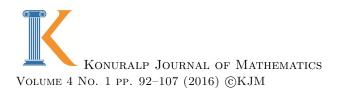
PAPER DETAILS

TITLE: ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS

AUTHORS: Dibyendu BANERJEE, Nilkanta MONDAL

PAGES: 92-107

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/507958



DIBYENDU BANERJEE AND NILKANTA MONDAL

ABSTRACT. In this paper, we study some growth properties of generalized iterated entire functions to generalize some earlier results.

1. INTRODUCTION AND DEFINITIONS

If f and g be two transcendental entire functions defined in the open complex plane \mathbb{C} , then Clunie [4] proved that $\lim_{r\to\infty} \frac{T(r,f\circ g)}{T(r,f)} = \infty$ and $\lim_{r\to\infty} \frac{T(r,f\circ g)}{T(r,g)} = \infty$. In [10] Singh proved some comparative growth properties of $\log T(r, f \circ g)$ and T(r, f) and raised the problem of investigating the comparative growth properties of $\log T(r, f \circ g)$ and T(r, g). After this several authors {see [3], [7] etc.,} made close investigation on comparative growth of $\log T(r, f \circ g)$ and T(r, g) by imposing certain restrictions on orders of f and g. In the present paper, we study such growth properties for generalized iterated entire functions.

Definition 1.1. Let f be a meromorphic function and T(r, f) be its Nevanlinna's characteristic function. Then the numbers $\rho(f)$, $\lambda(f)$ defined by

$$\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}$$

and $\lambda(f) = \liminf_{r \to \infty} \frac{\log T(r,f)}{\log r}$ are respectively called order and lower order of f.

Definition 1.2. ([3]) Let f be a meromorphic function. Then the numbers $\rho_p(f)$, $\lambda_p(f)$ defined by

$$\rho_p(f) = \limsup_{r \to \infty} \frac{\log^{[p]} T(r, f)}{\log r}$$

and $\lambda_p(f) = \liminf_{r \to \infty} \frac{\log^{[p]} T(r, f)}{\log r}$, where p = 1, 2, 3, ...

are respectively called p-th order and p-th lower order of f.

For p = 1, the above definition coincides with the classical definition of order and lower order.

²⁰¹⁰ Mathematics Subject Classification. 30D35.

Key words and phrases. Entire function, Generalized iteration, Growth.

If f is entire one can easily verify that

$$\begin{split} \rho_p(f) &= \limsup_{r \to \infty} \frac{\log^{[p+1]} M(r,f)}{\log r} \\ \text{and} \quad \lambda_p(f) &= \liminf_{r \to \infty} \frac{\log^{[p+1]} M(r,f)}{\log r}, \text{ where } p = 1, 2, 3, \dots \end{split}$$

Definition 1.3. ([3]) Let f be a meromorphic function. Then the numbers $\overline{\rho}_p(f)$, $\overline{\lambda}_p(f)$ defined by

$$\overline{\rho}_p(f) = \limsup_{r \to \infty} \frac{\log^{\lfloor p+1 \rfloor} T(r,f)}{\log r}$$

and $\overline{\lambda}_p(f) = \liminf_{r \to \infty} \frac{\log^{[p+1]} T(r,f)}{\log r}$, where $p = 1, 2, 3, \dots$

are respectively called pth hyper order and pth hyper lower order of f. If f is ontire one can easily varify that

If f is entire one can easily verify that $\overline{\rho}_p(f) = \limsup_{r \to \infty} \frac{\log^{[p+2]} M(r,f)}{\log r}$ and $\overline{\lambda}_p(f) = \liminf_{r \to \infty} \frac{\log^{[p+2]} M(r,f)}{\log r}$, where $p = 1, 2, 3, \dots$

Definition 1.4. ([3]) Let f be a meromorphic function of order zero. Then the numbers $\rho_p^*(f)$ and $\lambda_p^*(f)$ are defined as follows

$$\begin{split} \rho_p^*(f) &= \limsup_{r \to \infty} \frac{\log^{|p|} T(r,f)}{\log^{|2|} r} \\ \text{and} \quad \lambda_p^*(f) &= \liminf_{r \to \infty} \frac{\log^{|p|} T(r,f)}{\log^{|2|} r}, \text{ where } p = 1, 2, 3, \dots \end{split}$$

Definition 1.5. ([7]) A function $\lambda_f(r)$ is called a lower proximate order of a meromorphic function f if

i) $\lambda_f(r)$ is non negative and continuous for $r \ge r_0$ say;

ii) $\lambda_f(r)$ is differentiable for $r \ge r_0$ except possibly at isolated points at which $\lambda'(r_0 = 0)$ and $\lambda'(r_0 = 0)$ exist:

- $\begin{array}{l} \lambda_{f}^{'}(r-0) \text{ and } \lambda_{f}^{'}(r+0) \text{ exist};\\ \text{iii)} \lim_{r \rightarrow \infty} \lambda_{f}(r) = \lambda(f) < \infty \ ; \end{array}$
- iv) $\lim_{r \to \infty} r \lambda_{f}^{'}(r) \log r = 0$; and

v)
$$\liminf_{r \to \infty} \frac{T(r,f)}{r^{\lambda_f(r)}} = 1.$$

Definition 1.6. A real valued function $\varphi(r)$ is said to have the property P_1 if i) $\varphi(r)$ is non negative and continuous for $r \ge r_0$ say;

ii) $\varphi(r)$ is strictly increasing and $\varphi(r) \to \infty$ as $r \to \infty$;

iii) $\log \varphi(r) \leq \delta \varphi(\frac{r}{4})$ holds for every $\delta > 0$ and for all sufficiently large values of r.

Remark 1.1. If $\varphi(r)$ satisfies the property P_1 then it is clear that $\log^{[p]} \varphi(r) \leq \delta \varphi(\frac{r}{4})$ holds for every $p \geq 1$.

Definition 1.7. ([1]) Let f and g be two non-constant entire functions and α be any real number satisfying $0 < \alpha \leq 1$. Then the generalized iteration of f with respect to g is defined as follows:

$$f_{1,g}(z) = (1 - \alpha)z + \alpha f(z)$$

$$f_{2,g}(z) = (1 - \alpha)g_{1,f}(z) + \alpha f(g_{1,f}(z))$$

$$f_{3,g}(z) = (1 - \alpha)g_{2,f}(z) + \alpha f(g_{2,f}(z))$$

and so are

Definition 1.8. ([3]) Let *a* be a complex number, finite or infinite. The Valiron deficiency $\delta(a, f)$ of *a* with respect to a meromorphic function *f* is defined as:

$$\delta(a, f) = 1 - \liminf_{r \to \infty} \frac{N(r, a; f)}{T(r, f)}$$
$$= \limsup_{r \to \infty} \frac{m(r, a; f)}{T(r, f)}.$$

We do not explain the standard notations and definitions of the theory of entire and meromorphic functions as those are available in [5] and [11]. Throughout we assume f, g etc., are non-constant entire functions such that maximum modulus functions of f, g and all of their generalized iterated functions satisfy property P_1 .

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. ([5]) If f(z) be regular in $|z| \leq R$, then for $0 \leq r < R$ $T(r, f) \leq \log^+ M(r, f) \leq \frac{R+r}{R-r}T(R, f)$. In particular, if f be non-constant entire, then for all large values of r $T(r, f) \leq \log M(r, f) \leq 3T(2r, f)$.

Lemma 2.2. ([7]) Let f be a meromorphic function. Then for $\delta > 0$ the function $r^{\lambda(f)+\delta-\lambda_f(r)}$ is an increasing function of r.

Lemma 2.3. ([8]) Let f be an entire function of finite lower order. If there exist entire functions $a_i(i = 1, 2, 3, ...m; m \le \infty)$ satisfying $T(r, a_i) = o\{T(r, f)\}$ and $\sum_{i=1}^m \delta(a_i, f) = 1$ then $\lim_{r \to \infty} \frac{T(r, f)}{\log M(r, f)} = \frac{1}{\pi}.$

Lemma 2.4. ([2]) If f is meromorphic and g is entire then for all large values of r

$$\begin{split} T(r, f \circ g) &\leq (1 + o(1)) \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f). \\ Since \ g \ is \ entire \ so \ using \ Lemma \ 2.1, \ we \ have \\ T(r, f \circ g) &\leq (1 + o(1)) T(M(r, g), f). \end{split}$$

Lemma 2.5. ([9]) Let f and g be transcendental entire functions with $\rho(g) < \infty$, η be a constant satisfying $0 < \eta < 1$ and δ be a positive number. Then $T(r, f \circ g) + O(1) \ge N(r, 0; f \circ g)$

$$\geq \left(\log \frac{1}{\eta}\right) \left[\frac{N(M((\eta r)^{\frac{1}{1+\delta}},g),0;f)}{\log(M((\eta r)^{\frac{1}{1+\delta}},g)-O(1))} - O(1)\right]$$

as $r \to \infty$ through all values.

Lemma 2.6. Let f and g be two non-constant entire functions. Then $M(r, f \circ g) \leq M(M(r, g), f)$ holds for all large values of r.

Lemma 2.7. ([3]) For a meromorphic function f of finite lower order, lower proximate order exists.

3. MAIN THEOREMS

In this section, we present the main results of this paper.

Theorem 3.1. Let f(z) and g(z) be two entire functions such that $\lambda_p(f)$ and $\rho_p(g)$ are finite and $\lambda_p(g) > 0$. Then for even n

 $i) \qquad \liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} \le 3\rho_p(f) 2^{\lambda(g)}$ $ii) \qquad \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} \ge \frac{\lambda_p(f)}{2.4^{(n-1)\lambda(g)}}.$

Proof. If $\lambda(g) = \infty$, then (i) and (ii) are obvious. So we suppose that $\lambda(g) < \infty$. If $\rho_p(f) = \infty$ then (i) is obvious. So we suppose that $\rho_p(f) < \infty$. Since f and g are non-constants so

 $M(r, f) \ge \mu r$ and $M(r, g) \ge \mu r$ for some $0 < \mu < 1$. (3.1)Now by Lemma 2.1 we get for all large values of r and arbitrary $\epsilon > 0$
$$\begin{split} T(r, f_{n,g}) &\leq \log M(r, f_{n,g}) \\ &= \log M(r, (1-\alpha)g_{n-1,f} + \alpha f(g_{n-1,f})) \\ &\leq \log\{(1-\alpha)\frac{1}{\mu}M(M(r, g_{n-1,f}), f) + \frac{1}{\mu}\alpha M(M(r, g_{n-1,f}), f)\}, \end{split}$$
using (3.1) and Lemma 2.6 (3.2) $= \log M(M(r, g_{n-1,f}), f) + O(1)$ or, $\log^{[p]} T(r, f_{n,g}) \le \log^{[p+1]} M(M(r, g_{n-1,f}), f) + O(1)$ $< (\rho_p(f) + \epsilon) \log M(r, g_{n-1,f}) + O(1)$ or, $\log^{[2p]} T(r, f_{n,g}) < \log^{[p]} \log M(r, g_{n-1,f}) + O(1)$ $< \log^{[p]} \{ \log M(M(r, f_{n-2,g}), g) \} + O(1),$ using (3.2) $< (\rho_p(g) + \epsilon) \log M(r, f_{n-2,q}) + O(1).$ So, $\log^{[3p]} T(r, f_{n,g}) < (\rho_p(f) + \epsilon) \log M(r, g_{n-3,f}) + O(1).$ Proceeding similarly after some steps we get $\log^{[(n-2)p]} T(r, f_{n,g}) < (\rho_p(g) + \epsilon) \log M(r, f_{2,g}) + O(1).$ So, $\log^{[(n-1)p]} T(r, f_{n,g}) < (\rho_p(f) + \epsilon) \log M(r, g_{1,f}) + O(1)$ $= (\rho_p(f) + \epsilon) \log M(r, (1 - \alpha)z + \alpha g(z)) + O(1)$ $\leq (\rho_p(f) + \epsilon) \{ \log M(r, z) + \log M(r, g) \} + O(1)$ $= (\rho_p(f) + \epsilon) \{ \log r + \log M(r, g) \} + O(1).$ (3.3)

On the other hand, since $\liminf_{r^{\lambda g(r)}} \frac{T(r,g)}{r^{\lambda g(r)}} = 1$, we get for a sequence of values of r tending to infinity

 $T(r,g) < (1+\epsilon)r^{\lambda g(r)}$ (3.4)and for all large of values of r, $T(r,g) > (1-\epsilon)r^{\lambda g(r)}.$ (3.5) $\begin{array}{l} (3.5) \qquad T(r,g) > (1-\epsilon)r^{-\varsigma(r)}.\\ \text{Therefore, for all large values of } r, \text{ we get from } (3.3) \text{ and } (3.5)\\ \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{T(r,g)} < \frac{(\rho_p(f)+\epsilon)\log M(r,g)+O(1)}{(1-\epsilon)r^{\lambda g(r)}}\\ = \frac{(\rho_p(f)+\epsilon)\log M(r,g)}{(1-\epsilon)r^{\lambda g(r)}} + o(1) \qquad [\text{since } \lim_{r \to \infty} \lambda_g(r) = \lambda(g) > 0]\\ \leq \frac{(\rho_p(f)+\epsilon)3T(2r,g)}{(1-\epsilon)r^{\lambda g(r)}} + o(1).\\ \text{Therefore we get from } (3.4) \text{ for a sequence of values of } r \text{ tending to infinity}\\ \log^{[(n-1)p]}T(r,f_{n,g}) = 2(\epsilon_{n}(f_{n}+\epsilon)(1+\epsilon)(2-\epsilon)^{\lambda(g)+\delta}) \end{array}$

 $\log^{[(n-1)p]} T(r, f_{n,g}) < \frac{3(\rho_p(f) + \epsilon)(1 + \epsilon)(2r)^{\lambda(g) + \delta}}{2r} + o(1)$

$$T(r,g) \xrightarrow{\simeq} (1-\epsilon)(2r)^{\lambda(g)+\delta-\lambda g(2r)}r^{\lambda g(r)} + O(1)$$

$$= \frac{3(\rho_p(f)+\epsilon)(1+\epsilon)}{(1-\epsilon)}2^{\lambda(g)+\delta}\frac{r^{\lambda(g)+\delta-\lambda g(r)}}{(2r)^{\lambda(g)+\delta-\lambda g(2r)}} + o(1)$$

$$\leq \frac{3(\rho_p(f)+\epsilon)(1+\epsilon)}{(1-\epsilon)}2^{\lambda(g)+\delta} + o(1)$$

because $r^{\lambda(g)+\delta-\lambda_g(r)}$ is an increasing function of r.

Since $\epsilon > 0$ and $\delta > 0$ are arbitrary we get

 $\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,g)} \leq 3\rho_p(f) 2^{\lambda(g)} \text{ and (i) is proved.}$

If $\lambda_p(f) = 0$, then (ii) is obvious. So we suppose that $\lambda_p(f) > 0$. Then we have for all large values of r

$$T(r, f_{n,g}) = T(r, (1 - \alpha)g_{n-1,f} + \alpha f(g_{n-1,f}))$$

$$\geq T(r, \alpha f(g_{n-1,f})) - T(r, (1 - \alpha)g_{n-1,f}) + O(1)$$

$$\geq T(r, f(g_{n-1,f})) - T(r, g_{n-1,f}) + O(1) \quad \text{[for } \alpha \neq 1\text{]}$$

$$> \frac{1}{3} \exp^{[p-1]} \{ \frac{1}{9} M(\frac{r}{4}, g_{n-1,f}) \}^{\lambda_p(f) - \epsilon} - T(r, g_{n-1,f}) + O(1),$$

see [10], page 100}

or, $\log^{[p]} T(r, f_{n,g}) > \log\{\frac{1}{9}M(\frac{r}{4}, g_{n-1,f})\}^{\lambda_p(f)-\epsilon} - \log^{[p]} T(r, g_{n-1,f}) + O(1)$ $\geq (\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f}) - \frac{1}{2}(\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f})$ +O(1),

using property P_1 and Lemma 2.1

$$\begin{array}{l} \text{(3.6)} &= \frac{1}{2}(\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f}) + O(1) \\ \text{or, } \log^{[2p]} T(r, f_{n,g}) > \log^{[p]} \{\log M(\frac{r}{4}, g_{n-1,f})\} + O(1) \\ &\geq \log^{[p]} T(\frac{r}{4}, g_{n-1,f}) + O(1), \quad \text{using Lemma 2.1} \\ &> \frac{1}{2}(\lambda_p(g) - \epsilon) \log M(\frac{r}{4^2}, f_{n-2,g}) + O(1). \quad \text{using (3.6)} \\ \text{Proceeding similarly after some steps we get} \\ \text{(3.7)} \quad \log^{[(n-2)p]} T(r, f_{n,g}) > \frac{1}{2}(\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}}, f_{2,g}) + O(1). \\ \text{So, } \log^{[(n-1)p]} T(r, f_{n,g}) > \frac{1}{2}(\lambda_p(f) - \epsilon) \log M(\frac{r}{4^{n-1}}, g_{1,f}) + O(1) \\ &= \frac{1}{2}(\lambda_p(f) - \epsilon) \log M(\frac{r}{4^{n-1}}, (1 - \alpha)z + \alpha g(z)) + O(1) \\ \end{array}$$

(3.8)
$$\geq \frac{1}{2} (\lambda_p(f) - \epsilon) \{ \log M(\frac{r}{4n-1}, g) - \log M(\frac{r}{4n-1}, z) \} + O(1)$$

(3.9)
$$\geq \frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{2n-1}, g) - \log \frac{r}{2n-1} \} + O(1)$$

 $(3.9) \geq \frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}} \} + O(1).$ From (3.4), (3.5) and (3.9) we get for a sequence of values of r tending to infinity $\frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r, g)} > \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}} \} + O(1)}{T(r, g)}$

$$T(r,g) = \frac{1}{2} \frac{(1+\epsilon)r^{\lambda g(r)}}{(1+\epsilon)r^{\lambda g(r)}} + o(1) \qquad \{\text{since } \lim_{r \to \infty} \lambda_g(r) = \lambda(g) > 0\}$$
$$> \frac{1}{2} \frac{(\lambda_p(f) - \epsilon)(1-\epsilon)(\frac{r}{4n-1})^{\lambda g(\frac{r}{4n-1})}}{(1+\epsilon)r^{\lambda g(r)}} + o(1)$$

$$=\frac{\frac{1}{2}(\lambda_p(f)-\epsilon)(1-\epsilon)}{(1+\epsilon)}\left(\frac{1}{4^{n-1}}\right)^{\lambda(g)+\delta}\frac{r^{\lambda(g)+\delta-\lambda_g(r)}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda(g)+\delta-\lambda_g\left(\frac{r}{4^{n-1}}\right)}}+o(1)$$

$$\geq\frac{\frac{1}{2}(\lambda_p(f)-\epsilon)(1-\epsilon)}{(1+\epsilon)4^{(n-1)}(\lambda(g)+\delta)}+o(1)$$

because $r^{\lambda(g)+\delta-\lambda_g(r)}$ is ultimately an increasing function of r. Since $\epsilon > 0$ and $\delta > 0$ are arbitrary, so we have from above that $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} \ge \frac{\lambda_p(f)}{2.4^{(n-1)\lambda(g)}}$ and (ii) is proved.

Theorem 3.2. Let f(z) and g(z) be two entire functions such that $\lambda_p(g)$ and $\rho_p(f)$ are finite and $\lambda_p(f) > 0$. Then for odd n

 $i) \qquad \liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r, f)} \le 3\rho_p(g) 2^{\lambda(f)}$ $ii) \qquad \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r, f)} \ge \frac{\lambda_p(g)}{2.4^{(n-1)\lambda(f)}}.$

Theorem 3.3. Let f(z) and g(z) be two entire functions such that $\lambda_p(g) > 0$. Also suppose that there exist entire functions $a_i(i = 1, 2, 3, ..., m; m \le \infty)$ such that $T(r, a_i) = o\{T(r, g)\}$ as $r \to \infty(i = 1, 2, 3, ..., m)$ and $\sum_{i=1}^m \delta(a_i, g) = 1$. Then for even n $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r, g)} \ge \frac{\pi \lambda_p(f)}{2.4^{(n-1)\lambda(g)}}.$

Proof. If $\lambda(g) = \infty$ or $\lambda_p(f) = 0$, then the theorem is obvious. So we suppose that $\lambda(g) < \infty$ and $\lambda_p(f) > 0$.

For $0 < \epsilon < \min\{\lambda_p(f), \lambda_p(g), 1\}$ we get from (3.8) $\log^{[(n-1)p]} T(r, f_{n,g}) > \frac{1}{2} (\lambda_p(f) - \epsilon) \{\log M(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}}\} + O(1)$ Therefore, $\frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} > \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) \{\log M(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}}\} + O(1)}{T(r,g)}$ $= \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) \log M(\frac{r}{4^{n-1}}, g)}{T(r,g)} + o(1)$ $= \frac{1}{2} (\lambda_p(f) - \epsilon) \frac{\log M(\frac{r}{4^{n-1}}, g)}{T(\frac{r}{4^{n-1}}, g)} \frac{T(\frac{r}{4^{n-1}}, g)}{T(r,g)} + o(1).$

But from (3.4) and (3.5) we get for a sequence of values of r tending to infinity and for $\delta > 0$

$$\frac{T(\frac{r}{4n-1},g)}{T(r,g)} > \frac{(1-\epsilon)}{(1+\epsilon)} \frac{\left(\frac{r}{4n-1}\right)^{\lambda(g)+\delta}}{\left(\frac{r}{4n-1}\right)^{\lambda(g)+\delta-\lambda_g}\left(\frac{r}{4n-1}\right)} \frac{1}{r^{\lambda_g(r)}}$$
$$\geq \frac{(1-\epsilon)}{(1+\epsilon)} \frac{1}{(4^{n-1})^{\lambda(g)+\delta}}$$

because $r^{\lambda(g)+\delta-\lambda_g(r)}$ is an increasing function of r.

Since $\epsilon(>0)$ and $\delta(>0)$ are arbitrary, so we have from Lemma 2.3 and above that

 $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} \ge \frac{\pi \frac{1}{2} \lambda_p(f)}{4^{(n-1)\lambda(g)}}$ $= \frac{\pi \lambda_p(f)}{2 \cdot 4^{(n-1)\lambda(g)}}$

Theorem 3.4. Let f(z) and g(z) be two entire functions such that $\lambda_p(f) > 0$. Also suppose that there exist entire functions $a_i(i = 1, 2, 3, ..., m; m \le \infty)$ such that $T(r, a_i) = o\{T(r, f)\}$ as $r \to \infty(i = 1, 2, 3, ..., m)$ and $\sum_{i=1}^m \delta(a_i, f) = 1$. Then for odd n

$$\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,f)} \ge \frac{\pi \lambda_p(g)}{2.4^{(n-1)\lambda(f)}}.$$

Theorem 3.5. Let f(z) be an entire function and g(z) be a transcendental entire function such that $\rho_p(f)$, $\lambda(g)$ and $\rho_p(g)$ are finite. Also suppose that there exist entire functions $a_i(i = 1, 2, 3, ..., m; m \le \infty)$ such that $T(r, a_i) = o\{T(r, g)\}$ as $r \to \infty(i = 1, 2, 3, ..., m)$ and $\sum_{i=1}^{m} \delta(a_i, g) = 1$. Then for even n $\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(2^{n-2}r, g)} \le \pi \lambda_p(f).$

using Lemma 2.4

$$\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(2^{n-2}r, g)} \le \pi \lambda_p(f).$$

Remark 3.1. Under the hypothesis of Theorem 3.5 we have also $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(2^{n-2}r,g)} \leq \pi \rho_p(f).$

Theorem 3.6. Let f(z) be a transcendental entire function and g(z) be an entire function such that $\rho_p(f)$, $\lambda(f)$ and $\rho_p(g)$ are finite. Also suppose that there exist entire functions $a_i(i = 1, 2, 3, ..., m; m \le \infty)$ satisfying $T(r, a_i) = o(T(r, f))$ as $r \to \infty(i = 1, 2, 3, ..., m)$ and $\sum_{i=1}^m \delta(a_i, f) = 1$. Then for odd n $\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(2^{n-2}r, f)} \le \pi \lambda_p(g).$

Remark 3.2. Under the hypothesis of Theorem 3.6 we have also $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(2^{n-2}r,f)} \leq \pi \rho_p(g).$

Theorem 3.7. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \le \rho_p(f) < \infty$ and $0 < \lambda_p(g) \le \rho_p(g) < \infty$. Then for even n $\frac{\overline{\lambda}_p(g)}{\rho_p(g)} \le \liminf_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \le \frac{\overline{\rho}_p(g)}{\lambda_p(g)}$ for k = 0, 1, 2, ...

Proof. We have for all large values of r from (3.9) $\log^{[(n-1)p]} T(r, f_{n,q}) > \frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}} \} + O(1)$ or. $\log^{[np]} T(r, f_{n,g}) > \log^{[p]} T(\frac{r}{4^{n-1}}, g) - \log^{[p+1]}(\frac{r}{4^{n-1}}) + O(1)$ (3.12)or, $\begin{array}{l} (3.13) \qquad \log^{[np+1]} T(r,f_{n,g}) > \log^{[p+1]} T(\frac{r}{4^{n-1}},g) - \log^{[p+2]}(\frac{r}{4^{n-1}}) + O(1).\\ \text{Since } \limsup_{r \to \infty} \frac{\log^{[p]} T(r,g^{(k)})}{\log r} = \rho_p(g) \text{ so for all large values of } r \text{ we obtain}\\ (3.14) \qquad \log^{[p]} T(r,g^{(k)}) < (\rho_p(g) + \epsilon) \log r. \end{array}$ Now from (3.13) and (3.14)Now from (3.13) and (3.14) $\frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^k)} > \frac{\log^{[p+1]} T(\frac{r}{4^{n-1}}, g) - \log^{[p+2]}(\frac{r}{4^{n-1}}) + O(1)}{(\rho_p(g) + \epsilon) \log r}$ $= \frac{1}{(\rho_p(g) + \epsilon)} \frac{\log^{[p+1]} T(\frac{r}{4^{n-1}}, g)}{\log(\frac{r}{4^{n-1}})} \frac{\log(\frac{r}{4^{n-1}})}{\log r} + o(1).$ Since ϵ (> 0) was arbitrary, by Definition 1.3 (3.15) $\frac{\overline{\lambda}_p(g)}{\rho_p(g)} \le \liminf_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})}.$ From (3.3) for all large values of r and arbitrary $\epsilon > 0$ $\log^{[(n-1)p]} T(r, f_{n,q}) < (\rho_p(f) + \epsilon) \{ \log r + \log M(r, g) \} + O(1)$ or, b) $\log^{[np]} T(r, f_{n,g}) < \log^{[p+1]} r + \log^{[p+1]} M(r,g) + O(1)$ $\log^{[np+1]} T(r, f_{n,g}) < \log^{[p+2]} r + \log^{[p+2]} M(r,g) + O(1).$ (3.16)or, Therefore, $(3.17) \quad \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} < \frac{\log^{[p+2]} M(r,g)}{\log^{[p]} T(r, g^{(k)})} + o(1).$ Since $\liminf_{r \to \infty} \frac{\log^{[p]} T(r, g^{(k)})}{\log r} = \lambda_p(g), \text{ it follows for all large values of } r$ $\log^{[p]} T(r, g^{(k)}) > (\lambda_p(g) - \epsilon) \log r.$ (3.18)Now from (3.17) and (3.18) $\frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} < \frac{\log^{[p+2]} M(r,g)}{\log r.(\lambda_p(g) - \epsilon)} + o(1).$ Since $\epsilon(>0)$ is arbitrary, we have

(3.19)
$$\limsup_{r \to \infty} \frac{\log^{\lfloor np+1 \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r, g^{(k)})} \leq \frac{\overline{\rho}_p(g)}{\lambda_p(g)}.$$

The theorem follows from (3.15) and (3.19).

Theorem 3.8. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \leq 1$
$$\begin{split} \rho_p(f) &< \infty \text{ and } 0 < \lambda_p(g) \le \rho_p(g) < \infty. \text{ Then for odd } n \\ \frac{\overline{\lambda}_p(f)}{\rho_p(f)} \le \liminf_{r \to \infty} \frac{\log^{\lceil np+1 \rceil} T(r, f_{n,g})}{\log^{\lceil p \rceil} T(r, f^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{\lceil np+1 \rceil} T(r, f_{n,g})}{\log^{\lceil p \rceil} T(r, f^{(k)})} \le \frac{\overline{\rho}_p(f)}{\lambda_p(f)} \end{split}$$
for $k = 0, 1, 2, \dots$.

Theorem 3.9. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \leq$
$$\begin{split} \rho_p(f) < \infty, \ 0 < \lambda_p(g) \leq \rho_p(g) < \infty \ \text{and} \ \lambda(g) < \infty. \ \text{Then for even } n \\ \frac{\lambda_p(g)}{\rho_p(g)} \leq \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} \leq 1 \leq \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} \leq \frac{\rho_p(g)}{\lambda_p(g)}. \end{split}$$

Proof. From (3.12) we get for all large values of r

$$\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} > \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g) - \log^{[p+1]}(\frac{r}{4^{n-1}}) + O(1)}{\log^{[p]} T(r,g)}$$
$$= \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \frac{\log r - \log 4^{n-1}}{\log^{[p]} T(r,g)} + o(1)$$
$$(3.20) = \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \frac{\log r}{\log^{[p]} T(r,g)} + o(1).$$

Since $\limsup_{r \to \infty} \frac{\log^{[p]} T(r,g)}{\log r} = \rho_p(g)$, for all large values of r, we obtain

 $\log^{[p]} T(r,g) < (\rho_p(g) + \epsilon) \log r.$ (3.21)Since $\epsilon (> 0)$ is arbitrary, we get from (3.20) and (3.21) (3.22) $\frac{\lambda_p(g)}{\rho_p(g)} \le \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)}.$ From (3.16) we get for all large values of r(3.23) $\log^{[np]} T(r, f_{n,g}) < \log^{[p+1]} r + \log^{[p+1]} M(r, g) + O(1).$

Again from Lemma 2.1 and (3.4) we get for a sequence of values of r tending to infinity and for $\delta > 0$

 $\log M(r,g) < 3(1+\epsilon)(2r)^{\lambda_g(2r)}$ $= 3(1+\epsilon)\frac{(2r)^{(g/2r)}}{(2r)^{\lambda(g)+\delta}}$ $= 3(1+\epsilon)\frac{(2r)^{\lambda(g)+\delta}}{(2r)^{\lambda(g)+\delta-\lambda_g(2r)}}$ $= 3(1+\epsilon)2^{\lambda(g)+\delta}\frac{r^{\lambda(g)+\delta-\lambda_g(r)}}{(2r)^{\lambda(g)+\delta-\lambda_g(2r)}}r^{\lambda_g(r)}$ $\leq 3(1+\epsilon)2^{\lambda(g)+\delta}r^{\lambda_g(r)}$

because $r^{\lambda(g) \to \lambda_g(r)}$ is an increasing function of r.

Using (3.5) we get for a sequence of values of r tending to infinity $\log M(r,g) < \frac{3(1+\epsilon)}{1-\epsilon} 2^{\lambda(g)+\delta} T(r,g).$

Therefore, $\log^{[p+1]} M(r,g) < \log^{[p]} T(r,g) + O(1).$

So, from (3.23) we get for a sequence of values of r tending to infinity $\frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r,g)} < 1 + o(1).$

So,

 $\liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r,g)} \le 1.$ (3.24)

Also from (3.16) we get for all large values of r $\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} < \frac{\log^{[p+1]} r + \log^{[p+1]} M(r,g) + O(1)}{\log^{[p]} T(r,g)}$

$$\begin{split} &= \frac{\log^{[p+1]}M(r,g)}{\log^{[p]}T(r,g)} + o(1) \\ (3.25) &= \frac{\log^{[p+1]}M(r,g)}{\log r} \frac{\log r}{\log^{[p]}T(r,g)} + o(1). \\ &\text{Since } \liminf_{r \to \infty} \frac{\log^{[p]}T(r,g)}{\log r} = \lambda_p(g), \text{ it follows for all large values of } r \\ (3.26) &\log^{[p]}T(r,g) > (\lambda_p(g) - \epsilon) \log r. \\ &\text{Since } \epsilon(>0) \text{ is arbitrary, we get from (3.25) and (3.26)} \\ (3.27) &\limsup_{r \to \infty} \frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,g)} \le \frac{\rho_p(g)}{\lambda_p(g)}. \\ &\text{From (3.12) we get for all large values of } r \\ &\frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,g)} > \frac{\log^{[p]}T(\frac{\pi}{4^{n-1}},g) - \log^{[p+1]}(\frac{\pi}{4^{n-1}}) + O(1)}{\log^{[p]}T(r,g)} \\ (3.28) &= \frac{\log^{[p]}T(\frac{\pi}{4^{n-1}},g)}{\log^{[p]}T(r,g)} + o(1). \\ &\text{Now from (3.5) we get for all large values of } r \\ &T(\frac{r}{4^{n-1}},g) > (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda_g + \delta} \frac{r^{\lambda(g) + \delta - \lambda_g(r)}}{(\frac{r}{4^{n-1}})^{\lambda(g) + \delta - \lambda_g(r)}} r^{\lambda_g(r)} \\ &\geq (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda_g + \delta} r^{\lambda_g(r)} \\ &\text{because } r^{\lambda(g) + \delta - \lambda_g(r)} \text{ is an increasing function of } r. \\ &\text{So, by (3.4) we get for a sequence of values of } r \\ &T(\frac{r}{4^{n-1}},g) > (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda(g) + \delta} \cdot \frac{T(r,g)}{1+\epsilon}. \\ &\text{So,} \\ &(3.29) \quad \log^{[p]}T(\frac{r}{4^{n-1}},g) > \log^{[p]}T(r,g) > \log^{[p]}T(r,g) + O(1). \\ &\text{Therefore by (3.28) and (3.29) we get for a sequence of values of } r \\ &\text{transformed in the sequence of values of } r \\ &\text{transformed in the sequence of values of } r \\ &\text{transformed in the values } r \\$$

5

ling to infinity $\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} > \frac{\log^{[p]} T(r,g)}{\log^{[p]} T(r,g)} + o(1).$

Hence,

(3.30)
$$\limsup_{r \to \infty} \frac{\log^{\lfloor np \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r,g)} \ge 1.$$

The theorem follows from (3.22), (3.24), (3.27) and (3.30).

Remark 3.3. If in addition to the condition of Theorem 3.9, we suppose that $\rho_p(g) =$ $\lambda_p(g)$ then for even n $[np] T(r, f_n)$

$$\lim_{r \to \infty} \frac{\log^{(n^p)} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = 1.$$

Remark 3.4. The conditions $\lambda_p(f) > 0$ or $\rho_p(f) < \infty$ cannot be omitted in Theorem 3.9 and Remark 3.3 which are evident from the following examples.

Example 3.1. Let f(z) = z, $g(z) = \exp z$, p = 1 and $\alpha = 1$. Then $\rho_p(f) = \lambda_p(f) = 0$, $0 < 1 = \rho_p(g) = \lambda_p(g) < \infty$ and $f_{n,g}(z) = \exp^{\left[\frac{n}{2}\right]} z$ for

even n.

 $\lim_{r \to \infty} -\log^{\lfloor n \rfloor} T(r, \exp^{\left\lfloor \frac{n}{2} \right\rfloor} z) \leq \log^{[n]} (\log M(r, \exp^{\left\lfloor \frac{n}{2} \right\rfloor} z))$ $= \log^{\left\lfloor \frac{n}{2} + 1 \right\rfloor} r.$ Therefore, $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = 0.$

Example 3.2. Let $f(z) = \exp^{[2]} z$, $g(z) = \exp z$, p = 1 and $\alpha = 1$.

Then $\rho_p(f) = \lambda_p(f) = \infty$, $\rho_p(g) = \lambda_p(g) = 1$ and $f_{n,g}(z) = exp^{\left[\frac{3n}{2}\right]}z$ for even n. $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{3n}{2}]} z)$ Now,
$$\begin{split} & \sum_{\substack{n \geq 0 \\ r \neq \infty}} \sum_{$$

Theorem 3.10. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \leq$ $\rho_p(f) < \infty, \ 0 < \lambda_p(g) \le \rho_p(g) < \infty \ and \ \lambda(f) < \infty. \ Then \ for \ odd \ n$ $\frac{\lambda_p(f)}{\rho_p(f)} \le \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} \le 1 \le \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} \le \frac{\rho_p(f)}{\lambda_p(f)}.$

Remark 3.5. If in addition to the condition of Theorem 3.10, we suppose that $\rho_p(f) = \lambda_p(f)$ then for odd n $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} = 1.$

Remark 3.6. Similarly the conditions $\lambda_p(g) > 0$ or $\rho_p(g) < \infty$ cannot be omitted in Theorem 3.10 and Remark 3.5, which are evident from the following examples.

Example 3.3. Let $f(z) = \exp z$, g(z) = z, p = 1 and $\alpha = 1$. Then $\rho_p(g) = \lambda_p(g) = 0, \ 0 < 1 = \rho_p(f) = \lambda_p(f) < \infty$ and $f_{n,q}(z) = \exp^{\left[\frac{n+1}{2}\right]} z$ for odd n. r odd *n*. Now, $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{n+1}{2}]} z)$ $\leq \log^{[n]} (\log M(r, \exp^{[\frac{n+1}{2}]} z))$ $= \log^{[\frac{n+1}{2}]} r.$ Therefore, $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} = 0.$

Example 3.4. Let $f(z) = \exp z$, $g(z) = \exp^{[2]} z$, p = 1 and $\alpha = 1$.

Then $\rho_p(f) = \lambda_p(f) = 1$, $\rho_p(g) = \lambda_p(g) = \infty$ and $f_{n,g}(z) = \exp^{[1 + \frac{3(n-1)}{2}]} z =$ $\exp^{\left[\frac{3n-1}{2}\right]}z$ for odd n.

 $\begin{aligned} \sum_{\substack{n \in \mathbb{Z} \\ \text{Now, } \log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{3n-1}{2}]} z) \\ &\geq \log^{[n]}(\frac{1}{3}\log M(\frac{r}{2}, \exp^{[\frac{3n-1}{2}]} z)) \\ &= \exp^{[\frac{n-3}{2}]}(\frac{r}{2}) + O(1). \end{aligned}$ Therefore, $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = \infty. \end{aligned}$

Theorem 3.11. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \leq$
$$\begin{split} \rho_p(f) &< \infty \text{ and } 0 < \lambda_p(g) \le \rho_p(g) < \infty. \text{ Then for even } n \\ \frac{\lambda_p(g)}{\rho_p(f)} &\leq \liminf_{r \to \infty} \frac{\log^{\lfloor np \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r, f^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{\lfloor np \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r, f^{(k)})} \le \frac{\rho_p(g)}{\lambda_p(f)} \end{split}$$
for $k = 0, 1, 2, 3, \dots$.

Proof. From (3.12) we get for all large values of r $\frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} > \frac{\log^{[p]} T(\frac{r}{4^{n-1}}, g) - \log^{[p+1]}(\frac{r}{4^{n-1}}) + O(1)}{\log^{[p]} T(r, f^{(k)})}$

$$(3.31) = \frac{\log^{[p]} T(\frac{r}{4n-1},g)}{\log(\frac{r}{4n-1})} \cdot \frac{\log r - \log 4^{n-1}}{\log^{[p]} T(r,f^{(k)})} + o(1)$$
$$= \frac{\log^{[p]} T(\frac{r}{4n-1},g)}{\log(\frac{r}{4n-1})} \cdot \frac{\log r}{\log^{[p]} T(r,f^{(k)})} + o(1).$$

Since $\limsup_{r \to \infty} \frac{\log^{[p]} T(r, f^{(k)})}{\log r} = \rho_p(f), \text{ so for all large values of } r$ (3.32) $\log^{[p]} T(r, f^{(k)}) < (\rho_p(f) + \epsilon) \log r.$

From (3.31) and (3.32)

$$\begin{split} \frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,f^{(k)})} &> \frac{\lambda_p(g)-\epsilon}{\rho_p(f)+\epsilon} + o(1). \\ \text{Since } \epsilon(>0) \text{ is arbitrary} \\ (3.33) \qquad \frac{\lambda_p(g)}{\rho_p(f)} &\leq \liminf_{r \to \infty} \frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,f^{(k)})}. \\ \text{Also from (3.16) for all large values of } r \\ \frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,f^{(k)})} &< \frac{\log^{[p+1]}r + \log^{[p+1]}M(r,g) + O(1)}{\log^{[p]}T(r,f^{(k)})} \\ (3.34) \qquad = \frac{\log^{[p+1]}M(r,g)}{\log r} \frac{\log^{[p]}T(r,f^{(k)})}{\log^{[p]}T(r,f^{(k)})} + o(1). \\ \text{Since } \liminf_{r \to \infty} \frac{\log^{[p]}T(r,f^{(k)})}{\log r} = \lambda_p(f), \text{ it follows for all large values of } r \\ (3.35) \qquad \log^{[p]}T(r,f^{(k)}) > (\lambda_p(f) - \epsilon)\log r. \\ \text{Since } \epsilon(>0) \text{ is arbitrary, we get from (3.34) and (3.35)} \\ (3.36) \qquad \limsup_{r \to \infty} \frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,f^{(k)})} \leq \frac{\rho_p(g)}{\lambda_p(f)}. \\ \text{The theorem follows from (3.33) and (3.36). \\ \end{split}$$

Theorem 3.12. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(f) \leq$ $\begin{aligned} \rho_p(f) &< \infty \text{ and } 0 < \lambda_p(g) \le \rho_p(g) < \infty. \text{ Then for odd } n \\ \frac{\lambda_p(f)}{\rho_p(g)} &\leq \liminf_{r \to \infty} \frac{\log^{\lfloor np \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r, g^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{\lfloor np \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r, g^{(k)})} \le \frac{\rho_p(f)}{\lambda_p(g)} \end{aligned}$ for $k = 0, 1, 2, 3, \dots$.

 $\begin{array}{l} \textbf{Theorem 3.13. Let } f(z) \ and \ g(z) \ be \ two \ entire \ functions \ such \ that \ 0 < \lambda_p(f) \leq \\ \rho_p(f) < \infty \ and \ \rho_p(g) < \infty. \ Then \\ \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),f^{(k)})} = 0 \quad for \ k = 0, 1, 2, 3, \dots \end{array} .$

On the other hand we get for all large values of r

$$\begin{split} & \frac{\log^{[p]} T(r,f^{(k)})}{\log r} > \lambda_p(f) - \epsilon \\ & \text{or, } \log^{[p-1]} T(r,f^{(k)}) > r^{\lambda_p(f)-\epsilon}. \\ & \text{Therefore,} \\ & (3.38) \qquad \log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),f^{(k)}) > (\exp^{[p]}(2^{n-2}r))^{\lambda_p(f)-\epsilon}. \\ & \text{From (3.37) and (3.38) we have for all large values of } r \\ & \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),f^{(k)})} < \frac{(\rho_p(f)+\epsilon)exp^{[p-1]}(2^{n-2}r)^{\rho_p(g)+\epsilon}}{(\exp^{[p]}(2^{n-2}r))^{\lambda_p(f)-\epsilon}} + o(1). \\ & \text{and hence, } \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),f^{(k)})} = 0 \\ & \text{and the theorem is proved for even} \\ & n. \\ & \text{Also for odd } n \text{ we get as in (3.37)} \end{split}$$

 $\log^{[(n-1)p]} T(r, f_{n,g}) < \log^{[p+1]}(2^{n-2}r) + (\rho_p(f) + \epsilon) \log(2^{n-2}r) + (\rho_p(g) + \epsilon) \log(2^{n-2}r) + (\rho_p(g) + \epsilon) \exp^{[p-1]}(2^{n-2}r)^{\rho_p(f) + \epsilon} + O(1)$ and consequently the theorem follows immediately.

Remark 3.7. The condition $\rho_p(g) < \infty$ cannot be omitted in Theorem 3.13 which is evident from the following example.

$$\begin{split} \textbf{Example 3.5. Let } f(z) &= \exp z, \, g(z) = \exp^{[3]} z, \, p = 1 \text{ and } \alpha = 1. \\ \text{Then } \rho_p(f) &= \lambda_p(f) = 1, \, \rho_p(g) = \infty \text{ and} \\ f_{n,g}(z) &= \exp^{[2n]} z \text{ when } n \text{ is even.} \\ &= \exp^{[2n-1]} z \text{ when } n \text{ is odd.} \\ \text{Therefore for even } n \\ &\log^{[(n-1)p]} T(r, f_{n,g}) = \log^{[n-1]} T(r, \exp^{[2n]} z) \\ &\geq \log^{[n-1]} [\frac{1}{3} \log M(\frac{r}{2}, \exp^{[2n]} z)] \\ &= \exp^{[n]}(\frac{r}{2}) + O(1), \\ \text{and for odd } n \\ &\log^{[(n-1)p]} T(r, f_{n,g}) = \log^{[n-1]} T(r, \exp^{[2n-1]} z) \\ &\geq \log^{[n-1]} [\frac{1}{3} \log M(\frac{r}{2}, \exp^{[2n-1]} z)] \\ &= \exp^{[n-1]}(\frac{r}{2}) + O(1). \\ \text{Also, } \log^{[p-1]} T(\exp^{[p]}(2^{n-2}r), f^{(k)}) = T(\exp(2^{n-2}r), f^{(k)}) \\ &= \frac{\exp(2^{n-2}r)}{\pi}. \\ \text{Thus it follows that for any } n \geq 2 \\ \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[(n-1)p]} T(\exp^{[p]}(2^{n-2}r), f^{(k)})} = \infty. \end{split}$$

Theorem 3.14. Let f(z) and g(z) be two entire functions such that $0 < \lambda_p(g) \le \rho_p(g) < \infty$ and $\rho_p(f) < \infty$. Then $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r), g^{(k)})} = 0 \quad for \ k = 0, 1, 2, 3, \dots$

Remark 3.8. The condition $\rho_p(f) < \infty$ cannot be omitted in Theorem 3.14 which is evident from the following example.

Example 3.6. Let $f(z) = \exp^{[3]} z$, $g(z) = \exp z$, p = 1 and $\alpha = 1$. Then $\rho_p(g) = \lambda_p(g) = 1$, $\rho_p(f) = \infty$ and $f_{n,g}(z) = \exp^{[2n]} z$ when n is even.

$$\begin{split} &= \exp^{[2n+1]} z \quad \text{when } n \text{ is odd.} \\ &\text{Therefore as in Example 3.5 we get for even } n \\ &\log^{[(n-1)p]} T(r,f_{n,g}) \geq \exp^{[n]}(\frac{r}{2}) + O(1), \\ &\text{and for odd } n \\ &\log^{[(n-1)p]} T(r,f_{n,g}) \geq \exp^{[n+1]}(\frac{r}{2}) + O(1). \\ &\text{Also, } \log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),g^{(k)}) = \frac{\exp(2^{n-2}r)}{\pi}. \\ &\text{Thus it follows that for any } n \geq 2 \\ &\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),g^{(k)})} = \infty. \end{split}$$

Theorem 3.15. Let f(z) and g(z) be two transcendental entire functions such that (i) $0 < \lambda_p(g) \le \rho_p(g) \le \rho(g) < \infty$;

 $\begin{array}{l} (ii) \ \lambda_p(f) > 0 \ ; \\ and \ (iii) \ \delta(0; f) < 1. \\ Then \ for \ any \ real \ number \ A \ and \ for \ even \ n \\ \lim_{r \to \infty} \sup \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p]} T(r^A,g^{(k)})} = \infty \ for \ k = 0, 1, 2, 3, \dots \end{array} .$

Proof. We suppose that A > 0, because otherwise the theorem is obvious. From (3.7) we get for all large values of r

$$\begin{split} \log^{[(n-2)p]} T(r, f_{n,g}) &> \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}}, f_{2,g}) + O(1) \\ &= \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}}, (1-\alpha)g_{1,f} + \alpha f(g_{1,f})) + O(1) \\ &\geq \frac{1}{2} (\lambda_p(g) - \epsilon) \{ \log M(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log M(\frac{r}{4^{n-2}}, g_{1,f}) \} \\ &\quad + O(1) \\ &\geq \frac{1}{2} (\lambda_p(g) - \epsilon) \{ T(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log M(\frac{r}{4^{n-2}}, g_{1,f}) \} + O(1) \\ &\text{or,} \end{split}$$

(3.39)
$$\log^{[(n-1)p]} T(r, f_{n,g}) \ge \log^{[p]} T(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log^{[p+1]} M(\frac{r}{4^{n-2}}, g_{1,f}) + O(1).$$

For given $\epsilon(0 < \epsilon < 1 - \delta(0; f))$

 $N(r,0;f) > (1 - \delta(0;f) - \epsilon)T(r,f)$ for all sufficiently large values of r. So, from Lemma 2.5, for all sufficiently large values of r

$$\begin{split} T(\frac{r}{4^{n-2}}, f(g_{1,f})) + O(1) &\geq (\log \frac{1}{\eta}) [\frac{(1-\delta(0;f)-\epsilon)T\{M((\eta r)\frac{1}{1+\gamma}, g_{1,f}), f\}}{\log M((\eta r)\frac{1}{1+\gamma}, g_{1,f}) - O(1)} - O(1)] \\ \text{or, } \log^{[p]} T(\frac{r}{4^{n-2}}, f(g_{1,f})) &\geq \log^{[p]} T(M((\eta r)\frac{1}{1+\gamma}, g_{1,f}), f) - \log^{[p+1]} M((\eta r)\frac{1}{1+\gamma}, g_{1,f}) \\ &+ O(1) \end{split}$$

$$(3.40) = \log^{[p]} T(M((\eta r)^{\frac{1}{1+\gamma}}, g_{1,f}), f) + O(\log r).$$
Again $\log^{[p+1]} M(\frac{r}{4^{n-2}}, g_{1,f}) = \log^{[p+1]} M(\frac{r}{4^{n-2}}, (1-\alpha)z + \alpha g)$

$$\geq \log^{[p+1]} M(\frac{r}{4^{n-2}}, g) - \log^{[p+1]} M(\frac{r}{4^{n-2}}, z)$$

$$> (\lambda_p(g) - \epsilon) \log(\frac{r}{4^{n-2}}) - \log^{[p+1]} \frac{r}{4^{n-2}}$$

$$(3.41) = O(\log r).$$

$$(3.41) = O(\log r).$$

Therefore from (3.39), (3.40) and (3.41) for all sufficiently large values of r
$$\begin{split} \log^{[(n-1)p]} T(r,f_{n,g}) &> \log^{[p]} T(M((\eta r)^{\frac{1}{1+\gamma}},g_{1,f}),f) + O(\log r) \\ &> (\lambda_p(f)-\epsilon) \log M((\eta r)^{\frac{1}{1+\gamma}},g_{1,f}) + O(\log r) \\ &= (\lambda_p(f)-\epsilon) \log M((\eta r)^{\frac{1}{1+\gamma}},(1-\alpha)z + \alpha g(z)) + O(\log r) \\ &\geq (\lambda_p(f)-\epsilon) (\log M((\eta r)^{\frac{1}{1+\gamma}},g) - \log M((\eta r)^{\frac{1}{1+\gamma}},z)) + O(\log r) \\ &> (\lambda_p(f)-\epsilon) (\exp^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}(\lambda_p(g)-\epsilon)} - \log(\eta r)^{\frac{1}{1+\gamma}}) + O(\log r) \end{split}$$
 DIBYENDU BANERJEE AND NILKANTA MONDAL

 $= (\lambda_p(f) - \epsilon) \exp^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}(\lambda_p(g) - \epsilon)} + O(\log r).$

(3.42)Also,

> $\log^{[p]} T(r^A, g^{(k)}) < A(\rho_p(g) + \epsilon) \log r$ (3.43)

for all sufficiently large values of r.

So from (3.42) and (3.43) for all sufficiently large values of r

$$\frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[p]}T(r^{A},g^{(k)})} > \frac{O(\log r)}{A(\rho_{p}(g)+\epsilon)\log r} + \frac{(\lambda_{p}(f)-\epsilon)\exp^{[p-1]}(\eta r)\frac{1}{1+\gamma}(\lambda_{p}(g)-\epsilon)}{A(\rho_{p}(g)+\epsilon)\log r}.$$

Therefore,
$$\limsup_{r \to \infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[p]}T(r^{A},g^{(k)})} = \infty.$$

Theorem 3.16. Let f(z) and g(z) be two transcendental entire functions such that (i) $0 < \lambda_p(f) \le \rho_p(f) \le \rho(f) < \infty$; (ii) $\lambda_p(g) > 0$; and (iii) $\delta(0;g) < 1$. Then for any real number A and for odd n $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[p]} T(r^A, f^{(k)})} = \infty \quad \text{for } k = 0, 1, 2, 3, \dots \quad .$

Theorem 3.17. Let f(z) and g(z) be two entire functions such that $\rho_p(f) = 0$, $\rho_p^*(f) < \infty$ and $\rho(g) < \infty$. Then for even $n, \rho_{(n-1)p}(f_{n,g}) < \infty$.

Proof. To prove the theorem we first prove that $\rho_p(g_{1,f}) < \infty$ for any $p \ge 1$. We have $g_{1,f}(z) = (1 - \alpha)z + \alpha g(z)$, $\rho(z) = 0$ and $\rho(g) < \infty$. So, $\rho(g_{1,f}) \le \max\{\rho(z), \rho(g)\}.$ Therefore, $\rho(g_{1,f}) < \infty$. $\begin{aligned} \operatorname{Again} \rho_p(g_{1,f}) &\leq \rho(g_{1,f}) < \infty. \\ \operatorname{From} (3.11) \text{ for all large values of } r \\ \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log r} &\leq \frac{\log^{[p]} T(2^{n-2}r,g_{1,f})}{\log r} + \frac{\log^{[p]} T(M(2^{n-2}r,g_{1,f}),f)}{\log r} + o(1) \\ &= \frac{\log^{[p]} T(2^{n-2}r,g_{1,f})}{\log(2^{n-2}r)} \frac{\log 2^{n-2} + \log r}{\log r} + \frac{\log^{[p]} T(M(2^{n-2}r,g_{1,f}),f)}{\log\log M(2^{n-2}r,g_{1,f})} \\ &\qquad \times \frac{\log\log M(2^{n-2}r,g_{1,f})}{\log r} + o(1) \end{aligned}$

Therefore, $\rho_{(n-1)p}(f_{n,g}) < \infty$.

Theorem 3.18. Let f(z) and g(z) be two entire functions such that $\rho_p(g) = 0$, $\rho_p^*(g) < \infty$ and $\rho(f) < \infty$. Then for odd $n, \rho_{(n-1)p}(f_{n,q}) < \infty$.

References

- [1] Banerjee, D. and Mondal, N., Maximum modulus and maximum term of generalized iterated entire functions, Bulletin of the Allahabad Mathematical Society, Vol.27, No.1 (2012), 117-131.
- [2] Bergweiler, W., On the Nevanlinna characteristic of a composite function, Complex variables, Vol.10 (1988), 225-236.
- [3] Bhoosnurmath, S. S. and Prabhaiah, V. S., On the generalized growth properties of composite entire and meromorphic functions, Journal of Indian Acad Math., Vol.29, No.2 (2007), 343-369
- Clunie, J., The composition of entire and meromorphic functions, Mathematical Essays ded-[4]icated to Macintyre, Ohio Univ. Press (1970), 75-92.
- [5] Hayman, W. K., Meromorphic functions, Oxford University Press, 1964.

- [6] Lahiri, B. K. and Banerjee, D., Relative fix points of entire functions, J. Indian Acad. Math., Vol.19, No.1 (1997), 87-97.
- [7] Lahiri, I. and Dutta, S.K., On the growth of composite entire and meromorphic functions, Indian J. pure appl. Math., Vol.35, No.4 (2004), 525-543.
- [8] Lin, Q. and Dai, C., On a conjecture of shah concerning small functions, Kexue Tongbao, Vol.31(1986), 220-224.
- [9] Nino, K. and Suita, N., Growth of a composite function of entire functions, Kodai Math. J., Vol.3(1980), 374-379.
- [10] Singh, A. P., Growth of composite entire functions, Kodai Math. J., Vol. 8 (1985), 99-102.
- [11] Valron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company,(1949).

BALLAVPUR R.G.S.VIDYAPITH, BALLAVPUR, RANIGANJ, WEST BENGAL, INDIA $E\text{-}mail\ address:\ \texttt{nilkanta1986@gmail.com}$