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Abstract

In this paper, making use of the Ruscheweyh- type g-difference operator Qq(%g f(z)) we introduce a new subclass of spiral-like functions
and discuss some subordination results and Fekete-Szego problem for this generalized function class. Further, some known and new results
which follow as special cases of our results are also mentioned.
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1. Introduction

Let o7 denote the class of functions of the form
fR)=z+Y) a.d" (1.1
n=2

which are analytic and univalent in the open disc U= {z € C: |z] < 1}. Let . denote the subclass of .7 consisting of functions that are
univalent in U.
A function f € &7 is said to be in the class of y-spiral-like functions of order A in U, denoted by .*(7v, 1) if

/
SK(e’YZf (Z)> >Acosy, zeU (1.2)
f(2)

for 0 <A < 1 and some real y with |y| < . The class *(y,A) was studied by Libera [6] and Keogh and Merkes [5]. Note that
#*(7,0) is the class of spiral-like functions introduced by Spaek [15], #*(0,A) = .#*(A) is the class of starlike functions of order A and
*(0,0) = . is the familiar class of starlike functions.

Let A be the class of all analytic functions w in U that satisfy the conditions w(0) = 0 and |w(z)| < 1,z € U.

For functions f € o7 given by (1.1) and g € &7 given by g(z) =z+ Y, bpZ", we define the Hadamard product (or Convolution ) of f and g

n=2

by

(f*8)(2) =z+ ) anbp?", z€U. (1.3)
n=2
We briefly recall here the notion of g-operators i.e. g-difference operator that play a vital role in the theory of hypergeometric series, quantum
physics and in the operator theory. The application of g-calculus was initiated by Jackson [3] (also see [2, 11]). For the applications of
g-calculus in geometric function theory, one may see the papers of Mohamad and Darus [7], Purohit and Raina [11], Mohamad and Sokol,
[8].

Consider 0 < ¢ < 1 and a non-negative integer n. The g-integer number or basic number 7 is defined by

nlg=——=14q+¢*+...+4"", [0l =0.
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For a non-integer number ¢ we will denote [t], =

The g-shifted factorial is defined as follow

O]'=1, [n)! =[1]42]4.-.[ng-
Note that 11m | [n]y =nand lmll [n]! =n!.
g
The Jackson S g- derivative operator or g-difference operator for a function f € o/ is defined by

f(qz) — f(2)
D4f(2) = 2(g—1) 270 (1.4)
£(0) ,2=0.

Note that forn e N={1,2,...} andz€ U

D" = [ 1.5
Fort € R and n € N, the g-generalized Pochhammer symbol is defined by

[t]n = [tqlt +1]glt +2]4... [t +n—1],.

Moreover, for t > 0 the g-Gamma function is given by

Ty(t+1)=[t];T4(r) and Ty(1)=1.

For details on g-calculus one can refer to [1, 3] and also the reference cited therein.
Using the definition of Ruscheweyh differential operator [12], in [4] Kanas and Raducanu introduced the Ruscheweyh g-differential operator
defined by

Ry f(2) = f(2)*Fpar1(z) z€Ua>—1 (1.6)
where f € & and

g(n+a) o [a+1], 1
Fat1(z)=z+ —z" =z 7", zeU. (1.7
o+ Z 4 [n—1]IT,(1+ o) n; [n—1)!
From (1.6) we have
() =1R),  Bpf(2) =224 (2)
and
Z@m( m— lf( ))

n
Ky f(2) = B meN.
For f € o given by (1.1), in view of (1.6) and (1.7), we obtain

- "—+°‘) vl
Z+Z nfl 1+O{ anZ Z+n§2 [ 71 anl zeU. (18)

It is easy to check that

. z
qulll, Froat1(2z) = A=t
and

o z

qlglllﬂ’ fla)= f(Z)*i(l_Z)a”
From (1.8) we get
Dg(RES(2) =1+ Z[n]q (n,a)anz" ! (1.9)
where
Wy(n,0) = o) ety (1.10)

mn—1T,(1+a)  [n—1]!

Making use of the generalized Ruscheweyh g-differential operator %g‘ f(z), we introduce a new subclass of spiral-like functions.
For0<A<1,0<y<land 5F<n <%, welet g‘x(n 7, ) be the subclass of A consisting of functions of the form (1.1) and satisfying
the analytic condition:

NN HIG)
(1=A)z+AZ%8 f(2)

) >vycosn, ze€U, (1.11)

where 7, (R f(z)) is given by (1.9).
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Example 1.1. ForA =1,0<y<land 7 <n <, welet4X(n,v,1) = 7(n,7) be the subclass of </ consisting of functions of the
form (1.1) and satisfying the analytic condition:

( 22 Z 1 (2))

%,}Xf(z) ) >vycosn, zeU, (1.12)

where P4(%g f(2)) is given by (1.9).

T

Example 1.2. For A =0,0<y<land 7* <1 < 7§, welet 4% (n,7,0) = ZF(n,7) be the subclass of </ consisting of functions of the
form (1.1) and satisfying the analytic condition:

‘R(em @q(%gf(z))> >ycosn, z€ U, (1.13)

where D4(%4 f(2)) is given by (1.9).

The object of the present paper is to investigate the coefficient estimates and subordination properties for the class of functions %”‘(n, Y,A).
Some interesting consequences of the results are also pointed out.

2. Membership characterizations

In this section we obtain several sufficient conditions for a function f € 2/ to be in the class %‘X(n, 7, A).

Theorem 2.1. Let f € of and let § be a real number with 0 < § < 1. If

294(%5 f(2))

—1|<1-8, zeU 2.1
(- A)z+ A% f(z) |~ 2€ @.1)

1-6
<cos' [ — ).
|7] < cos (lfl)

29y (%#q f(2))
(- M)zt AZE[(2)

then f € 4 (n,y,A) provided that

Proof. From (2.1) it follows that

=1+(1-906)w(z),

where w(z) € #. We have

m 2q(%]f(2)) ey
x (en f ;Lq)z+qmgf(z)> =R Ao E)
=cosn+ (1—8)R(Mw(z))

> cost — (1 8)[e"Mw(z)|

>cosn —(1—9)
> ycosn,
provided that |17| < cos™! <11;j> Thus, the proof is completed. O

If in Theorem 2.1 we take § = 1 — (1 — 7) cos ] we obtain the following result.
Corollary 2.2. Let f € &. If

224 %#q f(2))

(1-A)z+AZ%f(z) !

<(l=7v)cosn, zeU (2.2)

then f € 47 (n,7,7).

In the following theorem, we obtain a sufficient condition for f to be in 4*(1,7,4).

Theorem 2.3. A function f(z) of the form (1.1) is in G*(n, v, 1) if

Y [([n]g — A)seen + (1= Y)A]¥g(n, @)|an| <17, 23)

n=2

where || < %,0< A <1,0 <y < 1and ¥y(n,a) is given by (1.10).
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Proof. In virtue of Corollary 2.2, it suffices to show that the condition (2.3) is satisfied. We have

29g(#4 f(2))
(- A)z+ AZ%f(2)

;(Mq —A)¥,(n, o)an?"!

1+ ) AW, (n, a)a,?" !
n=2

-1

o

Y. ([nlg —A)¥q(n, @)lan|

n=2

1= Y AWy(n,a)la|
n=2

<

The last expression is bounded above by (1 — y)cosn, if

=
e

([lg = 2)¥4(n, &) |an| < (1 —7y)cosn (1 - i AWq(n, a)an|>

n=2

which is equivalent to
Y [(fnly — ) secn + (1= 7)A P (n, @) as] < 1-7.
n=2

This completes the proof of the Theorem 2.3.

In view of Examples 1.1 and 1.2, we state the following corollaries.

Corollary 2.4. A function f(z) of the form (1.1) is in (1, y) if

=

;(([”]q —)secn + (1 —7))¥(n,a)lan| <1-7,

where | < Z,and 0 <y < 1.
Corollary 2.5. A function f(z) of the form (1.1) is in Z¢(n,7) if

=

Z ([n]gsecn)¥y(n, a)la,| < 1-7,

n=2

where | < 5 and 0 <y < 1.

Remark 2.6. We observe that Corollary 2.4, yields the result of Silverman [13] for special values of n) and 7.

3. Subordination result

Before stating and proving our subordination result for the class %qa(n, 7, 1), we need the following definitions and a lemma due to Wilf

[17].

Definition 3.1. Ler g,h € 7. The function g is said to be subordinate to the function h, denoted by g < h, if there exists a function w € 5B

such that g(z) = h(w(z)), for all z € U.

Definition 3.2. [17]. A sequence {b,};_, of complex numbers is said to be a subordinating factor sequence if, whenever f(z) =

o
Y anz",ay =1 is regular, univalent and convex in U, we have
n=1

Z bpap?" < f(Z)7 zeU.
n=1

Lemma 3.3. [17] The sequence {b,};_, is a subordinating factor sequence if and only if

9?{1+22bnz"}>0,zeU

n=1

Theorem 3.4. Let f € gqa(m Y, A) and g(z) be any function in the usual class of convex functions C, then

(([2lg —A)secn +A(1—7))¥,(2, @)
21 —y+(([2g —A)secn +A(1 = 7)) ¥, (2, )]

(fxg)(z) < g(2)

where | < Z,0<y<1,0< A <1, with

,2+a)

R VTR

3.1)

3.2)

(3.3)

34)
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and

+ (([2lg —A)secn +A(1— 7)) ¥y (2, @)
(([2lg = A)secn + A (1 —7))¥,(2, )

E)K{f(z)}>—1 ,ze€U. (3.5)

((Ply—2) Secn+l(177))‘f’q(2~oz)

The constant factor AT (2, =A) sec 1+ A(1=1)) %, (2.a)] in (3.3) cannot be replaced by a larger number.

Proof. Let f € 9(n,7,4) satisfy the coefficient inequality (2.3) and suppose that g(z) =z + Z cp?" € C. Then, by Definition 3.2, the
n=2
subordination (3.3) of our theorem will hold true if the sequence

{ (([2lg —A)secn +A(1-7)¥(2,0) }“
20— 7+ ((12lg—A)seen +A(1=7)¥(2,0)] " f,_,

is a subordinating factor sequence, with a; = 1. In view of Lemma 3.3, it is equivalent to the inequality

(2l — ) secn +A( - ) ¥y(2@)
{1+Z T—y+ (2l — A)secn + A(1— 7)) ¥ (2,0) ™"

z"} >0,zeU. (3.6)

[([]g=A) secn+(1=y)A]¥y (n,0)

By noting the fact that -7

is an increasing function for n > 2 and in view of (2.3), when |z| = r < 1, we obtain

(Rl - Mseen+A(I-7)¥2.0) &
9‘{‘* =7+ (2~ A)seen +A(1—y>>a"q<z,a>,§1“"z }

__ ((Pg=A)secn+A(1-7))¥(2.0)
T 1=r+((Rlg—A)seen +A(1-7)) Wy (2, @)
1-y
STy (2~ A)seen +A(1-7) ¥, (2, @)
This evidently proves the inequality (3.6) and hence also the subordination result (3.3) asserted by Theorem 3.4. The inequality (3.5) follows from (3.3) by
taking g(z) = 1%, =z + ): ' eC.

r>0,lzl=r<1.

The sharpness of the multlplylng factor in (3. ?) can be estdblished by considering a function

F(z)=z— e () l)sel;ﬁr?t(l T a)z where [1] < 5,0 <y < 1,0 <A <1 and ¥y (2, ) is given by (3.4). Clearly F € 4(n,,4). Using (3.3) we

infer that
(21, = A)secn +A(1— )W, (2, ) .
21 —V+((I([2}q—7t)secn +A(1 _}(/I))\pq(27a)]F(2) =< =7

and it follows that
. (12— A)seen + 21— 7)) ¥,(2.a) 1
{m(z[l—y+<<[z1q—x>secn A7), oo]”z))} el

This shows that the constant ol 17(}(,[31(“( [_2]): Eic)?:}]i /1(1)) y;)(\y,,()z ] cannot be replaced by any larger one. O

For A = 1, we state the following corollary.

Corollary 3.5. If f € #2(n,7), then

(gsecn +(1—7))¥4(2,)
2[1—y+(gsecn +(1-7))¥,(2, )]

(f*8)(z) <g(2) (3.7

where |n| < $,0<y<1,geCand

1 —y+(gsecn +(1—7))¥,

(
R{f(2)} > - (gsecn+(1-7))¥,(2,a

,ze U.

2,a)
)

(gseen+(1-7))¥,(2,a)
1—y+(gsecn+(1-7))¥,(2,0)]

The constant factor 3 in (3.7) cannot be replaced by a larger one.

By taking A = 0, we state the next corollary.
Corollary 3.6. If f € ZJ(n,7,2), then

(1+qg)secn¥4(2, o)
2[1—y+(1+q)secn¥,(2, o))

(fx8)(z) <gl2) (3.8)

where 0| < $,0<y<1,geCand

1—7+(1+q)secn'¥(2,a)
(1+g)secn¥,(2, )

R{f@)} > - ,z€U.

(1:+g)secn¥, (2.0)
1—y+(I+q)secn¥,(2,a)]

The constant factor b in (3.8) cannot be replaced by a larger one.
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4. The Fekete-Szego problem

The Fekete-Szeg6 problem consists in finding sharp upper bounds for the functional |a3 — ua%\ for various subclasses of .27 (see [10], [16]).
In order to obtain sharp upper-bounds for |a3 — ua%| for the class %q‘x(n., 7, A) the following lemma is required (see, e.g., [9], p.108).
Lemma 4.1. Let the function w € B be given by

oo

w(z) = Z wpZ", z€U.

n=1
Then
wil <1 and |wa| < 1—|w;|? .1
and
lwy —sw?| <max{1,|s|} for any complex number s. 4.2)

2

The functions w(z) = z and w(z) = z= or one of their rotations show that both inequalities (4.1) and (4.2) are sharp.

T
For the constants ¥,1 with 0 < y < I and || < 5 denote

14+e M(e™™M —2ycosn)z
pyn(2) = ( 12 yeosn) , zeU. @3

The function py 5, (z) maps the open unit disk onto the half-plane
Hyn = {z € C:R(eMz) > ycosn} .

If -
Pyn(2) =14 pa?"

n=1

then it is easy to check that
pn=2¢"M(1—7)cosn, forall n>1. 4.4)
First we obtain sharp upper-bounds for the Fekete-Szegé functional |a3 — ,ua%\ with u real parameter .

Theorem 4.2. Let f € 9*(n,7v,A) be given by (1.1) and let | be a real number. Then

laz — pa3| <
2(1—17)cosn 2(1—-7y)A 20—y (1+qg+g*—1) ¥,(3.a) )
(1+q+¢* = 2)¥,(3, @) { M T R CEw y & W2(2,0) |’ fu=o
2(1—7y)cosn I
(I+q+q>—1)¥,(3,a)’ for<u<o “4.5)
2(1—7)cosn 20—y (1+qg+¢*—1) ¥,(3.a) 2(1-7)4 )
(I+q+q* = 1)¥,(3,a) { (l+g—2)2 ¥2(2,q) Ay -l feze
where
_ Al+g-2) ¥i2@)
T g2 Y,(.a) 4.6)
- - w2
o _ (Lra=A)(1+g=2y ¥2.0) )

(I=7(1+q+g>=1) ¥(3,a)
and ¥4(2,00), W, (3, ) are defined by (1.10) with n = 2 and n = 3 respectively. All estimates are sharp.

Proof. Suppose that f € 4(n,7,4) is given by (1.1). Then, from the definition of the class 4*(n,7,1), there exists w € &, w(z) =
wiz+waz? +wsz> + ... such that

D REQ)
(I—A)z+AZ%f(z) P

(w(z)), zeU. (4.8)

We have
29q(%#5 f(2))

(1=A)z+AZE f(2)
=1+ (2] —1)¥,(2,@)arz+ [(/l2 - [2](1&)‘{‘2(2, a)a% +([3]g —A)¥4(3, (x)a3]z2 +...
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or
294(%3 f(2))

(1=A)z+ A% f(2)

=1+ (1+q—2A)P(2, 0)arz+ [(A% — gA — A)¥2(2,0)a} + (1 + g+ ¢* — A)¥, (3, @)az] + ... (4.9)
Set pyn(z) =1+piz+ P27+ p3z> + ... From (4.4) we have

p1=p2=2¢""(1—7)cosn.
Equating the coefficients of z and Z2 on both sides of (4.8) and taking into account (4.9), we obtain

P11 and az = ! piwa+ P2+LP2 wi.
(1+g—2)¥,(2,) (1+g+4¢>—1)¥(3,a) I+q-2"1) "1

ay) =

and thus we obtain

~ 2e7M(1—17)cosn
R (P L AC IR 10

and
2¢7M(1—17)cosn 2Ae”M(1—7y)cosn\ ,
= 1 . 4.11
B Urgrd w60 |\ T T " (“1D)
It follows
2(1—y)cosn
—udll <
RS (g - ¥, B.0)

1+

2¢e~M(1—y)cosn P 1+qg+¢*—A Y(G,0)
I+g—24 l+g—24  ¥i(2,0)

X{W2+ |W12}~

Making use of Lemma 4.1 (4.1) we have

2(1—1y)cosn
—udll <
los = bzl < (1+g+q*—1)¥(3,a)
2¢~M(1—y)cosn I+q+q@? -1 ¥,(3.a) 2
X{” e MR e wew )| M
or
Jas a3 < 2(1—yjcosn 1+ (14M@+M)cos?n 1) w2 @.12)
A7 (4 g+ P2 —n)¥,(,0) ’
where
2(1-7) L+g+q*—1 ¥,(3,a)
M= - . . 4.1
I4+g—A (l I+g-2 ¥i(2,a) (413)
Denote by

F(x,y) = 1+( 1+M(2+M)x2—l)y2 where x =cosn, y=|w;| and (x,y) € [0,1] x [0,1].

Simple calculation shows that the function F'(x,y) does not have a local maximum at any interior point of the open rectangle (0,1) x (0,1).
Thus, the maximum must be attained at a boundary point. Since F(x,0) = 1,F(0,y) =1 and F(1,1) = |1 4+ M|, it follows that the maximal
value of F(x,y) may be F(0,0) =1or F(1,1) =|1+M]|.

Therefore, from (4.12) we obtain

2(1—1y)cosn

(gt —ne,ea " LITHME. (4.14)

‘03 —Hag‘ <

where M is given by (4.13).
Consider first the case |1+M| > 1. If u < oy, where o is given by (4.6), then M > 0 and from (4.14) we obtain

2(1—y)cosn 14 20=DA 21-7)(1+q+¢*-2) ¥(G,a)
l+g+4¢*>-1)¥Y,(3,a) I l+g—A (1+g—2)% ‘{%(Z,a)_

‘03 —HG%| < (

which is the first part of the inequality (4.5). If u > o0,, where 0, is given by (4.7), then M < —2 and it follows from (4.14) that

21-ycosn [ 20-9(+g+d—2) Yy(B.0) 2(1-pA
1+q+q27/1)‘1‘q(3,a)_ (1+g—2)?2 Y2(2,0)  1+g—2A

‘a3 7”61%' < (
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and this is the third part of (4.5).
Next, suppose 0] < it < 0,. Then, |14+ M| < 1 and thus, from (4.14) we obtain

2(1—17)cosn
l+q+q>—21)¥%3,a)

‘a3‘*#ﬂ%‘ﬁ (

which is the second part of the inequality (4.5).

In view of Lemma 4.1, the results are sharp for w(z) = z and w(z) = 2>

or one of their rotations. O
Next, we consider the Fekete-Szegd problem for the class 4*(n,7,4) with it complex parameter.

Theorem 4.3. Let f € 4.7(1,Y,A) be given by (1.1) and let |1 be a complex number. Then,

2(1—17)cosn
1+q+¢>—n)¥%(3,0)

(@_u@

><max{17

The result is sharp.

<
—(

2(1—17)cosn l—i-q+qz—7t.‘Pq(S,oc)_}L i
I+g—-24 l+g—2 ¥i(2,a)

} (4.15)

Proof. Assume that f € 4*(n,7,4). Making use of (4.10) and (4.11) we obtain

2(1—17y)cosn
I+q+4¢>—1)¥(3,a)

‘aafﬁué‘é(

X

o _Ze_i”(lfy)cosn P 1+q+qul.‘l’q(3,a) 1l
2 l+g—A l+g—4  ¥i(2,a) !

The inequality (4.15) follows as an application of Lemma 4.1(4.2) with

~ 27 M(1—y)cosn l+g+q¢*>—2 ‘{—‘,1(3,06)_/,L .
5T l+qg—2 I+g—1  ¥2(2,a) ’

O

Remark 4.4. By specializing the parameters A = 0 and A = 1 one can state the above discussed results for function f in the subclasses
defined in Example 1.1 and 1.2 respectively.
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