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Abstract. In this paper, convex optimization techniques are employed for
convex optimization problems in infinite dimensional Hilbert spaces. A first

order optimality condition is given. Let f : Rn → R and let x ∈ Rn be
a local solution to the problem minx∈Rn f(x). Then f ′(x, d) ≥ 0 for every

direction d ∈ Rn for which f ′(x, d) exists. Moreover, Let f : Rn → R be

differentiable at x∗ ∈ Rn. If x∗ is a local minimum of f , then ∇f(x∗) = 0.
A simple application involving the Dirichlet problem is also given. Lastly, we

have given optimization conditions involving positive semi-definite matrices.

1. INTRODUCTION

Studies on convex optimization have been carried out by many mathematicians
and it still remains interesting. Convex operators, convex vector-functions among
others, that is, mappings defined on a convex subset of a vector space and with
values in an ordered vector space, have been intensively studied in the last years,
mainly in connection with optimization problems and mathematical programming
in ordered vector spaces (see [1], [3], [5]). The normality of the cone is essential in the
proofs of the continuity properties of convex vector-functions. Lipschitz properties
of continuous convex vector functions defined on an open convex subset of a normed
space and with values in a normed space ordered by a normal cone have also been
considered [6]. Equicontinuity results for pointwise bounded families of continuous
convex mappings have also been studied with many interesting results obtained. It
has been shown that a pointwise bounded family of continuous convex mappings,
defined on an open convex subset of a Banach space X and with values in a normed
space Y ordered by a normal cone, is locally equi-Lipschitz on X. Equicontinuity
and equi-Lipschitz results for families of continuous convex mappings defined on
open convex subsets of Baire topological vector spaces or of barrelled locally convex
spaces and taking values in a topological vector space respectively in a locally convex
space, ordered by a normal cone have also been obtained [7]. We are concerned
here with the classical results on optimization of convex functionals in infinite-
dimensional real Hilbert spaces. When working with infinite-dimensional spaces, a
basic difficulty is that, unlike the case in finite-dimension, being closed and bounded

2010 Mathematics Subject Classification. Primary: 49M30 Secondaries: 65K10; 90C26; 93B40.
Key words and phrases. Optimization; Convexity; Hilbert space.
c©2019 Maltepe Journal of Mathematics.

89



90 BENARD OKELO

does not imply that a set is compact. In reflexive Banach spaces, this problem is
mitigated by working in weak topologies and using the result that the closed unit
ball is weakly compact. This in turn enables mimicking some of the same ideas in
finite-dimensional spaces when working on unconstrained optimization problems. It
is the goal of these note to provide a concise coverage of the problem of minimization
of a convex function on a Hilbert space ([8]-[10]). The focus is on real Hilbert
spaces, where there is further structure that makes some of the arguments simpler.
Namely, proving that a closed and convex set is also weakly sequentially closed
can be done with an elementary argument, whereas to get the same result in a
general Banach space we need to invoke Mazur’s Theorem. The ideas discussed in
this brief note are of great utility in theory of Partial Differential Equations, where
weak solutions of problems are sought in appropriate Sobolev’s spaces [2]. After a
brief review of the requisite preliminaries, we develop the main results. Though,
the results in this note are classical, we provide proofs of key theorems for a self
contained presentation. A simple application, regarding the Dirichlet problem, is
provided for the purposes of illustration. Also, we recall an important point about
notions of compactness and sequential compactness in weak topologies [4]. It is
common knowledge that compactness and sequential compactness are equivalent
in metric spaces. The situation is not obvious in the case of weak topology of an
infinite-dimensional normed linear space [6]. Lastly, we give optimization conditions
involving positive semi-definite matrices.

2. PRELIMINARIES

Definition 2.1. A sequence xn in a Banach space B is said to converge to x ∈ B
if limn→∞ xn = x. Also a sequence xn in a Hilbert space H converges weakly to x
if, limn→∞〈xn, u〉 = 〈x, u〉, ∀u ∈ H. We use the notation xn ⇀ x to mean that xn
converges weakly to x.

Definition 2.2. A set D ⊆ Rn is bounded if there exists a constant M > 0 such
that ‖x‖ < M , for all x ∈ D. The set Dis said to be compact if it is closed and
bounded.

Example 2.1. A closed interval [a, b] is bounded in R, and is therefore also com-
pact. The circle and its interior {(x, y)|x2 + y2 ≤ 1} is a closed set in R2, and is
also bounded, and therefore it is compact. The interval [0,∞) is closed in R, as its
complement (−∞, 0) is open, but it is not bounded, so it is not compact either.

Definition 2.3. A real valued function f on a Banach space B is lower semi-
continuous (LSC) if f(x) ≤ lim infn→∞ f(xn) for all sequences xn in B such that
xn → x (strongly) and weakly sequentially lower semi-continuous (weakly sequen-
tially LSC) if xn ⇀ x.

Definition 2.4. A non-empty set W is said to be convex if for all β ∈ [0, 1] and
∀ x, y ∈ W βx+ (1− β)y ∈ W. Let X be a metric space and W ⊆ X a non-empty
convex set. A function f : W → R is convex if for all β ∈ [0, 1] and ∀ x, y ∈W

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y).

Remark. We note that the function f in the above definition is called strictly
convex if the above inequality is strict for x 6= y and β ∈ (0, 1). A function f is
convex if and only if its epigraph, epi(f), is convex whereby epi(f) := f(x, r) ∈
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dom(f) × R : f(x) ≤ r. An optimization problem is convex if both the objective
function and feasible set are convex.

Definition 2.5. Let Rn be an n-dimensional real space and W ⊆ Rn. A point
x∗ ∈ Rn is called a global minimizer of the optimization problem minx∈W f(x), if
x∗ ∈W and f(x∗) ≤ f(x), for all x ∈W.

Definition 2.6. Let Rn be an n-dimensional real space and W ⊆ Rn. A point
x∗ ∈ Rn is called a local minimizer of the optimization problem minx∈W f(x), if
there exists a neighbourhood N of x∗ such that x∗ is a global minimizer of the
problem P = minx∈W∩N f(x). That is there exists ε > 0 such that f(x∗) ≤ f(x),
whenever x∗ ∈W satisfies ‖x∗ − x‖ ≤ ε.

Remark. Any local minimizer of a convex optimization problem is a global mini-
mizer.

Theorem 2.1. (Weierstrass Extreme Value Theorem) Every continuous function
on a compact set attains its extreme values on that set.

Proposition 2.2. Let B be a Banach space and f : B → R. Then the following
are equivalent. (i). f is (weakly sequentially) LSC.
(ii). epi(f), is (weakly sequentially) closed.

Remark. f : B → R is coercive if for all x ∈ B, lim‖x‖→∞ f(x) = ∞. As

an example, the function f(x, y) = x2 + y2 is coercive, as lim‖x‖→∞ f(x, y) =

lim‖x‖→∞ ‖x‖2 +∞. Also, A linear function is never coercive. For instance, a

linear function on R2 has the form f(x, y) = ax + by + c, for constants a, b and c,
and is equal to c along the line defined by the equation ax+ by = 0. Since ‖x‖ → ∞
along this line, but f(x, y) = c along this line, f(x, y) is not coercive. As these
examples show, in order for a function to be coercive, it must approach +∞ along
any path within Rn on which ‖x‖ becomes infinite.

Proposition 2.3. Let f(x) be a continuous function defined on all of Rn. If f(x)
is coercive, then f(x) has a global minimizer. Furthermore, if the first partial
derivatives of f(x) exist on all of Rn, then any global minimizers of f(x) can be
found among the critical points of f(x).

Lemma 2.4. Let f : Rn → R be continuous on all of Rn. The function f is
coercive if and only if for every β ∈ R the set {x|f(x) ≤ β} is compact.

Proof. First we need to show that the coercivity of f implies the compactness of the
sets {x|f(x) ≤ β}. We note that the continuity of f implies the closedness of the sets
{x|f(x) ≤ β}. Therefore, it suffices to show that any set of the form {x|f(x) ≤ β}
is bounded. We prove this by contradiction. Suppose to the contrary that there is
an β ∈ R such that the set S = {x|f(x) ≤ β} is unbounded. Then there must exist
a sequence {xr} ⊂ S with ‖xr‖ → ∞. But then, by the coercivity of f , we must
also have f(xr) → ∞. This contradicts the fact that f(xr) ≤ β for all r = 1, 2, ...
Hence the set S must be bounded. Conversely, assume that that each of the sets
{x|f(x) ≤ β} is bounded and let {xr} ⊂ R be such that ‖xr‖ → ∞. Assume
that there exists a subsequence of the integers J ⊂ N such that the set {f(xr)}J is
bounded above. Then there exists β ∈ R such that {f(xr)}J ⊂ {x|f(x) ≤ β}. But
this cannot be the case since each of the sets {x|f(x) ≤ β} is bounded while every
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subsequence of the sequence {xr} is unbounded by definition. Therefore, the set
{f(xr)}J cannot be bounded, and so the sequence {f(xr)} contains no bounded
subsequence, that is f(xr)→∞. �

Corollary 2.5. Let f : Rn → R be continuous on all of Rn. If f is coercive, then
f has at least one global minimizer.

Proof. Let β ∈ R be chosen so that the set S = {x|f(x) ≤ β} is non-empty. By coer-
civity, this set is compact. By Weierstrass’s Theorem, the problem min{f(x)|x ∈ S}
has at least one global solution. It is easy to see that the set of global solutions
to the problem min{f(x)|x ∈ S} is a global solution to P and this completes the
proof. �

Remark. We note that coercivity hypothesis is stronger than as strictly required in
order to establish the existence of a solution. Indeed, a global minimizer must exist
if there exist one non-empty compact lower level set. We do not need all of them
to be compact. However, in practice, coercivity is a sufficiency.

Proposition 2.6. Let H be an infinite dimensional real separable Hilbert space and
let W ⊆ H be a (strongly) closed and convex set. Then, W is weakly sequentially
closed.

Proof. Let the sequence xn ⇀ x be in W. It only suffices to show that x ∈ W
by showing that x = φW (x), where φW (x) is the projection of x into the closed
convex set W . Indeed, we know that the projection φW (x) satisfies the variational
inequality, 〈x− φW (x), y − φW (x)〉 ≤ 0, for all y ∈W.
So,

〈x− φW (x), xn − φW (x)〉 ≤ 0, ∀n. (2.1)

But, xn ⇀ x be in W so we have,

‖x− φW (x)‖2 = 〈x− φW (x), x− φW (x)〉
= lim

n→∞
〈x− φW (x), xn − φW (x)〉

Hence, by Equation 2.1 we have ‖x− φW (x)‖ = 0. That is, x = φW (x). �

Lemma 2.7. Let f : H → R be a LSC convex function. Then f is weakly LSC.

Proof. We know that f is convex iff epi(f) is convex. Moreover, epi(f) is strongly
closed because f is (strongly) LSC. By proposition 2.6 we have that epi(f) is weakly
sequentially closed implying that f is weakly sequentially LSC.

�

3. MAIN RESULT

Theorem 3.1. Let H be an infinite dimensional real separable Hilbert space and
W ⊆ H be a weakly sequentially closed and bounded set. Let f : W → R be weakly
sequentially LSC. Then f is bounded from below and has a minimizer on W .

Proof. The proof has two steps:
(i). f is bounded below.
(ii). There exists a minimizer in W.

Step(i): Suppose that f is not bounded from below. Then there exist a se-
quence xn ∈ W such that f(xn) < −n for all n. But W is bounded so xn has a
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weakly convergent subsequence xni
Furthermore, W is weakly sequentially closed

therefore x ∈ W . Then, since f is weakly sequentially LSC we have f(x) ≤
lim infn→∞ f(xni) = −∞ which is a contradiction. Hence, f is bounded from
below.
Step(ii): Let xn ∈ W be a minimizing sequence for f that is f(xn) → infW f(x).
Let λ := infW f(x). Since W is bounded and weakly sequentially closed, it follows
that xn has a weakly convergent subsequence has a weakly convergent subsequence
xni ∈W . But f is weakly sequentially LSC so we have

λ ≤ f(x∗) ≤ lim inf f(xni
) = lim f(xni

) = λ

So, f(x∗) = λ �

Corollary 3.2. Let H be an infinite dimensional real separable Hilbert space and
W ⊆ H be a weakly sequentially closed and bounded set. Let f : W → Rn be non-
empty and closed, and that f : W → Rn is LSC and coercive. Then the optimization
problem infx∈W f(x) admits at least one global minimizer.

Proof. With an analogy to the proof of Theorem 3.1 the proof of coercivity is
sufficient. �

Theorem 3.3. A function that is strictly convex on W has a unique minimizer on
W.

Proof. Assume the contrary, that f(x) is convex yet there are two points x, y ∈
W such that f(x) and f(y) are local minima. Because of the convexity of W
every point on the secant line βx + (1 − β)y is in W. Without loss of generality
suppose f(x) ≥ f(y) if this is not the case, simply relabel the points. We then
have βf(x) + (1 − β)f(y) < f(y),∀ β ∈ (0, 1). But f is strictly convex, we also
have f(βx+ (1−β)y) < f(x),∀ β ∈ (0, 1). Taking β arbitrarily close to 0 along the
secant line, z = βx+ (1− β)y remains in W (since W is convex) and f(z) remains
strictly below f(x) (because f is strictly convex). Therefore, there is no open ball
B containing x such that f(x) < f(z),∀ z(B ∩W ) \ x. Therefore, x is not a local
minimizer, which is a contradiction. �

In this last part we give an optimality conditions. We give the first order condition
for optimality here. Consider the function ψ : R → R given by ψ(t) = f(x + td)
for some choice of x and d in Rn. The key variational object in this context is the
directional derivative of f at a point x in the direction d given by

f ′(x, d) = lim
t↓0

f(x+ td)− f(x)

t
.

When f is differentiable at the point x ∈ Rn, then f ′(x, d) = ∇f(x)T d = ψ′(0).
The next two results give us an optimality condition.

Proposition 3.4. Let f : Rn → R and let x ∈ Rn be a local solution to the problem
minx∈Rn f(x). Then f ′(x, d) ≥ 0 for every direction d ∈ Rn for which f ′(x, d) exists.

Theorem 3.5. Let f : Rn → R be differentiable at x∗ ∈ Rn. If x∗ is a local
minimum of f , then ∇f(x∗) = 0.

Proof. We know that every differentiable function is continuous so by Proposition
3.4 we have we have

0 ≤ f ′(x∗, d) = ∇f(x∗)T d,
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for all d ∈ Rn. Taking d = −∇f(x∗) we obtain 0 ≤ −∇f(x∗)T∇f(x∗) = −‖∇f(x∗)‖2 ≤
0. Therefore, ∇f(x∗) = 0. �

Example 3.1. Consider the Dirichlet problem: −4u = f, in W and u = 0, on
∂W, where W ⊂ Rn is a bounded domain, and f ∈ L2(W ). It is well known that this
problem has a weak solution which is convex and continuous, and coercive. Thus,
the existence of a unique minimizer is ensured by application of Theorem 3.5.

In the next results we consider positive definite matrices. We use concepts from
linear algebra to obtain simpler, more intuitive criteria for determining whether
a symmetric matrix, such as the Hessian of a function at a point, is positive or
negative definite or semi-definite. Let T be an n× n symmetric matrix. A nonzero
vector x ∈ Rn is an eigenvector of T if there exists a scalar λ such that Tx = λx.
The scalar λ is called an eigenvalue of T corresponding to x. From the equation
Tx−λx = (T −λI)x = 0, and the fact that x 6= 0 it follows that the matrix T −λI
is not invertible. Therefore, any eigenvalue λ of T satisfies det(T − λI) = 0. This
determinant is a polynomial of degree n in λ, which is called the characteristic poly-
nomial. Therefore, the eigenvalues can be found by computing the characteristic
polynomial, and then computing its roots. For a general matrix T , the eigenval-
ues may be real or complex, because a polynomial with real coefficients can have
complex roots, but the eigenvalues of a symmetric matrix T are real. Furthermore,
if T is symmetric, there exists an orthogonal matrix P, meaning that P tP = I,
such that T = PDP t, where D is a diagonal matrix whose diagonal entries are the
eigenvalues of T . The columns of P are orthonormal vectors, meaning that they
are orthogonal and are of magnitude 1. They are also the eigenvectors of T . The
following result follows immediately.

Theorem 3.6. Let T be a symmetric matrix on a real Hilbert space. Then the
following conditions hold:
(i). T is positive definite if and only if all of its eigenvalues are positive;
(ii). T is negative definite if and only if all of its eigenvalues are negative;
(iii). T is positive semi-definite if and only if all of its eigenvalues are nonnegative;
(iv). T is negative semi-definite if and only if all of its eigenvalues are non-positive;
(v). T is indefinite if and only if at least one of its eigenvalues is positive and at
least one of its eigenvalues is negative.

Proof. The proof is trivial. �

Next we demonstrate the use of these conditions for optimization in the next
example.

Example 3.2. Let f(x, y, z) = x2 + y2 + z2 − 4xy. Then we have ∇f(x, y, z) =
(2x− 4y, 2y − 4x, 2z), which yields the critical point (0, 0, 0), and

Hf(x, y, z) =

 2 −4 0
−4 2 0
0 0 2

 . This matrix has the characteristic polynomial

detHf(x, y, z) − λI = (2 − λ)(λ + 2)(λ − 6). Therefore, the eigenvalues are 2,−2
and 6, which means that the Hessian is indefinite. We conclude that (0, 0, 0) is a
saddle point, and there are no global maximizers or minimizers.
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4. CONCLUSION

This work is geared to its extension to portfolio optimization, whereby appli-
cations to stochastic optimization with regarding Cox-Ross-Rubinstein model and
Hamilton-Jacobi-Bellman Equation will be considered.
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