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Abstract

In the present paper explores, the Burgers’ Equation which is the considerable partial
differential equation that emerges in nonlinear science. Also, Homotopy Analysis Method
(HAM) has been implemented to Burgers’ equation with given initial conditions. The
efficieny of the proposed method is analyzed by using some illustrative problems. We are
compared approximate solutions acquired via HAM with the exact solutions. As a result
of comparisons, it is demonstrated that the gained solutions are in excellent agreement.
Additionally, 2D-3D graphs and tables of attained results are drawn by means of a ready-
made package program. The recent obtained results denote that HAM is extremely efficient
technique. Nonlinear partial differential equations can be solved with the help of presented
method.

1. Introduction

Nonlinear phenomena have important effects on different fields of applied mathematics and science. These phenomena frequently occur
naturally in various fields of study such as in physics, applied mathematics and engineering. Many mathematicians and scientists have drawn
too much attention to the extensive effectiveness of these equations. Because of this, most of methods have been constructed and applied to
solve these problems [1–12]. Therefore, developing methods for finding the analytical and numerical solutions to these types of equations is
very important. HAM is an essential semi-analytical method and has a considerable role among them [13, 14].
The Burgers’ equation is considered one of the fundamental partial differential equation from fluid mechanics. It occurs in various areas of
applied mathematics, such as modeling of gas dynamics, chemical reaction, heat conduction, elasticity and traffic flow.

Burgers’ equation has the following general structure,

u t +uux = vuxx , x ∈ R , t > 0 , (1.1)

where v is a constant. It describes the kinematic viscosity. Mentioned equation is named inviscid Burgers’ equation when v = 0. This
equation has a significant role in gas dynamics. The equation (1.1) indicates the connection between diffusion and convection procedures.

Numerical solutions of the nonlinear partial equations have an important role in mathematics, physics, applied sciences, etc. Several analytical
and semi-analytical methods have been developed to solve these problems. For the importance of these solutions, there are many studies
are available in literature. In manuscript [15], authors analyzed the behaviors of forced KdV equation describing the free surface critical
flow over a hole by finding the solution with the help of q-homotopy analysis transform technique (q-HATT). Also, the partial differential
equations were transformed into nonlinear ordinary differential equations by introducing relevant similarity variables and approximate
analytical solution was determined operating the homotopy analysis method [16]. Influence of different relevant parameters such as Deborah
number, stratification, chemical reaction and variable thermophysical parameters on temperature, velocity and concentration distributions
was shown to highlight the specifics of heat and mass transfer flow characteristics by authors [16]. The conformable fractional Adomian
decomposition method (CFADM) and conformable fractional modified homotopy perturbation method (CFMHPM) redefined to gain the
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approximate-analytical solution of fractional partial differential equations (PDEs) by using conformable fractional derivative [17]. In the
framework [18], the coupled mathematical model of the atmosphere-ocean system called El Nino-Southern Oscillation (ENSO) was analyzed
with the aid of Adams-Bashforth numerical scheme. The non-linear regularized long wave (RLW) equation was solved by semi-inverse
method [19]. Authors investigated novel solutions of fractional-order option pricing models and their fundamental mathematical analyses
in [20]. The modified Laplace decomposition method (MLDM) defined in the sense of Caputo, Atangana-Baleanu and Caputo-Fabrizio (in
the Riemann sense) operators was used in securing the approximate-analytical solutions of the nonlinear model in reference [21].

Some analytical, numerical and approximate analytical methods were investigated by considering time-fractional nonlinear Burger–Fisher
equation (FBFE) [22]. (1/G′)-expansion method, finite difference method (FDM) and Laplace perturbation method (LPM) were considered
to solve the FBFE. Authors attained the analytical solution of the mentioned problem via (1/G′)-expansion method [22]. In the mentioned
paper, authors indicated that the finite difference method was a lower error level than the Laplace perturbation method. In our work, similarly,
we demonstrated the effectiveness, validity and strength of our proposed method namely HAM to solve the Burgers’ equation.

The goal of this study, we examine the equation in detail and HAM will be used to acquire new analytic solutions of the Burgers’ equation.
The method is powerful and effective and avoids the complexity involved in other purely numerical methods.

2. General Structure of Homotopy Analysis Method (HAM)

For the purpose of explaining the methodology of HAM, focus on the subsequent differential equation in a general form;

N [ϕ (x, p)] = 0 ,

where N is a nonlinear operator, ϕ is an unknown function. Then, x and p are independent variables. For convenience, all initial or boundary
conditions are ignored. By using the present method, firstly, the one-parameter family of equations is constructed has the following form [1]

(1−q) L [Φ(x, p;q)−ϕ0 (x, p)] = q}H (x, p)N [x, p;q] , (2.1)

where q ∈ [0,1] is the embedding parameter, Φ(x, p;q) is an unknown function, ϕ0 (x, p) is an initial guess of ϕ (x, p), } 6= 0 is an auxiliary
parameter, L is an auxiliary linear operator and H (x, p) defines a non-zero auxiliary function.

Expressly when q = 0 and q = 1, equation (2.1) holds that

Φ(x, p;0) = ϕ0 (x, p) , Φ(x, p;1) = ϕ (x, p) .

respectively [1]. Hence, defining

ϕn (x, p) =
1
n!

∂ nΦ(x, p;q)
∂qn

∣∣∣∣
q=0

, (2.2)

and expanding Φ(x, p;q) in Taylor series with respect to the embedding parameter q, we have

Φ(x, p;q) = ϕ0 (x, p)+
+∞

∑
n=1

ϕn (x, p)qn, (2.3)

If the series (2.3) converge when the value q = 1, one has

ϕ (x, p) = ϕ0 (x, p)+
+∞

∑
n=1

ϕn (x, p), (2.4)

which is proven by Liao [1]. Describe the vectors

−→
ϕ m = {ϕ0 (x, p) ,ϕ1 (x, p) , · · · ,ϕm (x, p)} .

After essential mathematical operations and regulations have been performed, the nth-order deformation equation is obtained which has the
following form:

L [ϕn (x, p)−χnϕn−1 (x, p)] = }ℜ
(−→

ϕ n−1
)
, (2.5)

where

ℜ
(−→

ϕ n−1
)
=

1
(n−1)!

∂ n−1N [Φ(x, p;q)]
∂qn−1

∣∣∣∣
q=0

, (2.6)

and

χn =

{
0, n≤ 1,
1, n > 1. (2.7)

It should be indicated that the nth-order deformation equations form a set of linear differential equations which can be solved via help of a
ready-made package program such as Maple, Mathematica, Matlab and others.
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3. Implementation of the Method and Numerical Results

In this section of the paper, the Homotopy Analysis Method (HAM) is developed to acquire the approximate solutions of the Burgers’
equation is used and we discuss the obtained results. Primarily, we describe the algorithm of the HAM as it applies to the Burgers’ equation.
By using nth-order deformation equation, we consider the following operator form for applying HAM to Burgers’ equation (1.1),

L [un (x, t)−χn un−1 (x, t)] = }H (x, t)R n [
−→u n−1 (x, t)] , n≥ 1 , (3.1)

where } is a non-zero auxiliary parameter and H (x, t) is a non-zero auxiliary function, respectively.

Rn [un−1 (x, t)] =
∂ un−1 (x, t)

∂ t
+un−1 (x, t)

∂ un−1 (x, t)
∂ x

−ν
∂ 2 un−1 (x, t)

∂x 2 , (3.2)

χn =

{
0, n≤ 1
1, n > 1 , H (x, t) = 1. (3.3)

Assuming the inverse of the operator exists which is denoted L−1 and putting the initial condition un (x,0), we write (3.1) for n = 1 ,2 ,3 , . . .
and yields the components u1, u2 , u3 , u4 , u5 , . . . etc. of Burgers’ equation’s solutions by using (3.2)-(3.3). In view of the obtained

components, we attain the approximate solution of initial value problem in series form by u(x, t) =
∞

∑
n=0

un (x, t). On the other hand, accuracy

level could be improved via elegantly computing further components.
Example 3.1. Consider the subsequent Burgers’ equation

u t +uux = uxx , (3.4)

u(x,0) = x .
By using the manner explained above, six components of the series were acquired of which u(x, t) was evaluated to have the following
expansion

u(x, t) = x+ xt}+ xt}(t}+}+1)+ xt}(t}+}+1)2 + xt}(t}+}+1)3 + xt}(t}+}+1)4 + . . . (3.5)

Also, the exact solution of the equation (3.4) is given by

u(x, t) =
x

1+ t
.

(a) Exact solution function’s graph of the equation (3.4) (b) (3.5) approximate solution for u(x, t) as a graphical sketch (}=−1)

Figure 3.1: Exact and approximate solution function of Burgers’ equation by means of HAM

Figure 3.2: Comparison between HAM and exact solution when }=−1
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In this part of the work, we will compare the approximate solutions of Burgers’ equation obtained by HAM with the exact solution. The
results presented in Figure 3.1 and Figure 3.2, respectively, clearly demonstrate the good accuracy of the HAM with exact solution and the
good agreement between HAM and exact solution of the equation. Additionally, we have the following results:

t/x 0.1 0.2 0.3 0.4 0.5
0.1 9.09091×10−8 5.33333×10−6 0.0000560769 0.000292571 0.00104167
0.2 1.81818×10−7 0.0000106667 0.000112154 0.000585143 0.00208333
0.3 2.72727×10−7 0.000016 0.000168231 0.000877714 0.003125
0.4 3.63636×10−7 0.0000213333 0.000224308 0.00117029 0.00416667
0.5 4.54545×10−7 0.0000266667 0.000280385 0.00146286 0.00520833

Table 1: Numerical solution’s absolute error according to exact solution by using HAM when }=−1

t }=−1.2 }=−1.1 }=−1 }=−0.9 }=−0.8
0.1 0.0109227 0.00386764 0.00104167 0.000175073 0.0000106667
0.2 0.0218453 0.00773527 0.00208333 0.000350146 0.0000213333
0.3 0.032768 0.0116029 0.003125 0.000525219 0.000032
0.4 0.0436907 0.0154705 0.00416667 0.000700292 0.0000426667
0.5 0.0546133 0.0193382 0.00520833 0.000875365 0.0000533333

Table 2: Absolute error of Burgers’ equation’s numerical solution for different values of auxiliary parameter }

The detailed results are demonstrated in Table 1 and Table 2. In Table 1, fix }=−1, we compared the six component approximation of HAM
with the exact solution. From Table 1, we see that numerical approximation by means of HAM show good agreement with the exact solution.
In Table 1, it is seen that numerical solutions also obtained for six components by means of HAM are very convergent to exact solution.
Furthermore, interval of the convergence can be found by drawing auxiliary parameter’s graph on HAM solutions. In Figure 3.3, curve of the
auxiliary parameter } is attained for series solution of the equation. As seen in this figure, interval of the convergence is approximately
−1.1≤ }≤−0.8 for the series solution. The best value of the approximation on this interval can be found by giving values of }.

Figure 3.3: Graph of } curves of Burgers’ equation for φ6 (x, t)

Example 3.2. We focus on the following Burgers’ equation

u t +uux = uxx , (3.6)

u(x,0) =
−2cosx
1+ sinx

.

By means of the process explained before, five components of the series were attained of which u(x, t) was evaluated to have the following
expansion

u(x, t) =
-2cosx
1+sinx

−2
}tcosx

(1+sinx)2 +
}t
[
cos

( x
2
)
− sin

( x
2
)]
[−2−}(2+ t)+(−2+}(−2+ t))sinx][
cos

( x
2
)
+ sin

( x
2
)]5

+
}t
[
cos

( x
2
)
− sin

( x
2
)][
−3

(
6+2}(t +6)+}2 (t 2 +2t +6

))
+
[
6−6}(t−2)+}2 (t 2−6t +6

)]
cos2x

]
6
[
cos

( x
2
)
+ sin

( x
2
)]7 (3.7)

+
8
[
−3−6}+}2 (t 2−3

)]
sinx

]
6
[
cos

( x
2
)
+ sin

( x
2
)]7 + . . .
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Then, the exact solution of the equation (3.6) has the form

u(x, t) =
−2e−t cosx
1+ e−t sinx

.

(a) Exact solution function’s graph of the equation (3.6) (b) (3.7) approximate solution for u(x, t) as a graphical sketch (}=−1)

Figure 3.4: Exact and approximate solution function of Burgers’ equation by means of HAM

Figure 3.5: Comparison between HAM and exact solution when }=−1

In this part of the manuscript, approximate solutions of the equation acquired by HAM are compared with the exact solution. The results
presented in Figure 3.4 and 3.5, respectively, clearly show the good accuracy of the HAM with exact solution and the good agreement
between HAM and exact solution. In addition, we get the following results:

The detailed results are demonstrated in Table 3-4. In Table 3, we compared the five step approximation of HAM with the exact solution. We
see that numerical approximation by means of HAM show good agreement with the exact solution u(x, t).

t/x 0.1 0.2 0.3 0.4 0.5
0.1 8.75091×10−8 2.71323×10−6 0.0000199575 0.0000814457 0.000240664
0.2 9.64863×10−8 3.0651×10−6 0.0000230798 0.0000963385 0.000290944
0.3 5.46078×10−8 1.78415×10−6 0.0000137918 0.0000590014 0.000182335
0.4 1.5428×10−8 5.54887×10−7 4.65233×10−6 0.0000213409 0.0000700775
0.5 1.04609×10−8 2.72352×10−7 1.6068×10−6 4.88699×10−6 9.36752×10−6

Table 3: Numerical solution’s absolute error according to the exact solution by using HAM when }=−1
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t }=−1.2 }=−1.1 }=−1 }=−0.9 }=−0.8
0.1 0.0126481 0.00176267 0.000240664 0.000112127 0.000394338
0.2 0.00480997 0.000128467 0.000290944 0.000147172 0.000500502
0.3 0.0012364 0.00071677 0.000182335 0.000135249 0.000559188
0.4 0.000334458 0.000802543 0.0000700775 0.0000985342 0.000572464
0.5 0.000957229 0.000712871 9.36752×10−6 0.0000559068 0.000551245

Table 4: Absolute error of Burgers’ equation’s solution for different values of auxiliary parameter }

In Table 3, it is seen that numerical solutions also obtained for five components by means of HAM are very convergent to the exact solution.
Furthermore, in Figure 3.6, curve of the auxiliary parameter } is attained for series solution of the equation. As seen in this figure, interval of
the convergence is approximately −1.2≤ }≤−0.8 for the series solution. The best value of the approximation on this interval can be found
by giving values of }. This situation is given in Table 4. }=−1 is the best approximation to the exact solution as seen in the mentioned table.

Figure 3.6: Graph of } curves of equation (3.6) for φ5 (x, t)

4. Conclusion

In the present research, we investigate the numerical solution of Burgers’ equations acquired by HAM. The application of the proposed
technique has also been discussed. Besides, we draw two-three dimensional graphs and tables of this equation by use of a ready-made
package program.
From the obtained results, it has been deduced that HAM is highly effective, credible and strong in the sense that finding analytical solutions.
Thus the validity and flexibility of the proposed method are verified via all of these successful applications. The study demonstrates that the
HAM algorithm is productive and can be used for many other complicated nonlinear partial differential equations in mathematical physics.
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