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Abstract. The 4 dimensional (4d) Jordan totient matrix which is described by the aid of the famous Jordan’s
function and some new Jordan totient double sequence spaces described as the domain of this aforementioned
matrix have been examined by Erdem and Demiriz [10]. In the present paper, first of all we define two new double
sequence spaces by using the 4d Jordan totient matrix and we show that this newly described double sequence
spaces are Banach spaces with their norm. Then, we give some inclusion relations including this spaces. Moreover,
we compute the α-, β(bp)- and γ-duals and finally, we characterize some new 4d matrix transformation classes and
complete this work with some significant results.
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1. Introduction

For the beginning let us give some information about two arithmetic functions that we will use frequently in our
study. The Jordans’s function Jt : N → N, k 7→ Jt(k) is defined as the number of t−tuples of positive integers all less
then or equal to k that form a coprime with (t+1)-tuples together with k, where k, t ∈ N and N = {1, 2, ...}. The equation
Jt(k1k2) = Jt(k1)Jt(k2) holds for the coprime numbers k1, k2 ∈ N, that is Jt is multiplicative. If a1

b1 a2
b2 a3

b3 ...ai
bi is the

prime factorization of k ∈ N for k > 1, then,

Jt(k) = kt
(
1 −

1
at

1

) (
1 −

1
at

2

) (
1 −

1
at

3

)
...

(
1 −

1
at

i

)
.

It should be noted that for t = 1, the Jordan’s function is reduced to the famous Euler-totient function φ. It is known
from [8], ∑

k|m

Jt(k) = mt ,
∑
k|m

µ(k)
kt =

Jt(m)
mt and

∑
k|m

µ
(m

k

)
kt = Jt(m),

and the Möbius function µ is defined as follows:

µ(k) :=


1 , k = 1
(−1)i , k = a1a2...ai, where a1, a2, ..., ai are

different prime numbers
0 , a2 | k for at least one prime number a
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for k ∈ N. If a1
b1 a2

b2 a3
b3 ...ai

bi is the prime factorization of k ∈ N such that k > 1, then,
∑

k|m kµ(k) = (1 − a1)(1 −
a2)(1 − a3)...(1 − ai). For m , 1, the equation

∑
k|m µ(k) = 0 satisfies and µ(k1k2) = µ(k1)µ(k2), where k1, k2 ∈ N are

coprime.
Moreover, if r1, r2 ∈ N are relatively prime, µ(r1r2) = µ(r1)µ(r2). Therefore, the Möbius function is a multiplicative

function, too. Also, the equality
∑

t|r µ(t) = 0 satisfies for r , 1.
A double sequence is the function defined as f : N × N → ℘, (k, l) 7→ f (k, l) = xkl is called as double sequence,

where ℘ , ∅. Ω := {x = (xkl) : xkl ∈ C, ∀k, l ∈ N} represents the space of all double sequences and any linear
subspace of Ω is entitled as double sequence space. Here, C represents the set of all complex numbers. Mu, Cp,
Cr, Lq (0 < q < ∞) and Lu are the spaces of all bounded, convergent in the Pringsheim’s sense (or shortly p-
convergent), regularly convergent, q-absolutely summable and absolutely summable double sequences, respectively. It
is worth mentioning that any p-convergent double sequence can be unbounded. For instance, considering the sequence
x = (xkl) defined as

xkl =



12 22 32 · · · l2 · · ·

22 0 0 · · · 0 · · ·

32 0 0 · · · 0 · · ·

...
...
... · · ·

... · · ·
k2 0 0 · · · 0 · · ·

...
...
... · · ·

... · · ·


,

it can be easily seen that x ∈ Cp \Mu. The space Cbp is represented as Cbp = Cp∩Mu and Móricz [16] showed that the
spacesMu, Cbp and Cr are Banach spaces with the norm ∥x∥∞ = supk,l∈N |xkl|. We denote by BS and CSϑ the spaces
of all bounded and ϑ−convergent series, respectively.

Assume that x ∈ Ω and R = (rmn) described as rmn :=
∑m

k=1
∑n

l=1 xkl, (m, n ∈ N). Then, the pair ((xmn), (rmn)) and
R = (rmn) are called as double series and the sequence of partial sums of the double series, respectively.

The sum of a double series
∑

k,l xkl relating to ϑ-convergence rule is described by ϑ−
∑

k,l xkl = ϑ−limm,n→∞
∑m,n

k,l xkl.
In the remainder part of the study, we assume that

∑
k,l =

∑∞
k=1

∑∞
l=1, ϑ ∈ {p, bp, r} and q′ = q/(q−1) for 1 < q < ∞. The

sequence emn = (emn
kl ) described as emn

kl = 1 if (m, n) = (k, l) and em,n
k,l = 0 otherwise, and e =

∑
m,n em,n (coordinatewise

sum). Let us remember the definition of 4d triangle matrix. If bmnkl = 0 for k > m or l > n or both for every
m, n, k, l ∈ N, it is said that B = (bmnkl) is a triangular matrix and also if bmnmn , 0 for every m, n ∈ N, then B is called
triangle. It should be noted by [3] that, if B is a triangle, then its unique inverse B−1 is a triangle, too.

We say that the 4d matrix B = (bmnkl) describes a matrix transformation from Ψ ∈ Ω into Λ ∈ Ω and it is shown as
B : Ψ → Λ, if for every x ∈ Ψ, the B-transform (Bx)mn = ϑ −

∑
k,l bmnklxkl of x exists and is in Λ for each m, n ∈ N.

(Ψ : Λ) represents the class of every 4d matrices from Ψ into Λ. Also, B ∈ (Ψ : Λ) if and only if Bx ∈ Λ for all x ∈ Ψ
and Bmn ∈ Ψ

β(ϑ), where Bmn = (bmnkl)k,l∈N, m, n ∈ N. The set

Ψ
(ϑ)
B :=

x = (xkl) ∈ Ω : Bx :=

ϑ −∑
kl

bmnklxkl


m,n∈N

exists and is in Ψ



represents ϑ-summability domain.
Recently, several mathematicians have been studied the domains of some 4d triangle matrices and it is listed some

of them in Table 1;
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Table 1. Domains of some 4d triangle matrices
B Ψ ΨB Refer to:

∆(1,−1, 1,−1) Mu,C0p,Cp,Cr ,Lq Mu(∆),C0p(∆),Cp(∆),Cr(∆),Lq(∆) [4]
C Mu,C0p,Cp,Cr ,Cbp,Lq M̃u, ˜C0p, C̃p, C̃r , ˜Cbp, L̃q [19]
C M̃u, ˜C0p, C̃p, C̃r , ˜Cbp, L̃q M̃u(t), ˜C0p(t), C̃p(t), C̃r(t), ˜Cbp(t), L̃q(t) [5]

Rqt Ls Rqt(Ls) [30]
E(r,s) Lp,Mu εr,sp ,εr,s∞ [23]

B(r,s,t,u) Mu,Cbp,Cp,Cr ,Lq B(Mu),B(Cbp),B(Cp),B(Cr),B(Lq) [24]
B(r,s,t,u) C f ,C f0 B(C f ),B(C f0 ) [25]

B̃ Mu,Cbp,Cp,Cr ,Lq B̃(Mu),B̃(Cbp),B̃(Cp),B̃(Cr), B̃(Lq) [27]
Φ⋆ Lp Φ⋆(Lp) [7]
Φ⋆ Mu,Cbp,Cp,Cr Φ⋆(Mu),Φ⋆(Cbp),Φ⋆(Cp),Φ⋆(Cr) [9]
J t Mu,Cbp,Cp,Cr ,Ls J t

∞,J
t
bp,J

t
p,J

t
r ,J

t
s [10]

where ∆(1,−1, 1,−1), C, Rqt, E(r,s), B(r,s,t,u), B̃, Φ⋆ andJ t denote the 4d difference, Cesàro, Riesz, Euler, general-
ized difference, sequential band, Euler-totient and Jordan totient matrices, respectively. In addition, readers who want
to reach the subjects arithmetic functions, summability theory, double sequence spaces and related topics can use the
studies [1, 2, 6, 12–15, 20–22, 31, 32].

2. Almost Convergent Jordan Totient Double Sequence Spaces

It is said that x ∈ Ω is almost convergent if

p − lim
ϱ,ϱ′→∞

sup
m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

xkl − L

∣∣∣∣∣∣∣ = 0

and stated by f2 − lim x = L. We denote by

C f =

{
x = (xkl) ∈ Ω : ∃L ∈ C ∋ p − lim

ϱ,ϱ′→∞
sup

m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

xkl − L

∣∣∣∣∣∣∣ = 0, uniformly in m, n
}
,

the space of all almost convergent double sequences. Moreover, the space of all almost null double sequences is
represented by C f0 . It is also significant to say that the inclusion Cbp ⊂ C f0 ⊂ C f ⊂ Mu is valid.

In this section, we describe the sets J t
f and J t

f0
whose elements are double sequences by using domains of 4d

Jordan totient matrix on C f and C f0 , respectively, show that these aforementioned sets are Banach spaces with their
norm. Furthermore, we prove that the spaces J t

f and J t
f0

are linearly norm isomorphic to the spaces C f and C f0 ,
respectively and give inclusion relations related these newly described spaces.

In [10], we have defined the 4d Jordan totient matrix J t = ( jtmnkl) (t ∈ N) by

jtmnkl :=


Jt(k)Jt(l)

(mn)t , k | m , l | n,

0 , otherwise.

(2.1)

For t = 1, the 4d Jordan totient matrix is reduced to the 4d Euler-totient matrix Φ⋆. The J t-transform of a double
sequence x = (xkl) is given by

ymn :=
(
J t x

)
mn
=

1
(mn)t

∑
k|m,l|n

Jt(k)Jt(l)xkl. (2.2)

The inverse
(
J t)−1

= ( jt−1
mnkl) of the triangle matrix J t is calculated as

jt−1
mnkl :=


µ( m

k )µ( n
l )

Jt(m)Jt(n)
(kl)t , k | m , l | n,

0 , otherwise.
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It is obtained by applying
(
J t)−1 to (2.2) that

xmn =
∑

k|m,l|n

µ( m
k )µ( n

l )
Jt(m)Jt(n)

(kl)tykl. (2.3)

A 4d matrix B is called as RH-regular, if Bx ∈ Cp and bp − lim x = p − lim Bx for every x ∈ Cbp [11]. We would
like to point out that the 4d Jordan totient matrix defined by (2.1) is RH-regular from Theorem 3 in [10]. Now, we may
define the double sequence spaces J t

f and J t
f0

as

J t
f =

{
x = (xmn) ∈ Ω : ∃L ∈ C ∋ p − lim

ϱ,ϱ′→∞
sup

m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl
− L

∣∣∣∣∣∣∣ = 0, uniformly in m, n
}
,

J t
f0 =

{
x = (xmn) ∈ Ω : p − lim

ϱ,ϱ′→∞
sup

m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣ = 0, uniformly in m, n
}
.

The sets J t
f and J t

f0
may be rewritten as J t

f = (C f )J t and J t
f0
= (C f0 )J t , respectively.

Theorem 2.1. The sets J t
f and J t

f0
are Banach spaces with the norm defined by

∥x∥J t
f
= sup
ϱ,ϱ′,m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣ . (2.4)

Proof. Since it can be similarly proved for the set J t
f0

, we prove the theorem only for the set J t
f . It is easy to see that

the set J t
f is a normed linear space. So, we avoid to give the details.

Assume that a Cauchy sequence x(i) =
{
x(i)

kl

}
k,lN
∈ J t

f . In that case, ∀ε > 0, ∃N ∈ N ∋

∥x(i) − x( j)∥J t
f
= sup
ϱ,ϱ′,m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

[(
J t x(i)

)
kl
−

(
J t x( j)

)
kl

]∣∣∣∣∣∣∣ < ε (2.5)

for all i, j > N. It can be known from the inequality (2.5) that,
{(
J t x(i)

)
kl

}
i∈N

is Cauchy sequence in the space C f .

Since, C f is a Banach space (see Remark 2.1 in [28]), we can write
{(
J t x(i)

)
kl

}
−→

{(
J t x

)
kl
}

as i → ∞. By using this
infinitely many limit points, we can describe the double sequence

{(
J t x

)
kl
}
. Now, by taking the limit as j → ∞ on

(2.5), we have ∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x(i)

)
kl
−

1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣ < ε
for all k, l ∈ N. Furthermore, since

{(
J t x(i)

)
kl

}
∈ C f and C f ⊂ Mu then for a M ∈ R+

sup
m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x(i)

)
kl

∣∣∣∣∣∣∣ ≤ M.

Thus, we get

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x(i)

)
kl

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x(i)

)
kl
−

1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣
< ε + M.

By taking supremum over m, n ∈ N and p-limit as ϱ, ϱ′ → ∞ from the inequality above that J t x ∈ C f , that is x ∈ J t
f .

We see from this approach that the space J t
f is a Banach space with the norm ∥.∥J t

f
described by (2.4). □
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Theorem 2.2. The double sequence spaces J t
f and J t

f0
are linearly norm isomorphic to the spaces C f and C f0 ,

respectively.

Proof. It is seen that the transformation T selected as T x = J t x for all x ∈ J t
f (or x ∈ J t

f0
) described from the space

J t
f (or J t

f0
) into the space C f (or C f0 ) is bijective and norm preserving. □

Theorem 2.3. The inclusionMu ⊂ J
t
f0

holds.

Proof. Let us select any x = (xkl) ∈ Mu. In that case, from the following inequality

∥x∥J t
f0
= sup

ϱ,ϱ′,m,n∈N

∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

(
J t x

)
kl

∣∣∣∣∣∣∣
= sup

ϱ,ϱ′,m,n∈N

∣∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

1
(kl)t

∑
a|k

∑
b|l

Jt(a)Jt(b)xab

∣∣∣∣∣∣∣∣
≤ sup

a,b∈N
|xab| sup

ϱ,ϱ′,m,n∈N

∣∣∣∣∣∣∣∣ 1
(ϱ + 1)(ϱ′ + 1)

m+ϱ∑
k=m

n+ϱ′∑
l=n

1
(kl)t

∑
a|k

∑
b|l

Jt(a)Jt(b)

∣∣∣∣∣∣∣∣
= ∥x∥∞ ,

it is seen that x is in J t
f0

, as desired. □

Theorem 2.4. The inclusion J t
f0
⊂ J t

f holds.

Proof. If we take x ∈ J t
f0

then, J t x ∈ C f0 . Since, C f0 ⊂ C f , we see that x ∈ J t
f and thus the inclusion J t

f0
⊂ J t

f holds,
as claimed. □

As a consequence of Theorem 2.3 and Theorem 2.4 we reach the following:

Corollary 2.5. The inclusionMu ⊂ J
t
f0
⊂ J t

f holds.

3. Dual Spaces

In this part, we calculate α-, β(bp)- and γ-duals of the space J t
f . If Ψ and Λ are two double sequence spaces, then

the set D(Ψ : Λ) is described as follows:

D(Ψ : Λ) =
{
c = (ckl) ∈ Ω : cx = (cklxkl) ∈ Λ for all (xkl) ∈ Ψ

}
.

In that case, α-, β(ϑ)- and γ-duals of the space Ψ are described as

Ψα = D(Ψ : Lu), Ψβ(ϑ) = D(Ψ : CSϑ) and Ψγ = D(Ψ : BS).

Theorem 3.1.
(
J t

f

)α
= Lu.

Proof. To prove the theorem, we must show the validity of inclusions
(
J t

f

)α
⊂ Lu and Lu ⊂

(
J t

f

)α
. To show the

inclusion
(
J t

f

)α
⊂ Lu, assume the sequence c = (cmn) ∈

(
J t

f

)α
but c < Lu. Then,

∑
m,n |cmnxmn| < ∞ for all x =

(xmn) ∈ J t
f . If we consider e =

∑
m,n emn, we see that e ∈ J t

f . Since ce = c < Lu, i.e,
∑

m,n |cmn| = ∞, we obtain

from
∑

m,n |cmne| =
∑

m,n |cmn| = ∞ that c <
(
J t

f

)α
which is a contradiction. Thus, it must be c ∈ Lu and the inclusion(

J t
f

)α
⊂ Lu is valid.

For the reverse inclusion, let us take the sequences c ∈ Lu and x ∈ J t
f . Consider the sequence y ∈ C f given by

relation (2.2). Since C f ⊂ Mu, then y ∈ Mu and supm,n |ymn| < ξ, where ξ ∈ R+. Therefore,∑
m,n

|cmnxmn| =
∑
m,n

|cmn|

∣∣∣∣∣∣∣∣
∑

k|m,l|n

µ( m
k )µ( n

l )
Jt(m)Jt(n)

(kl)tykl

∣∣∣∣∣∣∣∣
< ξ

∑
m,n

|cmn| < ∞.
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Thus, we have that c ∈
(
J t

f

)α
and Lu ⊂

(
J t

f

)α
. Hence,

(
J t

f

)α
= Lu. □

Now, we may give the following conditions that characterize the 4d matrix classes:

sup
m,n∈N

∑
k,l

|bmnkl| < ∞, (3.1)

∃bkl ∈ C ∋ bp − lim
m,n→∞

bmnkl = bkl for every k, l ∈ N, (3.2)

∃L ∈ C ∋ bp − lim
m,n→∞

∑
k,l

bmnkl = L, (3.3)

∃k0 ∈ N ∋ bp − lim
m,n→∞

∑
l

∣∣∣bm,n,k0,l − bk0,l

∣∣∣ = 0, ∀l ∈ N, (3.4)

∃l0 ∈ N ∋ bp − lim
m,n→∞

∑
k

∣∣∣bm,n,k,l0 − bk,l0

∣∣∣ = 0, ∀k ∈ N, (3.5)

bp − lim
m,n→∞

∑
k

∑
l

|△01bmnkl| = 0, (3.6)

bp − lim
m,n→∞

∑
k

∑
l

|△10bmnkl| = 0, (3.7)

where △10bmnkl = bmnkl − bmn,k+1,l and △01bmnkl = bmnkl − bmnk,l+1 for all m, n, k, l ∈ N.

Lemma 3.2. [17, 25]
(i): B = (bmnkl) ∈ (C f : Cbp) if and only if the conditions (3.1)-(3.7) hold.

(ii): B = (bmnkl) ∈ (C f :Mu) if and only if Bmn ∈
(
C f

)β(ϑ)
and the condition (3.1) holds.

Now, consider the sets ϖ f which are defined by

ϖ f = {c = (cmn) ∈ Ω : Condition (3. f ) holds with omnkl instead of bmnkl} ,

where the 4d matrix O = (omnkl) =
∑m

a=k,k|a
∑n

b=l,l|b
µ( a

k )µ( b
l )

Jt(a)Jt(b) (kl)tcab and 1 ≤ f ≤ 7.

Theorem 3.3.
(
J t

f

)β(bp)
=

⋂7
k=1ϖk.

Proof. Suppose that c = (cmn) ∈ Ω and x = (xmn) ∈ J t
f . Thus, there exists y = (ymn) ∈ C f with J t x = y. We obtain by

the relation (2.3) that

zmn =

m,n∑
k,l=1

cklxkl

=

m,n∑
k,l=1

ckl

∑
a|k,b|l

µ
(

k
a

)
µ
(

l
b

)
Jt(k)Jt(l)

(ab)tyab

=

m,n∑
k,l=1

 m∑
a=k,k|a

n∑
b=l,l|b

µ
(

a
k

)
µ
(

b
l

)
Jt(a)Jt(b)

(kl)tcab

 ykl

= (Oy)mn (3.8)

for all m, n ∈ N, where O = (omnkl) defined by

omnkl :=


m∑

a=k,k|a

n∑
b=l,l|b

µ
(

a
k

)
µ
(

b
l

)
Jt(a)Jt(b)

(kl)tcab , 1 ≤ k ≤ m , 1 ≤ l ≤ n,

0 , otherwise

for every m, n, k, l ∈ N. Then, by considering the equality (3.8), we deduce that cx ∈ CSbp whenever x ∈ J t
f if and

only if z = (zmn) ∈ Cbp whenever y ∈ C f . This implies that c ∈
(
J t

f

)β(bp)
if and only if O ∈

(
C f : Cbp

)
. Hence, we see
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that
(
J t

f

)β(bp)
=

⋂7
k=1ϖk in view of part (i) of Lemma 3.2.

□

Theorem 3.4.
(
J t

f

)γ
= ϖ1 ∩ CSϑ.

Proof. Let us choose c = (cmn) ∈ Ω and x = (xmn) ∈ J t
f . Then, y = J t x ∈ C f . Therefore, cx ∈ BS whenever x ∈ J t

f if

and only if z ∈ Mu whenever y ∈ C f . This means that c ∈
(
J t

f

)γ
if and only if O ∈

(
C f :Mu

)
, where O and z defined

as in Theorem 3.3. In that case, it is achieved from the conditions of the part (ii) of Lemma 3.2 that Omn ∈
(
C f

)β(ϑ)
for

each fixed m, n ∈ N and

sup
m,n∈N

∑
k,l

∣∣∣∣∣∣∣∣
m∑

a=k,k|a

n∑
b=l,l|b

µ
(

a
k

)
µ
(

b
l

)
Jt(a)Jt(b)

(kl)tcab

∣∣∣∣∣∣∣∣ < ∞.
Therefore, it is obvious that

(
J t

f

)γ
= ϖ1 ∩ CSϑ, as claimed. □

4. SomeMatrix Transformations

Now, we will give the classes (J t
f : Λ) and (Ψ : J t

f ), where Λ ∈ {Mu,Cbp,C f } and Ψ ∈ {Mu,Cbp,Cp,Cr,C f ,Lq}.
Before these, it is needed to give the following conditions which will be utilized in Lemma 4.1.

∃bkl ∈ C ∋ bp − lim
ϱ,ϱ′→∞

κ(k, l, ϱ, ϱ′,m, n) = bkl uniformly in m, n ∈ N for each k, l ∈ N, (4.1)

∃L ∈ C ∋ bp − lim
ϱ,ϱ′→∞

∑
k,l

κ(k, l, ϱ, ϱ′,m, n) = L uniformly in m, n ∈ N, (4.2)

∃bkl ∈ C ∋ bp − lim
ϱ,ϱ′→∞

∑
k

∣∣∣κ(k, l, ϱ, ϱ′,m, n) − bkl

∣∣∣ = 0 uniformly in m, n ∈ N for each l ∈ N, (4.3)

∃bkl ∈ C ∋ bp − lim
ϱ,ϱ′→∞

∑
l

∣∣∣κ(k, l, ϱ, ϱ′,m, n) − bkl

∣∣∣ = 0 uniformly in m, n ∈ N for each k ∈ N, (4.4)

lim
ϱ,ϱ′→∞

∑
k

∑
l

∣∣∣△10κ(k, l, ϱ, ϱ′,m, n)
∣∣∣ = 0 uniformly in m, n ∈ N, (4.5)

lim
ϱ,ϱ′→∞

∑
l

∑
k

∣∣∣△01κ(k, l, ϱ, ϱ′,m, n)
∣∣∣ = 0 uniformly in m, n ∈ N, (4.6)

∃l0 ∈ N ∋ bp − lim
ϱ,ϱ′→∞

∑
k

κ(k, l0, ϱ, ϱ′,m, n) = λl0 uniformly in m, n ∈ N, (4.7)

∃k0 ∈ N ∋ bp − lim
ϱ,ϱ′→∞

∑
l

κ(k0, l, ϱ, ϱ′,m, n) = µk0 uniformly in m, n ∈ N, (4.8)

∀k ∈ N,∃l0 ∈ N ∋ bmnkl = 0, ∀l > l0 and m, n ∈ N, (4.9)
∀l ∈ N,∃k0 ∈ N ∋ bmnkl = 0, ∀k > k0 and m, n ∈ N, (4.10)
∃λkl ∈ C ∋ f2 − lim

m,n→∞
bmnkl = λkl for all k, l ∈ N, (4.11)

∀m, n, l ∈ N,∃η1 ∈ N ∋ κ(k, l, ϱ, ϱ′,m, n) = 0, ∀ϱ, ϱ′, k > η1, (4.12)
∀m, n, k ∈ N,∃η2 ∈ N ∋ κ(k, l, ϱ, ϱ′,m, n) = 0, ∀ϱ, ϱ′, l > η2, (4.13)

sup
m,n,k,l∈N

|bmnkl| < ∞, (4.14)

sup
m,n∈N

∑
k,l

|bmnkl|
q < ∞, (4.15)

where κ(k, l, ϱ, ϱ′,m, n) =
∑m+ϱ

r=m
∑n+ϱ′

s=n
brskl

(ϱ+1)(ϱ′+1) , △10κ(k, l, ϱ, ϱ′,m, n) = κ(k, l, ϱ, ϱ′,m, n) − κ(k + 1, l, ϱ, ϱ′,m, n) and
△01κ(k, l, ϱ, ϱ′,m, n) = κ(k, l, ϱ, ϱ′,m, n) − κ(k, l + 1, ϱ, ϱ′,m, n).

Lemma 4.1. [18, 26, 29, 33] The following statements hold:
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(i): B = (bmnkl) is almost Cbp-conservative, that is, B ∈ (Cbp : C f ) if and only if the conditions (3.1), (4.1)–(4.4)
holds.

(ii): B = (bmnkl) is almost strongly regular, that is, B ∈ (C f : C f )reg if and only if the conditions (3.1) and
(4.1)–(4.6) hold whenever bkl = 0, ∀k, l = 1, 2, ... and L = 1.

(iii): B = (bmnkl) is almost Cr-conservative, that is, B ∈ (Cr : C f ) if and only if the conditions (3.1), (4.1), (4.2),
(4.7) and (4.8) hold.

(iv): B = (bmnkl) is almost Cp-conservative, that is, B ∈ (Cp : C f ) if and only if the conditions (3.1), (4.1), (4.2),
(4.9) and (4.10) hold.

(v): B = (bmnkl) ∈ (Mu : C f ) if and only if the conditions (3.1) and (4.11)–(4.13) hold.
(vi): Let 0 < q ≤ 1. Then, B = (bmnkl) ∈ (Lq : C f ) if and only if the conditions (4.11) and (4.14) hold.
(vii): Let 1 < q < ∞. Then, B = (bmnkl) ∈ (Lq : C f ) if and only if the conditions (4.11) and (4.15) hold.

Theorem 4.2. Assume that the elements of 4d matrices B = (bmnkl) and H = (hmnkl) are connected with the relation

hmnkl =

∞∑
a=k,k|a

∞∑
b=l,l|b

µ( a
k )µ( b

l )
Jt(a)Jt(b)

(kl)tbmnab.

Then, B ∈ (J t
f :Mu) if and only if H ∈ (C f :Mu) and

Bmn ∈
[
J t

f

]β(ϑ)
for all m, n ∈ N. (4.16)

Proof. Assume that B ∈ (J t
f : Mu). In that case, Bx exists and Bx ∈ Mu for every x ∈ J t

f and it also implies that

Bmn ∈
[
J t

f

]β(ϑ)
for every m, n ∈ N. From partial sums of the series

∑
k,l bmnklxkl with relation (2.3), we have

i, j∑
k,l=1

bmnklxkl =

i, j∑
k,l=1

bmnkl

∑
a|k,b|l

µ( k
a )µ( l

b )
Jt(k)Jt(l)

(ab)tyab


=

i, j∑
k,l=1

 i∑
a=k,k|a

j∑
b=l,l|b

µ( a
k )µ( b

l )
Jt(a)Jt(b)

(kl)tbmnab

 ykl

for every i, j ∈ N. Then, when passing to ϑ-limit on the equality above as i, j → ∞, we get Bx = Hy. Therefore, we
obtain that Hy ∈ Mu whenever y ∈ C f , that is H ∈ (C f :Mu).

Conversely, suppose that Bmn ∈
[
J t

f

]β(ϑ)
for every m, n ∈ N, H ∈ (C f : Mu) and x ∈ J t

f such that y = J t x. In that
case, Bx exists and therefore, the (ς, τ)th rectangular partial sums of

∑
k,l bmnklxkl obtained as

(Bx)[ς,τ]
mn =

ς,τ∑
k,l=1

bmnklxkl

=

ς,τ∑
k,l=1

bmnkl

∑
a|k,b|l

µ( k
a )µ( l

b )
Jt(k)Jt(l)

(ab)tyab


=

ς,τ∑
t,u=1

 ς∑
a=k,k|a

τ∑
b=l,l|b

µ( a
k )µ( b

l )
Jt(a)Jt(b)

(kl)tbmnab

 ykl

(4.17)

for every m, n, ς, τ ∈ N. By taking ϑ-limit on (4.17) while ς, τ→ ∞, it can be easily obtain from the following equality∑
k,l

bmnklxkl =
∑
k,l

hmnklykl

for every m, n ∈ N that Bx = Hy. Thus, B ∈ (J t
f :Mu). □

Corollary 4.3. Suppose that B = (bmnkl) be a 4d matrix. In that case the following statements hold:

(i): B ∈
(
J t

f : Cbp

)
if and only if the conditions (3.1)-(3.7) and (4.16) hold with hmnkl in place of bmnkl,
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(ii): B ∈
(
J t

f : C f

)
reg

if and only if the conditions (3.1), (4.1)–(4.6) and (4.16) hold whenever bkl = 0, ∀k, l =
1, 2, ... and L = 1 with hmnkl in place of bmnkl.

Lemma 4.4. [30] Let Ψ,Λ ∈ Ω , B = (bmnkl) be any 4d matrix and F = ( fmnkl) also be a 4d triangle matrix. In that
case, B ∈ (Ψ : ΛF) if and only if FB ∈ (Ψ : Λ).

Now, let us define the 4d matrix G = (gmnkl) by

gmnkl =
∑

i|m,d|n

jtmnidbidkl

for every m, n, k, l ∈ N and give following corollary.

Corollary 4.5. Suppose that B = (bmnkl) be a 4d matrix. In that case the following statements hold:

(i): B ∈
(
Cbp : J t

f

)
if and only if the conditions (3.1), (4.1)–(4.4) hold with gmnkl in place of bmnkl,

(ii): B ∈
(
Cr : J t

f

)
if and only if the conditions (3.1), (4.1), (4.2), (4.7) and (4.8) hold with gmnkl in place of bmnkl,

(iii): B ∈
(
Cp : J t

f

)
if and only if the conditions (3.1), (4.1), (4.2), (4.9) and (4.10) hold with gmnkl in place of

bmnkl,
(iv): B ∈

(
Mu : J t

f

)
if and only if the conditions (3.1) and (4.11)–(4.13) hold with gmnkl in place of bmnkl,

(v): B ∈
(
Lq : J t

f

)
if and only if the conditions (4.11) and (4.14) hold for 0 < q ≤ 1 with gmnkl in place of bmnkl,

(vi): B ∈
(
Lq : J t

f

)
if and only if the conditions (4.11) and (4.15) hold for 1 < q < ∞ with gmnkl in place of bmnkl,

(vii): B ∈
(
C f : J t

f

)
reg

if and only if the conditions (3.1) and (4.1)–(4.6) hold whenever bkl = 0, ∀k, l = 1, 2, ...
and L = 1 hold with gmnkl in place of bmnkl.
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