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Abstract

The A−metric space has been developed on the idea of measuring simultaneously the distance between n points is the latest generalization of
the usual metric spaces in the literature. Our main motivation is to answer the question “how to get another a new complete A−metric space
from a complete A−metric space ?”
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1. Introduction

We know that the traditional definition of distance in space is based on the idea of “how far apart ” two points in space are. But, measuring
the distance between more than two points or elements is somewhat tedious and time-consuming. This measurement is usually done by
combining the binary distance values for all pairs of items in a collection into an aggregated measure. However, the generalizations of
traditional metric spaces in recent years has given rise to the ability to simultaneously measure the distance between more than two elements.
In this sense, 2−metric, D−metric and G−metric spaces, which are the generalizations of the usual metric spaces, and in which the distance
between three points can be measured at the same time, were introduced. Today, serious studies are still being carried out on these spaces.
The last and most important of these generalizations is A−metric space, because this space has been developed on the idea of measuring
simultaneously the distance between n points. The definition of A−metric space, introduced by Mujahid Abbas et al. [1] in 2015, is as
follows:

Definition 1.1. Let X 6= /0 and let the function A :

n−times︷ ︸︸ ︷
X×X×·· ·×X −→ [0,∞) (n≥ 3) be satisfying the following axioms:

(A1) A(x1,x2, . . . ,xn) = 0 iff x1 = x2 = . . .= xn ,

(A2) A(x1,x2, . . . ,xn)≤
n
∑

i=1
A(xi,xi, . . . ,xi,w), xi and w ∈ X.

Then the function A is called the A−metric and the pair (X ,A) is called the A−metric space.

The concepts we need while constructing a new complete A−metric space from a given complete A−metric space will be given in the
following section.

2. Preliminaries

Definition 2.1. [1], [8] Let (X ,A) be an A−metric space;
i. A sequence {xn} is said to A−converge to a point x if ∀ε > 0, ∃ N ∈ N, such that n > N implies A(xn, . . . ,xn,x) < ε . Briefly,
lim
k→∞

A(xk,xk, . . . ,xk,x) = 0⇐⇒ lim
k→∞

xk = x.

ii. A sequence {xn} is called an A−Cauchy sequence if ∀ε > 0, ∃ N ∈ N, such that for all r,s > N implies A(xr, . . . ,xr,xs)< ε .

iii. An A−metric space is called the complete A−metric space in which every A−Cauchy sequence is A−convergent.

iv. Let (Y,A∗) be an A-metric space. A function f : X → Y is called A-continuous at a ∈ X if and only if ∀ ε > 0, ∃ δ > 0 such that if
A(x, . . . ,x,a)< δ , then A( f (x) , . . . , f (x) , f (a))< ε .

Email address: termis@ogu.edu.tr (T. Ermiş)
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Lemma 2.2. [1] Let {xn} be a sequence in the A−metric space (X ,A) . Then, for every k,m ∈ N

A(xk, . . . ,xk,xm)≤ (n−1)

[
m−2

∑
i=k

A(xi, . . . ,xi,xi+1)

]
+A(xm−1, . . . ,xm−1,xm) .

3. The Main Results

If a continuous map f defined on a complete metric space is not a contraction but f k is a contraction for some positive integer k, then f has
a unique fixed point. This is a well-know theorem due to [2], [4], [6]. However, in 1968, V. B. Bryant [3] showed that the assumption of
continuity used in this theorem is not necessary. In 2018, Y. U. O. Gaba [5] has managed to generalize this theorem to G-metric spaces [7]
with order three. In this section, using the methodology introduced by Gaba, it will be proved in Theorem 3.4 that from an A−metric space
where Fn is contraction map while F is not a contraction map, a new A−metric space can be constructed where F is a contraction map.
After the proof of Theorem 3.4, a new complete A−metric space will be constructed from a given complete A−metric space.

Definition 3.1. A map T : X → X, where (X ,A) is a A−metric space, is a contraction if there exist the constant λ ∈ [0,1) such that
A(T (x1) , . . . ,T (xn))≤ λA(x1, . . . ,xn) for all x1, . . . ,xn ∈ X.

Theorem 3.2. Let (X ,A) be a complete A−metric space, then every contraction has a unique fixed point.

Proof. To prove the existence and uniqueness of the contraction mapping’s fixed point, we will respectively benefit from induction and
contradiction.

By condition of contraction, let x0 be an arbitrary point in X . Because the map F : X → X is function, each element of the domain X is
mapped to by at least one element of the codomain X . So, we can write xk+1 = F (xk) for all k ∈ N. There are two cases according to
xk+1 = F (xk):

Case 1: If xk+1 = xk, then, xk is a fixed point of F .
Case 2: If xk+1 6= xk, then, by the condition of contraction, it follows that A(xk+1,xk+2, . . . ,xk+n+1) ≤ λA(xk,xk+1, . . . ,xk+n). So, by
induction we have

A(xk+1,xk+2, . . . ,xk+n+1) ≤ λA(xk,xk+1, . . . ,xk+n)
...

...
≤ λ k+1A(x0,x1, . . . ,xn) ,

which implies that A(xk+1,xk+2, . . . ,xk+n+1)→ 0 as k→ ∞. Therefore, the sequence (xn) is an A−Cauchy sequence in X . Let lim
k→∞

xk = L.

It follows that A(xk+1,F (L) , . . . ,F (L)) ≤ λA(xk,L, . . . ,L). As k→ ∞, A(L,F (L) , . . . ,F (L)) ≤ A(L,L, . . . ,L) = 0. Thus F (L) = L is
obtained by the condition (A1). Assume that F (L1) = L1 and F (L2) = L2 for L1, L2 ∈ X such that L1 6= L1. For λ ∈ [0,1)

A(L1, . . . ,L1,L2) = A(F (L1) , . . . ,F (L1) ,F (L2))≤ λA(L1, . . . ,L1,L2) .

Therefore, A(L1, . . . ,L1,L2) = 0 is obtained which implies that L1 = L2. But this is a contradiction.

Corollary 3.3. Let (X ,A) be a complete A−metric space and T : X → X be a mapping such that there exist a constant λ with λ ∈ [0,1)
satisfying A(T n (x1) , . . . ,T n (xn))≤ λA(x1, . . . ,xn) for all x1, . . . ,xn ∈ X. Then T has an unique fixed point.

Proof. We define T n (x) inductively by T 0 (x) = x and T n+1 (x) = T (T n (x)) for any x ∈ X and n ∈ {0,1, . . .}. Also, T n is a contraction
mapping because of the above inequality. So, T n (x) = x can be written. Also, from the equations T n+1 (x) = T (T n (x)) = T (x) = T

n
(T (x)),

T (x) is obtained as the fixed point of T
n
. Since the fixed point of T

n
must be unique, x is unique which satisfies T (x) = x.

Theorem 3.4. Let (X ,d1) be an A−metric space and F : (X ,d1)→ (X ,d1) be a map such that F
n

is a contraction mapping with constant
µ in (X ,d1). Let d2 be defined just as in [5]. More precisely,

d2 :

n−times︷ ︸︸ ︷
X×X×·· ·×X → [0,∞)

(x1, . . . ,xn) 7→ d2 (x1, . . . ,xn) :=
n−1
∑

i=0
λ id1

(
F ix1, . . . , ,F ixn

)
where λ ∈ [0,∞) such that µ

1
n <

1
λ

< 1. Then,

i) (X ,d2) is an A−metric space,

ii) F is a contraction mapping with constant
1
λ

in (X ,d2).

Proof. Firstly, it is proved that d2 is an A−metric. So the axioms A1 and A2 are valid for all x1, · · · ,xn,w ∈ X and for I = {0,1, . . .n−1}.
Actually,
A1) Since d1 is an A−metric on X , we have that ;

x1 = · · ·= xn = 0 ⇐⇒ ∀i ∈ I, d1
(
F ix1, . . . , ,F ixn

)
= 0

⇐⇒
n−1
∑

i=0
λ id1

(
F ix1, . . . , ,F ixn

)
= 0

⇐⇒ d2 (x1, . . . ,xn) = 0.



32 Konuralp Journal of Mathematics

A2) Using the definition of d2, we get following equations

d2 (x1, . . . ,x1,w) =
n−1
∑

i=0
λ id1

(
F ix1, . . . ,F ix1,F iw

)
,

d2 (x2, . . . ,x2,w) =
n−1
∑

i=0
λ id1

(
F ix2, . . . ,F ix2,F iw

)
,

d2 (xn, . . . ,xn,w) =
n−1
∑

i=0
λ id1

(
F ixn, . . . ,F ixn,F iw

)
.

For the sake of shortness, let d2 (x1, . . . ,x1,w)+d2 (x2, . . . ,x2,w)+ · · ·+d2 (xn, . . . ,xn,w) be denoted by K, then

K =
n−1

∑
i=0

λ
i
[
d1

(
F ix1, . . . ,F ix1,F iw

)
+ · · ·+d1

(
F ixn, . . . ,F ixn,F iw

)]
.

Since d1 is an A−metric on X , it follows that

K =
n−1
∑

i=0
λ i [d1

(
F ix1, . . . ,F ix1,F iw

)
+ · · ·+d1

(
F ixn, . . . ,F ixn,F iw

)]
≥

n−1
∑

i=0
λ id1

(
F ix1, . . . ,F ixn

)
= d2 (x1, . . . ,xn) .

Consequently, d2 is an A−metric on X . Therefore, the pair (X ,d2) is an A−metric space. Now, we prove that F is a contaction mapping with

constant
1
λ

in (X ,d2) such that µ
1
n <

1
λ

< 1. Using the definition of d2, we get following equations

d2 (Fx1,Fx2, . . . ,Fxn) =
n−1
∑

i=0
λ id1

(
F iFx1, . . . ,F iFxn

)
,

d2 (x1, . . . ,xn) =
n−1
∑

i=0
λ id1

(
F ix1, . . . ,F ixn

)
.

λd2 (Fx1, . . . ,Fxn)−d2 (x1, . . . ,xn) =−d1 (x1, . . . ,xn)+λ nd1 (Fx1, . . . ,Fxn) is obtained by a simple comptutation. Since Fn is a contraction

mapping with constant µ in (X ,d1) , and µ
1
n <

1
λ

< 1, we get that

d2 (Fx1,Fx2, . . . ,Fxn) =
1
λ
[d2 (x1, . . . ,xn)−d1 (x1, . . . ,xn)]+λ n−1d1 (Fx1,Fx2, . . . ,Fxn)

≤ 1
λ
[d2 (x1, . . . ,xn)−d1 (x1, . . . ,xn)]+µλ n−1d1 (x1, . . . ,xn)

=
1
λ

d2 (x1, . . . ,xn)+

[
µ− 1

λ n

]
λ n−1d1 (x1, . . . ,xn)

≤ 1
λ

d2 (x1, . . . ,xn) .

Therefore, we have that F is a contraction mapping with constant
1
λ

in (X ,d2).

Now, we can give our main results in the following theorem:

Theorem 3.5. F : (X ,d1)→ (X ,d1) be a uniformly continuous map, where (X ,d1) is a complete A−metric space. Then, (X ,d2) is given
Theorem 3.4 is a complete A−metric space.

Proof. Let (xn) be any A−Cauchy sequence in (X ,d2). Then, (xn) is a A−Cauchy sequence in (X ,d1) because of d2 (x1, . . . ,xn) ≤

d1 (x1, . . . ,xn). So, ∃ L ∈ X 3 (xn)
(X ,d1)−→ L [ ∵ (X ,d1) is the complete A−metric space]. Let β = max

{
λ i : i = 1, . . . ,n−1

}
, then

β ≥ λ > 1. Also, F (xn)
(X ,d1)−→ F (L) [ ∵ F is a uniformly continuous map in (X ,d1)]. Since all the power of F are also uniformly

continuous in (X ,d1), for any ε > 0, there is a δ > 0 such that for all x1, . . . ,xn ∈ X and i = 1, . . . ,n− 1. d1 (x1, . . . ,xn) < δ =⇒

d1
(
F ix1, . . . ,F ixn

)
< ε/βn. Also, (xn)

(X ,d1)−→ L =⇒ ∀δ > 0, ∃n0 ∈ N 3 ∀k ≥ n0, d1 (xk, . . . ,xk,L) < δ . Thus, for i = 1, . . . ,n− 1,

k≥ n0 =⇒ d1
(
F ixk, . . . ,F ixk,F iL

)
< ε/βn. Therefore, d2 (xk, . . . ,xk,L)< ε

n

[
1
β
+ λ

β
+ · · ·+ λ n−1

β

]
< ε . Consequently, A−Cauchy sequence

(xn) is A−convergent to L. So, (X ,d2) is a complete A−metric space.
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