management costs, which
is unrealistic. Since the PFA may not (or may) charge management costs for the
operation, we assume that 0 ≤ η < 1.

3. Pension Benefits

In this section, we consider the minimum pension benefits, Pm(t) at time t that
will accrued to a PPM up to the final time, T . Let P (t) be the total pension
benefits of the contributor at time, t ∈ [0, T ]. It is assumed that the value of
minimum benefits a PPM can get at retirement should not be less than the value
of contributions made into the scheme.

The PPM makes a flow of contribution to the pension fund. This flow consists
of a lump sum at time 0, denoted by x0, and a continuously paid premium, at a
rate denoted by cY (t)(t), t ∈ [0, T ]. The value at time 0 of the cash given by the
contributor (i.e., PPM) to the pension scheme is equal to:

X̄0 = x0 + c(1− η)E

[∫ T

0

Λ(s)Y (s)ds

]
.

At time T , the PFA will provide a benefit which consists of two parts: The first part
Pm(T ) is the minimum pension benefit, which means that the total benefit will be
greater than Pm(T ) almost surely. The minimum pension benefit is not a constant
(it is a stochastic minimum pension benefit), but a nonnegative random variable
that is FT -measurable, which is Lp integrable with p > 2. The second part of the
benefit is a fixed fraction of the surplus ΘT (Pm(T )) (the difference between the
terminal wealth X(T ) of the managed portfolio and the minimum pension benefit
Pm(T ). Indeed, we suppose that the PFA receives a fixed fraction of the surplus,
as a way to encourage him/her (see Jensen and Sφrensen, 1999). Let h denotes the
fixed fraction of the surplus that will be kept by the PFA. Then, the total benefit
of the PPM at time T equals:

P (T ) = Pm(T ) + (1− h)(X(T )− Pm(T ))

= Pm(T ) + ΘT (Pm(T )),
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where ΘT (Pm(T )) = (1 − h)V (T ) is the surplus function at the final time, T and
V (T ) = X(T ) − Pm(T ). For h = 0, it implies that the PFA does not keep any
profit from the surplus, so introduction of the minimum pension benefit is more
an obstacle for the PPM, since minimum pension benefits may induce a significant
utility loss for quadratic risk tolerant investors (see Jensen and Sφrensen, 1999 for
relative risk averse investor). On the other hand, if h = 1, it implies that the
PPM will receive only the minimum pension benefit, no matter the final surplus,
which is not reasonable. In order to avoid these trivial cases, we therefore assume
that h ∈ (0, 1). One of the aims of this paper is to find the optimal discounted
benefit that will accrued to the PPM at the final time, T . This is obtained from
the discounted surplus and discounted minimum pension benefit at the final time,
T .

Definition 3.1. The flow of expected discounted minimum pension benefits for
t ≤ T is defined by

(3.1) Pm(t) = Et

[∫ T

0

Λ(u)

Λ(t)
cY (u)du

]
, t ≥ 0.

where Et = E(·|Ft) is the conditional expectation with respect to the Brownian
filtration {F}t≥0.

Definition 3.2. The flow of expected pension benefits, P (t) is defined by

(3.2) P (t) =

{
Pm(t), if 0 ≤ t ≤ T0 < T ,
Pm(t) + Θ(t, V (t)|t−T,t), if t ≥ T ,

where T0 is the time of voluntary retirement and Θ(·, ·) is the surplus function.
At time t ≥ T the surplus depends on the fund wealth level in time period [t−T, t].

Proposition 3.1. Let Pm(t) be the value of flow of the minimum pension benefits
that will accrued to PPM at time t, then

(3.3) Pm(t) =
cY (t)

δ
(eδT − 1),

where δ = β− ξ−σY θ, ξ ∈ [0, r] is the instantaneous guaranteed rate of return and
cY (t) is flow of contributions of PPM at time t.

Proof: By definition 3.1, we have that

Pm(t) = Et

[∫ T

0

Λ(u)

Λ(t)
cY (u)du

]

= cY (t)Et

[∫ T

0

Λ(u)

Λ(t)

Y (u)

Y (t)
du

]
.

Applying change of variable and Markovian rule on the above equation, we have

(3.4) Pm(t) = cY (t)E

[∫ T

0

Λ(τ)

Λ(0)

Y (τ)

Y (0)
dτ

]
,

Applying parallelogram law and martingale principles on (3.4), we have

(3.5) Pm(t) = cY (t)E

∫ T

0

e(β−ξ−σY θ)τdτ.
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Integrating, we have

(3.6) Pm(t) =
cY (t)(e(β−ξ−σY θ)T − 1)

β − ξ − σY θ
.

Therefore,

(3.7) Pm(t) =
cY (t)(eδT − 1)

δ
.

where δ = β − ξ − σY θ.
This implies that the final minimum pension benefits for a PPM is

(3.8) Pm(T ) =
cY (T )(eδT − 1)

δ
,

and the present value of a PPM’s future minimum pension benefit is

(3.9) Pm(0) = Pm0 =
cy0(eδT − 1)

δ
.

Taking the differential of both sides of (3.7), we have

(3.10) dPm(t) = Pm(t)(βdt+ σY dW (t)).

Corollary 3.1. Let Pm(T0) be the minimum pension benefits for a PPM who
retired voluntarily from the scheme and T0 the time of voluntary retirement, then

(3.11) Pm(T0) =
cY (T0)(eδT0 − 1)

δ
, 0 < T0 < T.

4. Expected Discounted Flow of Contributions

In this section, we presents the expected discounted flow of PPM’s contributions
at time t.

Definition 4.1. The expected value of flow of a PPM’s net contribution is defined
as

(4.1) Φ(t) = Et

[∫ T

t

Λ(u)

Λ(t)
c(1− η)Y (u)du

]
.

Theorem 4.1. Suppose Φ(t) is the expected value of a PPM’s net contributions,
then

(4.2) Φ(t) =
c(1− η)Y (t)(eα(T−t) − 1)

α
,

where α = β − r − σY θ.

Proof: By definition 4.1, we have

(4.3) Φ(t) = c(1− η)Y (t)Et

[∫ T

t

Λ(u)

Λ(t)

Y (u)

Y (t)
du

]
.

Applying change of variable and Markovian rule on (4.3), we have

(4.4) Φ(t) = c(1− η)Y (t)E

[∫ T

0

Λ(τ)

Λ(0)

Y (τ)

Y (0)
dτ

]
,



226 CHARLES I. NKEKI

Applying parallelogram law and martingale principles on (3.4) and then integrate,
we have

(4.5) Φ(t) =
c(1− η)Y (t)(eα(T−t) − 1)

α
,

where α = β− r−σY θ. The present value of a PPM’s future contribution is obtain
as

(4.6) Φ(0) =
c(1− η)y0(eαT − 1)

α
.

Taking the differential of both sides of (4.5), we have

(4.7) dΦ(t) = Φ(t)((r + σY θ)dt+ σY dW (t))− c(1− η)Y (t)dt.

Corollary 4.1. Let Φ(T0) be the value of the contributions of a PPM who will
retired voluntarily at time period T0, then

(4.8) Φ(t) =
c(1− η)Y (t)(eα(T0−t) − 1)

α
, 0 ≤ t ≤ T0.

It implies that the present value of the PPM’s contributions that retired voluntarily
from the scheme is

(4.9) Φ(0) =
c(1− η)y0(eαT0 − 1)

α
.

4.1. Discounted Wealth, Contribution, Minimum Pension Benefit and
Surplus Process. In this subsection, we consider the discounted wealth, dis-
counted contributions and discounted minimum pension benefit of a PPM at time
t. The discounted surplus process of the stakeholder is also established in this
subsection. The discounted wealth of a PPM is given by (4.10).
(4.10)
d(Λ(t)X(t)) = Λ(t)X(t)(Σ′∆′(t)− θ)′dW (t) + (c(1− η)Λ(t)Y (t)− Λ(t)C(t))dt

(4.11) gives the discounted contributions of a PPM at time t and is given by

(4.11) d(Λ(t)Φ(t)) = Λ(t)Φ(t)(σ′Y − θ)′dW (t)− (c(1− η)Λ(t)Y (t)dt.

The discounted minimum pension benefits is given by

(4.12) d(Λ(t)Pm(t)) = Λ(t)Pm(t)(σ′Y − θ)′dW (t).

Setting X̃(t) = Λ(t)X(t), Ỹ (t) = Λ(t)Y (t), C̃(t) = Λ(t)C(t), Φ̃(t) = Λ(t)Φ(t),

P̃m(t) = Λ(t)Pm(t), (4.10)-(4.12) become:

(4.13) dX̃(t) = X̃(t)(Σ′∆′(t)− θ)′dW (t) + (c(1− η)Ỹ (t)− C̃(t))dt

(4.14) dΦ̃(t) = Φ̃(t)(σ′Y − θ)′dW (t)− (c(1− η)Ỹ (t)dt

(4.15) dP̃m(t) = P̃m(t)(σ′Y − θ)′dW (t)dt

Remark 4.1.

(4.16) d(Λ(t)Y (t)) = Λ(t)Y (t)(β − r − σY θ)dt+ Λ(t)Y (t)(σ′Y − θ)′dW (t).

Solving (4.16), we have

(4.17) E(Λ(t)Y (t)) = y0e
(β−r−σY θ)t.
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Solving (4.14), we have

(4.18) EΦ̃(t) = Φ0 − c(1− η)

∫ t

0

E(Λ(s)Y (s))ds.

Using (4.17) on (4.18), we have

(4.19) EΦ̃(t) = Φ0 −
cy0(1− η)

β − r − σY θ

(
e(β−r−σY θ)t − 1

)
.

Hence, the value of a PPM’s surplus is given as

(4.20) V (t) = X(t) + Φ(t)− Pm(t).

Therefore, the value of a PPM’s discounted surplus process is given as

(4.21) Ṽ (t) = X̃(t) + Φ̃(t)− P̃m(t).

Proposition 4.1. Suppose X̃(t) satisfies (4.13), P̃m(t) (4.15) and Φ̃(t) satisfies

(4.14), then the discounted surplus process, Ṽ (t) has the following dynamics

(4.22)
dṼ (t) = [X̃(t)(Σ′∆′(t)− θ)′ + (Φ̃(t)− P̃m(t))(σ′Y − θ)′]dW (t)− C̃(t)dt,

Ṽ (0) = v0.

5. The Mean-Variance Formulation

The objective of the PFA is double. The first objective is to maximize the
expected value of fund’s (and discounted) assets. The second objective is aim at
to minimize the variance of the terminal discounted surplus (and real surplus or

simply surplus), V ar(Ṽ ∗(T )) (and V ar(V ∗(T ))) and the consumption risk, C∗(t)
on the interval [0, T ]. This dual-objective problem reflects the major concern of
the stakeholders (in this paper, stakeholders represents the PFA and the PPM
only) to increase fund assets in order to pay due pension benefits as at when due,
but at the same time not exposed the pension fund to large variations in other
to provide stability to the scheme. According to Josa-Fombellida and Rincon-
Zapatero (2008), minimization of the contribution risk (though, in this paper, we
consider consumption risk) has been considered in other works as Haberman and
Sung (1994), Haberman et al. (2000) and Josa-Fombellida and Rincon-Zapatero
(2001, 2004).

Therefore, this paper is considering a multi-objective optimization problem in-
volving two criteria
(5.1)

min
(∆,C)∈A

(L1(∆, C), L2(∆, C)) = min
(∆,C)∈A

(
−E(Ṽ (T )), E

∫ T

0

eρtC̃2(t)dt+ V ar(Ṽ (T ))

)
subject to (4.22). Here A is the set of measurable processes (∆, C), where ∆
satisfies (2.5), C satisfies (2.6), and such that (4.22) admit a unique solution that
is Ft-measurable adapted to the filtration {Ft}t≥0.

An admissible control process (∆∗, C∗) is Pareto efficient if there exists no ad-
missible (∆, C) such that

L1(∆, C) ≤ L1(∆∗, C∗), L2(∆, C) ≤ L2(∆∗, C∗)

with at least one of the inequalities hold strictly. The pairs (L1(∆∗, C∗);L2(∆∗, C∗)) ∈
R2 form the Pareto frontier. We will refer to C∗ an efficient consumption rate and
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∆∗ an efficient portfolio. The aim of this paper is to find (E(Ṽ ∗(T )), V ar(Ṽ ∗(T )))
(and then deduce (E(V ∗(T )), V ar(V ∗(T )))) refer to as an efficient frontier.

According to Da Cunha and Polak (1967) (in Josa-Fombellida and Rincon-
Zapatero (2008)), when the objective functionals defining the multi-objective pro-
gram are convex, the Pareto efficient points can be found by solving a scalar optimal
control problem where the dynamics is fixed and the objective functional is a con-
vex combination of the original cost functionals. In our case (4.15) and (4.22) are
linear, so both L1 and L2 are indeed convex. Hence, the original problem (4.15),
(4.22) and (5.1) are equivalent to the scalar problem
(5.2)

min
(∆,C)∈A

L1(∆, C)+ψL2(∆, C) = min
(∆,C)∈A

−E(Ṽ (T ))+ψ

(
E

∫ T

0

eρtC̃2(t)dt+ V ar(Ṽ (T ))

)
subject to (4.22) and (4.15), with ψ > 0 a weight parameter. As ψ varies within
the interval (0,∞), the solutions of (5.2) describe the Pareto frontier (see Josa-
Fombellida and Rincon-Zapatero (2008)). Observe that ψ serves the PFA the op-
portunity to transfer linearly units of risk to units of expected return, and vice
versa. The size of ψ shows which one of the objectives is of major concern for the
PFA, to reduce risk or to maximize return.

Problem (4.15), (4.22) and (5.2) are not standard stochastic optimal problem

due to the presents of the term (E(Ṽ (T )))2 in the variance term, and the dynamic
programming approach cannot be applied at this point. Following Zhou and Li
(2000), Li and Ng (2000) and Josa-Fombellida and Rincon-Zapatero (2008), we
propose an auxiliary problem that transform into a stochastic problem of linear-
quadratic case:

(5.3) min
(∆,C)∈A

J(∆, C) = min
(∆,C)∈A

(
E

∫ T

0

eρtC̃2(t)dt+ E(Ṽ 2(T )− 2ϕṼ (T ))

)
subject to (4.22) and (4.15) and ϕ ∈ R.

The relationship between problems (4.15), (4.22), (5.2) and (4.15), (4.22), (5.3)
is shown in the following result.

Theorem 5.1. For any ϕ > 0, if (∆∗, C∗) is an optimal control of (4.15), (4.22),
(5.2) with associated optimal surplus, V ∗, then it is an optimal control of (4.15),

(4.22), (5.3) for ϕ = 1
2ψ + E(Ṽ ∗(T )).

Proof: see Josa-Fombellida and Rincon-Zapatero (2008).

6. Optimal Portfolio and Optimal Consumption

In this section, we find the optimal portfolio and optimal consumption rate for
a PPM. First, we determine the Hamilton-Jacobi-Bellman equation for our surplus
process. We define the follows differential operator:

(6.1) L =

(
1

2
Φ̃2 ∂2

∂Φ̃2
− Φ̃P̃

∂2

∂Φ̃∂P̃
+

1

2
P̃ 2 ∂2

∂P̃ 2

)
(σY σ

′
Y − 2σY θ + θ′θ).

We define the general value function

L(t, x̃, Φ̃, P̃ ) = E[V (T, X̃, Φ̃, P̃ )|X̃(t) = x̃, Φ̃(t) = Φ̃, P̃m(t) = P̃ ]



OPTIMAL SURPLUS, MINIMUM PENSION BENEFITS AND CONSUMPTION PLANS IN A MEAN-VARIANCE229

where L(t, x̃, Φ̃, P̃ ) is the path of V (t) given the portfolio strategy ∆(t) = (∆I(t),∆S(t)).

Let L(t, x̃, Φ̃, P̃ ) be a convex function in V (t) such that

(6.2)
U(t, x̃, Φ̃, P̃ ) = min∆,C L(t, x̃, Φ̃, P̃ ),
subject to (3.8).

Then U(t, x̃, Φ̃, P̃ ) satisfies the HJB equation

(6.3)

Ut − C̃(t)Ux̃ + C̃2(t)e−ρt + 1
2 x̃

2(Σ∆(t)Σ′∆′(t)− 2Σ∆(t)θ + θ′θ)Ux̃x̃
+2(x̃Φ̃Ux̃Φ̃ − x̃P̃Ux̃P̃ )(Σ∆(t)σ′Y − 2Σ∆(t)θ + θ′θ) + LU = 0,

subject to: U(T, x̃, Φ̃, P̃ ) = (x̃− P̃ )2 − 2ϕ(x̃− P̃ ).

Proposition 6.1. The optimal rate of consumption and the optimal investment in
the risky assets (index bond and stock) are respectively given by

(6.4) ∆
′∗(t) =

(ΣΣ′)−1(x̃ΣθUx̃x̃ − 2(Φ̃Ux̃Φ̃ − P̃Ux̃P̃ )(Σσ′Y − 2Σθ))

x̃Ux̃x̃
.

(6.5) C̃∗(t) =
1

2
Ux̃e

ρt.

Substituting (6.4) and (6.5) into (6.3), we have

(6.6)

Ut − 1
2U

2
x̃e
ρt − 1

2θ
′θ(x̃2 − 1)Ux̃x̃ − 2[θ′Σ′M(Σσ′Y − 2Σθ)Φ̃

−2x̃Φ̃(σY θ − 2θ′θ)− x̃Φ̃θ′θ]Ux̃Φ̃ + 2P̃ [θ′Σ′M(Σσ′Y − 2Σθ)

+2x̃(2θ′θ − σY θ)− x̃θ′θ]Ux̃P̃ − 4(σY σ
′
Y − 4θ′θ)P̃ Φ̃

Ux̃Φ̃Ux̃P̃
Ux̃x̃

+[2(σY σ
′
Y − 4θ′θ)P̃ 2 − 4P̃ 2(3σY θ − 2θ′θ − σY σ′Y )]

U2
x̃P̃

Ux̃x̃

+[2(σY σ
′
Y − 4θ′θ)Φ̃2 + 4Φ̃2(3σY θ − 2θ′θ − σY σ′Y )]

U2
x̃Φ̃

Ux̃x̃
+ LU = 0,

subject to: U(T, x̃, Φ̃, P̃ ) = (x̃− P̃ )2 − 2ϕ(x̃− P̃ ).

We assume a quadratic solution of the form:

(6.7)
U(t, x̃, Φ̃, P̃ ) = φ0(t) + P̃ φP̃ (t) + Φ̃φΦ̃(t) + x̃φx̃(t) + x̃Φ̃φx̃Φ̃(t)

+x̃P̃ φx̃P̃ (t) + Φ̃P̃ φΦ̃P̃ (t) + Φ̃2φΦ̃Φ̃(t) + x̃2φx̃x̃(t) + P̃ 2φP̃ P̃ (t).

Finding the partial derivatives of (6.7) with respect to t, x̃, P̃ , Φ̃, x̃x̃, x̃Φ̃, x̃P̃ , Φ̃P̃ ,

P̃ P̃ , Φ̃Φ̃ as follows:

(6.8)
Ut = φ̇0(t) + P̃ φ̇P̃ (t) + Φ̃φ̇Φ̃(t) + x̃φ̇x̃(t) + x̃Φ̃φ̇x̃Φ̃(t)

+x̃P̃ φ̇x̃P̃ (t) + Φ̃P̃ φ̇Φ̃P̃ (t) + Φ̃2φ̇Φ̃Φ̃(t) + x̃2φ̇x̃x̃(t) + P̃ 2φ̇P̃ P̃ (t),

(6.9) Ux̃ = φx̃(t) + Φ̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2x̃φx̃x̃(t),

(6.10) UΦ̃ = φΦ̃(t) + x̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2Φ̃φΦ̃Φ̃(t),

(6.11) UP̃ = φP̃ (t) + x̃φx̃P̃ (t) + Φ̃φΦ̃P̃ (t) + 2P̃ φP̃ P̃ (t),

(6.12)
Ux̃x̃ = 2φx̃x̃(t), UΦ̃Φ̃ = 2φΦ̃Φ̃(t), UP̃ P̃ = 2φP̃ P̃ (t),
Ux̃Φ̃ = 2φx̃Φ̃(t), Ux̃P̃ = 2φx̃P̃ (t), UΦ̃P̃ = 2φΦ̃P̃ (t).

The following ordinary differential equations are obtained for the above coefficients
of x̃, P̃ , Φ̃, x̃x̃, x̃Φ̃, x̃P̃ , Φ̃P̃ , P̃ P̃ , Φ̃Φ̃ in (6.6):

φ̇0(t) = 1
4e
ρtφ2

x̃(t)− θ′θφx̃x̃(t), φ0(T ) = 0,
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φ̇P̃ (t) = 1
2e
ρtφx̃(t)φx̃P̃ (t)− 4θ′Σ′M(Σσ′Y − 2Σθ)φx̃P̃ (t), φP̃ (T ) = 2ϕ,

φ̇Φ̃(t) = 1
2e
ρtφx̃(t)φx̃Φ̃(t) + 4θ′Σ′M(Σσ′Y − 2Σθ)φx̃Φ̃(t), φΦ̃(T ) = 0,

φ̇Φ̃P̃ (t) = 1
2e
ρtφx̃Φ̃(t)φx̃P̃ (t) + 2(σY σ

′
Y − 2σY θ + θ′θ)φP̃ Φ̃

+8(σY σ
′
Y − 4θ′θ)

φx̃P̃ (t)φx̃Φ̃(t)

φx̃x̃(t) , φΦ̃P̃ (T ) = 0,

φ̇Φ̃Φ̃(t) = 1
4e
ρtφ2

x̃Φ̃
(t)− (σY σ

′
Y − 2σY θ + θ′θ)φΦ̃Φ̃

+4(σY σ
′
Y + 3σY θ + 8θ′θ)

φ2
x̃Φ̃

φx̃x̃
, φΦ̃Φ̃(T ) = 0,

φ̇P̃ P̃ (t) = 1
4e
ρtφ2

x̃P̃
(t)− (σY σ

′
Y − 2σY θ + θ′θ)φP̃ P̃

+12(σY σ
′
Y − 2σY θ)

φ2
x̃P̃

φx̃x̃
, φP̃ P̃ (T ) = 0,

(6.13) φ̇x̃(t) = eρtφx̃(t)φx̃x̃(t), φx̃(T ) = −2ϕ,

(6.14) φ̇x̃Φ̃(t) = eρtφx̃Φ̃(t)φx̃x̃(t)− 4(2σY θ − 3θ′θ)φx̃Φ̃(t), φx̃Φ̃(T ) = 0,

(6.15) φ̇x̃P̃ (t) = eρtφx̃P̃ (t)φx̃x̃(t)− 4(3θ′θ − 2σY θ)φx̃P̃ (t), φx̃P̃ (T ) = −2.

(6.16) φ̇x̃x̃(t) = eρtφ2
x̃x̃(t) + θ′θφx̃x̃(t), φx̃x̃(T ) = 1.

Therefore, from (6.6) the optimal controls must be

(6.17) ∆
′∗(t) = (ΣΣ′)−1Σθ − 2

(
Φ̃
φx̃Φ̃(t)

x̃φx̃x̃(t) − P̃
φx̃P̃ (t)

x̃φx̃x̃(t)

)
(ΣΣ′)−1(Σσ′Y − 2Σθ).

(6.18) C̃∗(t) = (φx̃(t) + Φ̃φx̃Φ̃(t) + P̃ φx̃P̃ (t) + 2x̃φx̃x̃(t))eρt.

Solving (6.13), we have

(6.19) φx̃(t) =
2ϕ(θ′θ + ρ)

e−θ′θ(T−t)+ρt − eρT − (θ′θ + ρ)
,

Solving (6.14), we have

(6.20) φx̃Φ̃(t) = 0,

Solving (6.15), we have

(6.21) φx̃P̃ (t) =
2e4(3θ′θ−2σY θ)(T−t)[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]

θ′θ + ρ
.

Solving (6.16), we have

(6.22) φx̃x̃(t) =
(θ′θ + ρ)e−θ

′θ(T−t)

(θ′θ + ρ)− e−θ′θ(T−t)+ρt + eρT
.

Substituting (6.19)-(6.22) into (6.17) and (6.18), we have the following optimal
portfolio and optimal discounted consumption for the PPM at time t:

(6.23)
∆
′∗(t) = MΣθ − 4Pm(t)M(Σσ′Y −2Σθ)

X∗(t) ×
e(13θ′θ+8σY θ)(T−t)(θ′θ+ρ−e−θ

′θ(T−t)+ρt+eρT )2

(θ′θ+ρ)2 .
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The first part of (6.23) is the Merton portfolio process. The second part is the
variational part which is the intertemporal hedging term that offset any shock to
the stochastic salary of a quadratic risk PPM in the scheme.

(6.24)
C̃∗(t) = 2P̃m(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)eρt(X̃∗(t)e−θ
′θ(T−t)−ϕ)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT .

At time t = 0, we have

(6.25) ∆
′∗(0) = MΣθ − 4Pm(0)M(Σσ′Y −2Σθ)

x0

e(13θ′θ+8σY θ)T (θ′θ+ρ−e−θ
′θT+eρT )2

(θ′θ+ρ)2 .

(6.26) C̃∗(0) = 2P̃m(0)e4(3θ′θ−2σY θ)T [e−θ
′θT−eρT−(θ′θ+ρ)]

θ′θ+ρ + 2(θ′θ+ρ)(x̃0e
−θ′θT−ϕ)

θ′θ+ρ−e−θ′θT+eρT
.

The terminal discounted consumption can be obtained by setting t = T as follows:

(6.27) C̃∗(T ) = −2P̃m(T )eρT +
2(θ′θ + ρ)eρT (X̃∗(T )− ϕ)

θ′θ + ρ
.

6.1. Optimal Consumption of a PPM. In this subsection, we consider the
optimal consumption process of a PPM at time t. It is given by

(6.28) C∗(t) = Λ(t)−1C̃∗(t) = C̃∗(t)e(r+‖θ‖2)t+θ′W (t).

It implies that

(6.29)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT −
2(θ′θ+ρ)ϕe(ρ+r+‖θ‖

2)t+θ′W (t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT .

The positive term θ′θ captures the uncertainty of the financial markets. (6.29)
shows that when the market become bearish, it induces the PPM not make more
contributions into the pension fund and consume more, and vice versa. It is also
observed that when the preference consumption rate, ρ increases, the consumption
process increases over time, for all other parameters remain fixed.

At time t = 0, (6.29) becomes

(6.30)
C∗(0) =

2Pm0 e4(3θ′θ−2σY θ)T [e−θ
′θT−eρT−(θ′θ+ρ)]

θ′θ+ρ

+ 2(θ′θ+ρ)x0e
−θ′θT

θ′θ+ρ−e−θ′θT+eρT
− 2(θ′θ+ρ)ϕ

θ′θ+ρ−e−θ′θT+eρT
.

At time t = T , (6.29) becomes

(6.31)
C∗(T ) = − 2Pm(T )eρT [(θ′θ+ρ)]

θ′θ+ρ + 2(θ′θ+ρ)X∗(T )eρT

θ′θ+ρ

− 2(θ′θ+ρ)ϕe(ρ+r+‖θ‖
2)T+θ′W (T )

θ′θ+ρ .

We can express (6.29) in terms of the parameter ψ (which represents the variance
minimizer) as follows:

(6.32)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT −
2(θ′θ+ρ)(1+2ψE(Ṽ ∗(T )))e(ρ+r+‖θ‖

2)t+θ′W (t)

2ψ(θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT )
.
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It is observe that as ψ becomes smaller and smaller for all other parameters remain
constant, consumption rate reduces and vice versa. It imply that

(6.33)
limψ→∞ C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)+ρt[e−θ

′θ(T−t)+ρt−eρT−(θ′θ+ρ)]
θ′θ+ρ

+ 2(θ′θ+ρ)X∗(t)eρt−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT ,

and

(6.34) limψ→0 C
∗(t) = −∞.

This is an intuitive result, since the PPM will consume more over time when the
market is volatile and consume less when the market is not volatile. Observe that
the taste of consumption will be negative if the market is absolutely riskless.

6.2. Special Cases: θ = (0, 0)′, ρ 6= 0; ρ = 0, θ ∈ R2
+. Special Case I: Suppose

θ = (0, 0)′ and ρ 6= 0, then (6.29) becomes

(6.35) C∗(t) = 2Pm(t)eρt[eρt−eρT−ρ]
ρ + 2ρX∗(t)eρt

ρ−eρt+eρT −
2ρϕe(ρ+r)t

ρ−eρt+eρT .

(6.35) shows the consumption level when the investment is not in the risky assets.
It implies that consumption level of the investor do not depends on the uncertainty
of the market over time, but upon the riskless asset. In this case, the initial con-
sumption level and the terminal consumption level are given respectively in (6.36)
and (6.37). At t = 0, (6.35) becomes

(6.36) C∗(0) =
2Pm0 [1−eρT−ρ]

ρ + 2ρx0

ρ−1+eρT
− 2ρϕ

ρ−1+eρT
.

At t = T , (6.35) becomes

(6.37) C∗(T ) = −2Pm(T )eρT + 2X∗(T )eρT − 2ϕe(ρ+r)T .

Special Case II: Suppose ρ = 0, and θ ∈ R2
+, then (6.29) becomes

(6.38)
C∗(t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)[e−θ

′θ(T−t)−1−θ′θ]
θ′θ

+ 2θ′θX∗(t)e−θ
′θ(T−t)

θ′θ−e−θ′θ(T−t)+1
− 2θ′θϕe(r+‖θ‖

2)t+θ′W (t)

θ′θ−e−θ′θ(T−t)+1
.

(6.38) shows the consumption level when the sharpe ratio θ′θ is not zero and the
discount factor, ρ is zero. It is observe that consumption level strictly depend
on the risky assets with respect to the riskless one. We observe that the market is
booming, consumption reduces, and vice versa. In this case, the initial and terminal
consumption level are given respectively in (6.39) and (6.40).

Similarly, at t = 0, (6.38) becomes

(6.39)
C∗(0) =

2Pm0 e4(3θ′θ−2σY θ)T [e−θ
′θT−1−θ′θ]

θ′θ

+ 2θ′θx0e
−θ′θT

θ′θ−e−θ′θT+1
− 2θ′θϕ

θ′θ−e−θ′θT+1
.

At t = T , (6.38) becomes

(6.40) C∗(T ) = −2Pm(T ) + 2X∗(T )− 2ϕe(r+‖θ‖2)T+θ′W (T ).

We therefore have the following propositions.

Proposition 6.2. Let

C∗ρ(t) =
2Pm(t)eρt[eρt − eρT − ρ]

ρ
+

2ρX∗(t)eρt

ρ− eρt + eρT
− 2ρϕe(ρ+r)t

ρ− eρt + eρT
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and

C∗θ (t) = 2Pm(t)e4(3θ′θ−2σY θ)(T−t)[e−θ
′θ(T−t)−1−θ′θ]

θ′θ

+ 2θ′θX∗(t)e−θ
′θ(T−t)

θ′θ−e−θ′θ(T−t)+1
− 2θ′θϕe(r+‖θ‖

2)t+θ′W (t)

θ′θ−e−θ′θ(T−t)+1
,

then

(6.41) C∗(t) =

{
C∗ρ(t), if θ′θ = 0, ρ 6= 0,
C∗θ (t), if θ ∈ R2

+, ρ = 0.

7. The Efficient Frontier

In this section, we determine the efficient frontier of the surplus process. Substi-
tuting (6.23) and (6.24) into (4.22), we have the dynamics of the surplus as follows:

(7.1)

dṼ ∗(t) = [(P̃m(t)(1 + f(t)) + Φ̃(t))(σ′Y − θ)′]dW (t)

−2eρt[P̃m(t)g(t) + (θ′θ+ρ)(P̃m(t)−Φ̃(t))e−θ
′θ(T−t)−(θ′θ+ρ)ϕ

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT

+ (θ′θ+ρ)Ṽ ∗(t)e−θ
′θ(T−t)

θ′θ+ρ−e−θ′θ(T−t)+ρt+eρT ]dt, Ṽ ∗(0) = v0,

where

f(t) = −4e(13θ′θ+8σY θ)(T−t) (θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT )2

(θ′θ + ρ)2
,

g(t) = e4(3θ′θ−2σY θ)(T−t) e
−θ′θ(T−t)+ρt − eρT − (θ′θ + ρ)

θ′θ + ρ
.

Re-writing (7.1) in a more compact form, we have

(7.2) dṼ ∗(t) = (K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+ F (t)′dW (t), Ṽ ∗(0) = v0,

where

F (t) = (P̃m(t)(1 + f(t)) + Φ̃(t))(σ′Y − θ)

G(t) = −2eρt[P̃m(t)g(t) +
(θ′θ + ρ)(P̃m(t)− Φ̃(t))e−θ

′θ(T−t)

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT
]

α(t) =
2(θ′θ + ρ)eρt

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT

(7.3) K(t) = − 2(θ′θ + ρ)eρt−θ
′θ(T−t)

θ′θ + ρ− e−θ′θ(T−t)+ρt + eρT
.

Applying Ito Lemma on (7.2), we have

(7.4)
dṼ ∗2(t) = (2K(t)Ṽ ∗2(t) + 2Ṽ ∗(t)G(t) + 2ϕṼ ∗(t)α(t)

+F (t)′F (t))dt+ F (t)′dW (t), Ṽ ∗2(0) = v2
0 ,

Taking the mathematical expectation of (7.2) and (7.4), we have

(7.5) dE(Ṽ ∗)(t) = (K(t)E(Ṽ ∗(t)) + E(G(t)) + ϕα(t))dt, E(Ṽ ∗)(0) = v0,

(7.6)
dE(Ṽ ∗2)(t) = (2K(t)E(Ṽ ∗2)(t) + 2E(Ṽ ∗)(t)E(G(t)) + 2ϕE(Ṽ ∗)(t)α(t)

+E(F (t))′E(F (t)))dt, E(Ṽ ∗2)(0) = v2
0 ,

Solving the ordinary differential equations (ODEs), (7.5) and (7.6), we have follow-
ings:

(7.7) E(Ṽ ∗)(t) = A(t)e
∫ t
0
K(s)ds + ϕe

∫ t
0
K(s)ds

∫ t
0
e−

∫ t
0
K(s)dsα(s)ds,
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where

A(t) = v0 +

∫ t

0

e−
∫ t
0
K(s)dsG(s)ds.

(7.8)

E(Ṽ ∗2)(t) = v2
0e

2
∫ t
0
K(τ)dτ + e2

∫ t
0
K(τ)dτ

∫ t
0
E(F (τ))′E(F (τ))dτ+

2e2
∫ t
0
K(τ)dτ

∫ t
0
E(G(τ))

(
A(τ)e

∫ τ
0
K(u)du + ϕe

∫ τ
0
K(u)du

∫ τ
0
e−

∫ s
0
K(u)duα(s)ds

)
dτ+

2ϕe2
∫ t
0
K(τ)dτ

∫ t
0
α(τ)

(
A(τ)e

∫ τ
0
K(u)du + ϕe

∫ τ
0
K(u)du

∫ τ
0
e−

∫ s
0
K(u)duα(s)ds

)
dτ

Simplifying (7.8), we have
(7.9)

E(Ṽ ∗2)(t) = v2
0e

2
∫ t
0
K(τ)dτ + e2

∫ t
0
K(τ)dτ

∫ t
0
E(F (τ))′E(F (τ))dτ

+2e2
∫ t
0
K(τ)dτ

∫ t
0
E(G(τ))A(τ)e

∫ τ
0
K(u)dudτ + 2ϕe2

∫ t
0
K(τ)dτ

∫ t
0
α(τ)A(τ)e

∫ τ
0
K(u)dudτ

+2ϕe2
∫ t
0
K(τ)dτ

∫ t
0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duE(G(τ))α(s)dsdτ

+2ϕ2e2
∫ t
0
K(τ)dτ

∫ t
0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duα(τ)α(s)dsdτ

Re-writing (7.9) in compact form, we have

(7.10)
E(Ṽ ∗2)(t) = v2

0e
2
∫ t
0
K(τ)dτ +D1(t)e2

∫ t
0
K(τ)dτ

+2D2(t)ϕe2
∫ t
0
K(τ)dτ + 2D3(t)ϕ2e2

∫ t
0
K(τ)dτ

where

D1(t) =
∫ t

0
E(F (τ))′E(F (τ))dτ + 2

∫ t
0
E(G(τ))A(τ)dτ

D2(t) =
∫ t

0

∫ τ
0
e
∫ τ
0
K(u)due−

∫ s
0
K(u)duE(G(τ))α(s)dsdτ +

∫ t
0
α(τ)A(τ)dτ

D3(t) = 2

∫ t

0

∫ τ

0

e
∫ τ
0
K(u)due−

∫ s
0
K(u)duα(τ)α(s)dsdτ

At t = T , (7.7) and (7.10) becomes:

(7.11) E(Ṽ ∗)(T ) = A(T )γ + ϕγω,

where, γ = e
∫ T
0
K(u)du, ω =

∫ T
0
e−

∫ T
0
K(s)dsα(s)ds.

Lemma 7.1. Suppose that K(t) satisfies (7.14), then

γ =

(
(θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.

Proof: Using (7.14), we have that∫ t

0

K(u)du = 2 loge

(
e(θ′θ+ρ)t − e(θ′θ+ρ)T − (θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)
.

It implies that

e
∫ t
0
K(u)du =

(
e(θ′θ+ρ)t − e(θ′θ+ρ)T − (θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.

Therefore, setting t = T , we have

γ =

(
(θ′θ + ρ)eθ

′θT

1− eθ′θT (θ′θ + ρ+ eρT )

)2

.
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Using Lemma 7.1, the second moments of the surplus process becomes

(7.12) E(Ṽ ∗2)(T ) = v2
0γ

2 +D1(T )γ2 + 2D2(T )ϕγ2 +D3(T )ϕ2γ2

Substituting (7.11) into (7.12), we have

(7.13)
E(Ṽ ∗2)(T ) = v2

0γ
2 +D1(T )γ2 + 2γD2(T )

ω (E(Ṽ ∗(T ))−A(T )γ)

+D3(T )
ω2 (E(Ṽ ∗(T ))−A(T )γ)2

The variance of the discounted surplus process for the stakeholders is

V ar(Ṽ ∗(T )) = E(Ṽ ∗2)(T )− (E(Ṽ ∗)(T ))2

= v2
0γ

2 +D1(T )γ2 +
2γD2(T )

ω
(E(Ṽ ∗(T ))−A(T )γ)

+
D3(T )

ω2
(E(Ṽ ∗(T ))−A(T )γ)2 − (E(Ṽ ∗)(T ))2

= v2
0γ

2 −A(T )2γ2 +D1(T )γ2

+ 2γ

(
D2(T )

ω
−A(T )

)
(E(Ṽ ∗(T ))−A(T )γ)

+

(
D3(T )

ω2
− 1

)
(E(Ṽ ∗(T ))−A(T )γ)2

= v2
0γ

2 −A(T )2γ2 +D1(T )γ2 −
γ2
(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

)
+

(
D3(T )

ω2
− 1

)
[γ2

(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

)2 + 2γ

(
D2(T )
ω −A(T )

)
(
D3(T )
ω2 − 1

)
× (E(Ṽ ∗(T ))−A(T )γ) + (E(Ṽ ∗(T ))−A(T )γ)2]

= γ2Q+

(
D3(T )

ω2
− 1

)γ
(
D2(T )
ω −A(T )

)
(
D3(T )
ω2 − 1

) + E(Ṽ ∗(T ))−A(T )γ

2

where

Q = v2
0 −A(T )2 +D1(T )−

(
D2(T )
ω −A(T )

)2

(
D3(T )
ω2 − 1

) .

Therefore, the efficient frontier of discounted surplus is obtain as

(7.14) E(Ṽ ∗(T )) =
γ(2ωA(T )−D2(T ))

ω

√(
D3(T )
ω2 − 1

) +

√
σ2
V ∗(T ) − γ2Q√(
D3(T )
ω2 − 1

) .
From (7.14), shows a kind quadratic relation between optimal discounted surplus

and its variance. The minimum possible variance, V ar(Ṽ (∗(T )) = γ2Q ≥ 0, could
be attained when the stakeholder borrows money from the total amount of surplus
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at time t = 0 for T years, so that

E(Ṽ (∗(T )) =
γ(2ωA(T )−D2(T ))

ω

√(
D3(T )
ω2 − 1

) .

We now establish the efficient frontier of the optimal terminal surplus of the stake-
holders. The expected surplus and the variance, σ2

V ∗(T ), at time T are related by

the following (7.15).

Proposition 7.1. Suppose (7.14) holds and E(Λ(T )) = e−(r+2‖θ‖2)T , then

(7.15) E(V ∗(T )) =
γ(2ωA(T )−D2(T ))e(r+2‖θ‖2)T

ω

√(
D3(T )
ω2 − 1

) +
e(r+2‖θ‖2)T

√
σ2
V ∗(T ) − γ2Q√(

D3(T )
ω2 − 1

) .

From (7.15), shows the quadratic relation between surplus and its variance. The
minimum possible variance, V ar(V ∗(T )) = γ2Q ≥ 0, could be attained when the
stakeholder borrows money from the total amount of surplus at time t = 0 for T
years, so that

E(V ∗(T )) =
γ(2ωA(T )−D2(T ))e(r+2‖θ‖2)T

ω

√(
D3(T )
ω2 − 1

) .

We observe that if D3(T )
ω2 = 1, we have infinite slope, if D3(T )

ω2 > 1, we have real

slope and complex slope if D3(T )
ω2 < 1.

8. Optimal Pension Benefit for a PPM at Retirement

In this section, we consider the optimal benefit that will accrued to the PPM at
retirement. By definition, the benefit that will accrued to a PPM at the final time,
T is given by

(8.1) P (T ) = Pm(T ) + ΘT (Pm(T )).

Proposition 8.1. : Let Θ̃∗T (P̃m(T )) be the optimal discounted surplus function at
the final time, T , then

(8.2) P̃ ∗(T ) = P̃m(T ) + Θ̃∗T (P̃m(T )),

with

(8.3) Ṽ ∗(T ) = v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+

∫ T

0

F (t)′dW (t).

Corollary 8.1. : Let Θ∗T (Pm(T )) be the optimal surplus function at the final time,
T , then

(8.4) P ∗(T ) = Pm(T ) + Θ∗T (Pm(T )),

with
(8.5)

V ∗(T ) =
1

Λ(T )

(
v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt+

∫ T

0

F (t)′dW (t)

)
.
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Corollary 8.2. : Let E(Θ̃∗T (P̃m(T ))) be the expected optimal discounted surplus
function at the final time, T , then

(8.6) E(P̃ ∗(T )) = E(P̃m(T )) + E(Θ̃∗T (P̃m(T ))),

with

(8.7) E(Ṽ ∗(T )) = v0 +

∫ T

0

(K(t)E(Ṽ ∗(t)) + E(G(t)) + ϕα(t))dt.

Corollary 8.3. : Let E(Θ∗T (Pm(T ))) be the optimal expected surplus function at
the final time, T , then

(8.8) E(P ∗(T )) = E(Pm(T )) + E(Θ∗T (Pm(T ))),

with

(8.9) E(V ∗(T )) =
1

E(Λ(T ))
E

[
v0 +

∫ T

0

(K(t)Ṽ ∗(t) +G(t) + ϕα(t))dt

]
.

9. Numerical Illustration

In this section, we give numerical illustration of our results in the previous sec-
tions. The aim of this numerical illustration is to observe the nature of the expected
final optimal surplus (both discounted case and the real case) as against the final
standard deviation, the initial optimal consumption, optimal final pension benefits,
minimum pension benefits, with respect to the terminal time to retirement, the
expected final surplus and parameter, ψ given to the minimization of the variance.
The values of parameters that we consider are as followings.
c = 0.15, η = 0.01, r = 0.04, ψ = 10, ξ = 0.3, ρ = 0.01, µ = 0.09, σY =

(0.25, 0.32), θI = 0.02, β = 0.0292, y0 = 0.8, x0 = 1, σS = 0.35, σ1 = 0.23.

Figure 1. Efficient Frontier
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Table 1: Initial Optimal Consumption, C0, with z̃ = E(Ṽ ∗(T ))

z̃
ψ = 0.1
T = 1

ψ = 0.1
T = 2

ψ = 0.1
T = 10

ψ = 0.1
T = 20

ψ = 1
T = 1

ψ = 1
T = 2

ψ = 1
T = 10

ψ = 1
T = 20

6 -10.4172 -7.8403 -13.3382 -21.0730 -5.9279 -4.8594 -12.5551 -20.6823

10 -14.4077 -10.4901 -14.0343 -21.4202 -9.9184 -7.5091 -13.2512 -21.0296

20 -24.3838 -17.1144 -15.7745 -22.2883 -19.8945 -14.1334 -14.9914 -21.8877

30 -34.3600 -23.7387 -17.5148 -23.1564 -29.8707 -20.7577 -16.7317 -22.7658

35 -39.3481 -27.0509 -18.3849 -23.5905 -34.8588 -24.0699 -17.6018 -23.1998

Continuation of Table 1

z̃
ψ = 10
T = 1

ψ = 10
T = 2

ψ = 10
T = 10

ψ = 10
T = 20

ψ =∞
T = 1

ψ =∞
T = 2

ψ =∞
T = 10

ψ =∞
T = 10

6 -5.4790 -4.5613 -2.4767 -20.6433 -5.4266 -4.2949 -3.36116 -1.4281

10 -9.4695 -7.2110 -13.1728 -20.9905 -9.4443 -6.9929 -4.1453 -1.8692

20 -19.4456 -13.8353 -14.8131 -21.8586 -19.4886 -13.7380 -6.1057 -2.9719

30 -29.4200 -20.4597 -16.6534 -22.7267 -29.5328 -20.4830 -8.0661 -4.0747

35 -34.4099 -23.7718 -17.5235 -23.1608 -34.5550 -23.8556 -9.0463 -4.6260

Table 2: EODS, EODPB and Minimum Pension Benefit for a PPM

T EV ∗ EṼ ∗ EP̃m EPm
EP̃ ∗

h = 0.2

EP ∗

h = 0.2
EP̃ ∗

h = 0.3

EP ∗

h = 0.3
EP̃ ∗

h = 0.4

EP ∗

h = 0.4

1 -2.8513 -2.7400 0.1202 0.1189 -2.1676 -2.2573 -1.8816 -1.9603 -1.5956 -1.6632

2 -0.7245 0.2409 0.2409 0.2357 -0.5314 -0.5807 -0.4349 -0.4786 -0.3383 -0.3766

3 0.2708 0.2402 0.3622 0.3567 0.2646 0.2868 0.2768 0.2948 0.2890 0.3027

4 1.4329 1.2211 0.4844 0.4640 1.0737 1.2391 1.0001 1.1422 0.9264 1.0453

5 2.7673 2.2657 0.6077 0.5758 1.9341 2.3290 1.7683 2.1099 1.6025 1.8907

6 4.2720 3.3605 0.7322 0.6853 2.8348 3.5548 2.5720 3.1963 2.3091 2.8377

10 11.7552 7.8797 1.2463 1.1187 6.5531 9.6279 5.8897 8.5643 5.2264 7.5006

20 40.9465 18.3985 2.7168 2.1890 15.2621 33.1950 13.6940 29.3193 12.1258 25.4435

Continuation of Table 2

T
EP̃ ∗

h = 0.5

EP ∗

h = 0.5
EP̃ ∗

h = 0.6

EP ∗

h = 0.6
EP̃ ∗

h = 0.7

EP ∗

h = 0.7
EP̃ ∗

h = 0.8

EP ∗

h = 0.8

1 -1.3097 -1.3662 -1.0237 -1.0692 -0.7377 -0.7722 -0.4518 -0.4751

2 -0.2418 -0.2745 -0.1453 -0.1725 -0.0487 -0.0704 0.0478 0.03161

3 0.3012 0.3107 0.3134 0.3187 0.3256 0.3267 0.3378 0.3347

4 0.8527 0.9484 0.7791 0.8515 0.7054 0.7546 0.6318 0.6577

5 1.4367 1.6715 1.2709 1.4524 1.1051 1.2332 0.9393 1.0141

6 2.0463 2.4791 1.7835 2.1205 1.5207 1.7620 1.2578 1.4034

10 4.5630 6.4370 3.8997 5.3733 3.2363 4.3097 2.5730 3.2460

20 10.5576 21.5678 8.9895 17.6920 7.4213 13.8163 5.8531 9.9405

EODS denotes Expected Optimal Discounted Surplus, EODPB denotes Expected
Optimal Discounted Pension Benefit.
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Figure 2. Initial Optimal Consumption

Figure 3. Portfolio Value in Cash Account
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Figure 4. Portfolio Value in Index Bond

Figure 5. Portfolio Value in Stock
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Figure 6. Portfolio Value in Index bond for Stochastic Salary

Figure 7. Portfolio Value in Stock for Stochastic Salary

Table 1 shows the initial optimal consumption of a PPM at various values of
expected discounted surplus in a varying value of variance minimizer parameter, ψ
at time T = 1, 2, 10 and 20 years. We observed at different values of ψ and T , that
as the expected optimal surplus increases, the initial optimal consumption decreases
and vice versa. This shows that the positive growth of the surplus (resulting from
the positive growth of the financial market and effective management on the part
of the PFA) is capable of discouraging consumption. It was also observed that as ψ
increases, the initial optimal consumption increases. This shows that as the market
continues to be volatile, consumption rate will continue increase and vice versa.
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Table 2 show the expected optimal surplus, expected discounted optimal surplus,
expected discounted minimum pension benefit, expected minimum pension benefit,
expected discounted total benefit and expected total pension benefit for a PPM,
at time T = 1, 2, 3, 4, 5, 6, 10 and 20 years, and at different value of h (i.e., the
proportion of the surplus that will accrued to the PFA). It was observed that
the optimal surplus increases in time, T . It also observed that as the value of h
increases, the benefit of the PPM will decrease, and vice versa, which is an obvious
result. Hence, what ever the bargain between the PPM and PFA on the sharing of
the surplus will be, the values of the PPM minimum and total pension benefit are
given in table 2.

Figure ?? shows the efficient frontier of the surplus process. We observed that
the shape of the efficient frontier is parabolic in nature. It is also observed that the
minimum possible variance is attained when the PFA borrows the amount of about
5200 from the total surplus at time t = 0 for time t = T . Figure ?? shows the initial
optimal consumption of a PPM with 0− 40 optimal surplus at time period 0− 20
years. It is observed that the initial optimal consumption of a PPM remain negative
over the time period, T . This confirm the results obtained in Table 1. Figure ??
shows the portfolio value of the investment in cash account and figure ?? and figure
?? show the portfolio values of a PPM in index bond and stock respectively, under
deterministic salary of a PPM. Figure ?? and figure ?? show the portfolio values
of a PPM in index bond and stock under stochastic salary. Figure ??, figure ??
and figure ?? tell us that the fund should be invested in index bond and stock only
and that cash account should be shorten and then invest in the risky assets (which
include index bond and stock), with high proportion of it being invested in stock
over time in order to attain the required target.

10. Conclusion

This paper have studied the management of a stochastic pension funding process
of a defined contributory pension scheme. The objectives are to determine the
minimum pension benefits, total pension benefits, optimal consumption and optimal
investment strategies maximizing the expected terminal surplus and simultaneously
minimizing the variance of the terminal surplus. The financial market is made up
of cash account, index bond and stock. The salary of the pension plan member is
stochastic. The problem was formulated as a modified mean-variance optimization
problem and was solved using dynamic programming approach.

The efficient frontier which was found to be nonlinear (i.e., possess a parabolic
shape). The optimal investment strategies have two components. The first com-
ponent depends ultimately on the risky assets and its correlation. The second
component is proportional to the ratio of the present expected value of PPM’s min-
imum benefit to the optimal wealth. The second component is the inter-temporal
hedging terms that offset any shock to the stochastic finding overtime.

The optimal consumption (both for real and discounted cases) plan have three
components. First component depends on the current level of minimum pension
benefit, with a coefficient involving the instantaneous variance of salary, prefer-
ence rate of consumption and risky assets. The second component depends on the
optimal wealth, preference rate of consumption and risky assets. The third compo-
nent is proportional to the present expected value of discounted surplus planned,
with coefficient involving preference rate of consumption, variance minimizer, short
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term interest rate, risky assets and the Brownian motion term, which shows that
the consumption of the PPM is stochastic. We found the as the variance mini-
mizing parameter tends to zero, the consumption level tends to negative infinity.
This shows that PPM will consume more over time when the market is volatile and
consume less when the market is less volatile. Also, the taste of consumption will
be negative, if the market is absolutely riskless.

The optimal terminal surplus for the stakeholders was determined in this pa-
per. The pension fund administrator (PFA) was encouraged by sharing the surplus
arising from the investment with the PPM. This strategy will go a long way in-
creasing the final benefit that will accrued to the PPM at retirement. The PFA
charge propositional administrative costs (AC) for the management of the fund.
This costs is on the PPM stochastic contributions into the scheme.

The minimum pension benefit is taken not to be less than the gross contributions
of the PPM. It implies that the total benefit must be greater or equal to the
minimum pension benefit.

A numerical illustrations show the analytical results and models established in
the paper.
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