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Introduction

The facial nerve is the most frequently damaged

nerve in head and neck traumata. Apart from traffic-acci-

dent injuries (temporal bone fractures, or lacerations of

the face), most facial nerve lesions are post-operative

(removal of cerebellopontine-angle tumors, parotid

resections because of malignancy). Despite the use of
fine microsurgical techniques for repair of interrupted
nerves in man, the recovery of voluntary movements of
all 42 facial muscles, and emotional expression of the face
remains poor.1-4 The inevitable “post-paralytic syn-
drome”, including mass movements (synkinesia) and
altered blink reflexes,5-7 has been attributed to (i) “misdi-
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Abstract

Insufficient recovery after peripheral nerve injury has been attributed to (i) lack of axonal navigation and poor pathfinding of
regrowing axons to improper targets, (ii) excessive collateral axonal branching at the lesion site and (iii) polyneuronal re-
innervation of the neuromuscular junctions (NMJ). The facial nerve transection model in rat and mice has been used to meas-
ure the restoration of function after varying therapies and to examine the mechanisms underlying their effects. Since it is still
very difficult to combat the first reason and control/correct the navigation of several thousand axons, several groups of sci-
entists concentrated our efforts on the postlesional branching (extremely strong in adult rats) and NMJ-polyinnervation. Since
polyneuronal innervation of muscle fibers is activity-dependent attempts to reduce it were performed applying electrical stim-
ulation. Unfortunately, the highly recommended intraoperative electrical stimulation of the proximal nerve fragment (square
0.1 ms pulses at 20 Hz using suprathreshold amplitudes) prior to suture and the postoperative electrical stimulation (square
0.1 ms pulses at 5 Hz) not only did not improve functional outcome, but reduced the number of innervated NMJ to approx-
imately one fifth of normal values. Finally, recent experiments demonstrated that it was the mechanical (but not electrical)
stimulation of denervated facial muscles (vibrissal and orbicularis oculi) which improved motor performance. This beneficial
effect of mechanical stimulation was also detected after hypoglossal-facial anastomosis and inter-positional nerve grafting.
The beneficial effect of manual stimulation on target muscle reinnervation was not present in mice deficient in the expres-
sion of insulin-like growth factor 1 and also eliminated or even reversed when trigeminal afferent inputs were abolished. All
these findings raise hopes that clinically feasible and effective therapies could be soon designed and tested. 

Key words: facial nerve; axotomy; facial palsy; motor endplates; polyinnervation; physiotherapy; electrical stimulation;
mechanical stimulation 

Anatomy 2010; 4: 1-27, © 2010 TSACA 

Copyright © 2010 Turkish Society of Anatomy and Clinical Anatomy (TSACA). All rights reserved.
Published by Deomed Medical Publishing, Istanbul.



2 Skouras E, Angelov DN

Anatomy 2010; 4

rected” reinnervation,8,9 (ii) trans-axonal exchange of
abnormally intensive nerve impulses between axons from
adjacent fascicles,10 and (iii) alterations in synaptic input
to facial motoneurons.11-13

The misdirected or “aberrant” reinnervation has
been recognized as the major reason for the post-para-
lytic syndrome. At the site of injury it has two compo-
nents: (i) perhaps due to an insufficient and/or malfunc-
tioning axonal guidance, a muscle receives reinnervation
by “alien” axons, which have been misrouted along the
“wrong” nerve fascicle;14 (ii) due to the presence of com-
peting supernumerary branches from all transected
axons15 one muscle fiber can be reinnervated by several
motoneuronal axons (polyinnervation).16,17

Attempts to counteract with aberrant reinnervation,
however had little success. So far it is technically impos-
sible to steer properly the growth cones of several thou-
sands axons growing out from the proximal stump of a
transected nerve.18,19 Likewise, efforts to reduce the
degree of axonal branching in rats using artificial conduit
as guiding scaffold have been unsuccessful: the process of
axonal branching follows a rather constant pattern irre-
spective of local alterations of the extracellular matrix
content.20,21 Thus, although peripheral nerve injury is
always followed by attempted regeneration of the injured
axons, in everyday clinical practice, however, functional
recovery is the exception rather than the rule.

In this review we summarize the efficiency of various
therapies in rats by an extensive and combined method-
ological approach consisting of 

(i) biometrics of whisking behaviour which provides a
very sensitive tool to study the facial nerve regenera-
tion.22,23

(ii) successive pre- and post-operative retrograde fluores-
cent neuronal labeling to study the accuracy of target reinner-
vation.23-26

(iii) simultaneous multiple fluorescent neuronal labeling to
quantitatively estimate the degree of axonal branching.20-22,27

(iv) combined immunostaining of axons (anti-neuronal
class III β-tubulin) and histochemical staining of the neuro-
muscular junctions (AlexaFluor 488-conjugated α-bungaro-
toxin) to estimate the quality of target muscle reinnervation.28,29

The results described in this review reflect our efforts
to reduce collateral axonal branching by application to the

nerve suture site of (i) neurite outgrowth fostering ECM
proteins, (ii) factors causing local perturbation of micro-
tubules’ synthesis, (iii) suspensions of olfactory ensheath-
ing cells (OEC), bone marrow-derived mesenchymal
stem cells (BM-MSC) or Schwann cells (SC) and (iv) focal
treatment with neutralizing antibodies to trophic factors.

Trying to reduce the intramuscular (terminal) axonal
sprouting we proved the effect of (i) intraoperative elec-
trical stimulation of the transected nerve, (ii) post-oper-
ative electrical stimulation of the denervated muscles,
(iii) mechanical stimulation of the paralyzed mucles after
facial-facial anastomosis (FFA), hypoglossal-facial anas-
tomosis (HFA) and after interpositional nerve grafting
(IPNG) of the facial nerve. 

All manipulations influenced various parameters of
peripheral nerve regeneration. However, only the appli-
cation of manual mechanical stimulation of the
paralyszed muscles yielded an improved recovery of vib-
rissae motor performance. Determining the mechanisms
of action of the manual mechanical stimulation we found
that this simple but very effective therapy requires intact
afferent trigeminal input as well as insulin-like growth
factor 1 (IGF-1). 

Generally Acknowledged Reasons for the
Faulty Regrowth of Transected Peripheral
Axons

Peripheral nerve injury initiates a complex series of
changes. About 24 hours after disconnection, the axons
in the distal fragment begin to lyse. When resorption of
debris is complete, the Schwann cells re-arrange in the
chains of Büngner30 which bridge the interfragmentary
gap and form guiding channels for the regenerating
axons to their target(s). This so-called Wallerian degen-
eration creates an environment that is highly supportive
for axonal re-growth and ensures that the vast majority
of axons will enter the distal stump.31 Nevertheless, com-
plete recovery of function is only rarely achieved.
Despite the use of modern microsurgical techniques for
nerve repair, the aberrant re-innervation of motor tar-
gets, e.g. facial muscles, causes abnormally associated
movements and altered reflexes.3,5,7
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Minimal recovery has been attributed to misdirected
(called also aberrant) regrowth of axons at the transec-
tion site and vigorous "intramuscular” or “terminal"
sprouting of axons in the target muscles.17

At the site of injury, the aberrant reinnervation has
two components. First, due to the malfunctioning axon-
al guidance, a muscle gets reinnervated by a "foreign"
axon which has been simply misrouted along the
"wrong" nerve fascicle.14,32,33 Second, due to the presence
of supernumerary branches from all transected axons
("collateral axonal branching"),34-36 this given muscle can
be reinnervated by branches stemming from several
motoneurons, a state known as "polyneuronal innerva-
tion"37,38 or "hyperinnervation".39 Though claimed to be
transient,40 this aberrant innervation may persist for
extended periods41,42 with deleterious effects on synchro-
nized function. 

In the target muscles, regenerating axons branch at
their terminals43-49 such that the majority of motor end-
plates become poly-, rather than mono-, innervated.28

Whereas numerous aspects of the post-transectional
aberrant reinnervation have been extensively document-
ed,50 little is known how this phenomenon could be pre-
vented. Attempts to act on the first component of the
aberrant reinnervation, achieving a "fascicular" or "topo-
graphic" specificity",18,19 have failed: so far, it is technical-
ly impossible to guide correctly the growth cones of sev-
eral thousands of axons (and their branches) originating
from the proximal stump of a transected nerve. 

This is why, most of the basic research laboratories
concentrated their efforts on the reduction of the postle-
sional collateral axonal branching and on diminution of
the neuromuscular junctions (NMJ) polyinnervation. 

Anatomy of the Infratemporal Portion of
the Facial Nerve in Rats and Mice

The rat facial nucleus resides in the pons/rostral
medulla. It contains 4500-5500 multipolar motoneurons
grouped in 5 subnuclei: lateral, dorsal, intermediate,
medial and ventromedial51-53 with no apparent differences
in the diameter of the perikarya (35-40 μm).54

As in humans, fibers course dorsomedially around the
abducens nucleus. Then they leave the ventrolateral sur-
face of the medulla ventrally to the cranial nerve VIII.
The mean diameter of the myelinated axons in the facial
nerve is 2.75 ± 0.77 μm.54

The facial nerve then enters the temporal bone (pars
petrosa) through the internal acoustic meatus dorsal to
the vestibulocochlear nerve. It emerges from the skull
through the stylomastoid foramen to innervate the mus-
cles of expression.55,56

The first branches of the free portion of the facial
nerve are the internal and caudal auricular nerves, which
supply the muscles of the ear, some hyoid muscles and
the caudal belly of the digastric muscle.57 The main trunk
enters the face by turning around the mandible where it
lies between the masseter muscle and the parotid gland.55

It then divides into three branches, the zygomatic, the
buccal and the marginal mandibular branch (Figure 1).

Application of Extracellular Matrix (ECM)
Proteins to Reduce Collateral Branching
of Axons at the Lesion Site Turns out to
be Unsuccessful 

Injury to the peripheral nerve sets initiates a complex
series of changes distal to the site of injury, collectively
known as Wallerian degeneration. Within 24 hours after
lesion, the axonal content begins to necrotize and axon-
al debris is phagocytosed by blood-born macrophages
and proliferated Schwann cells.58-60 When resorption is
complete, the Schwann cells form long chains of cells
(bands of Büngner), which bridge the interfragmentary
gap and form guiding channels for the regenerating
branches on their way to the target(s). The architectural
pattern of the Büngner’s bands of the peripheral stump
remains unchanged for 3 months, after which progres-
sive distorsion by proliferating connective tissue occurs.
The process of Wallerian degeneration creates an envi-
ronment that is highly supportive for axonal growth.
The preference for axonal growth into a degenerating
nerve ensures that the vast majority of axons will regrow
into the distal stump if it remains in continuity with the
proximal stump.31
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In spite of that, the regenerating axons do not merely
elongate towards the distal stump, but respond with
axonal branching (sprouting) by lateral budding mainly at
the nodes of Ranvier, up to 6 mm proximal to the injury
site. As regeneration proceeds, some of these supernu-
merary branches are pruned off over a period of up to 12
months.61 There are, however, persistently higher num-
bers of myelinated and unmyelinated axons in regenerat-
ed segments of peripheral nerves than in intact nerves. 

What is the general biological significance of branch-
ing? To answer this question, one needs more informa-
tion about the structural and biochemical events which
accompany the process of axonal sprouting. The majori-
ty of the recent reports suggest that the axonal branch-
ing is part of the neuronal response to injury within a
complex program directed towards regeneration. This
attempt is associated with substantial cytoskeletal reor-
ganization,62 resulting in the elaboration of fine protru-
sions (sprouts) into and across lesion sites.63

Observations in vitro show that axonal branching
begins from the end-bulb within 3 hours after injury.64

The regenerating branches initially lie on the surface of
the Schwann cells. Later, these branches increase in
diameter and get surrounded by Schwann cell processes.
The guidance of these immature axons to their final des-
tination can be considered as a series of short-range pro-

jections to intermediate targets under the influence of
local guidance cues. Neurons respond to these cues by
means of motile sensory apparatus at the tip of the
advancing axon termed the “growth cone”, which very
often does not emerge from the axon at the precise site
of injury, but proximal to it. The initial formation of
growth cones occurs before the necessary newly synthe-
sized proteins would have time to arrive at the site of
axon injury, i.e. too rapidly to be dependent on metabol-
ic changes in the cell body.65,66

The growth cone borne by neurites is shaped like a
webbed foot.67 There is a swollen central core from
which flattened processes called lamellipodia and numer-
ous stiff fine processes called filopodia extend. Current
studies have identified 3 major intracellular cytoskeletal
components responsible for the cytomechanical forces in
the leading edge of elongating axons: actin microfila-
ments, myosin and microtubules.68

Based on reports that the peroral administration of
drugs, which accelerate axonal regrowth, synchronously
reduces the postoperative hyperinnervation of mus-
cles39,69 several scientific groups tested, whether fostering
axonal regrowth by the local application of collagen type
I,70 fibronectin, laminin42,71-73 or tenascin-R74,75 might pre-
vent the occurrence of supernumerary axonal branches
and thus also improve target reinnervation. 

Figure 1. Schematic drawing of the infratem-
poral rat facial nerve (plexus parotideus) illus-
trating the close relationship between the
infraorbital nerve (in black) and the buccal
branch of the facial nerve. Adapted from
Semba and Egger53 and Dörfl.56
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Dohm et al.20 and Hristov et al.76 performed entubu-
lations of transected rat facial nerve in a chamber
(Figure 2) filled with phosphate buffered saline (PBS)
pH 7.4, collagen type I (100 μg/ml in PBS), laminin (20
μg/ml in collagen type I), fibronectin (20 μg/ml in colla-
gen type I), tenascin-R (20 μg/ml in collagen type I),
semaphorin 3A/Fc chimera (120 ng/ml in collagen type
I), neuropilin-1/Fc chimera (3 μg/ml in collagen type I).
Two months later, they performed a complex analysis
which was based on three main separate investigations. 

Video-based motion analysis of vibrissae motor
performance

First they examined the effects of these molecules on
the return of function. Video analysis of vibrissal motion
allowed a detailed assessment of vibrissal whisking.23,25

Normal animals explore the environment by coordinat-
ed sweeps of individual vibrissae ("whisking") with a fre-
quency of about 6-7 Hz.77-80 Vibrissal movements are
characterized by an active protraction rostrally via mus-
cle contraction and as previously described, by an active
retraction caudally.81 The amplitude of the movement
from maximum protraction to maximum retraction was
about 50º (Figure 3). Compared to intact animals, vib-
rissal motion was very poor in the rats of all groups: the

amplitude was reduced in average by 70% and angular
velocity by 80%. 

Estimation the degree of collateral branching of
axons at the lesion site

Next, triple retrograde labeling was used to assess the
projection patterns of motor axons from the facial nucle-
us through its different motor rami as well as the degree
of axonal branching.20 In intact animals, motoneurons
with axons entering the zygomatic, buccal or marginal
mandibular rami (Figure 4a) are localized in the dorsal,
lateral and intermediate facial subnuclei, respectively.53

No double- or triple-labeled motoneurons are observed
because intact motoneurons send only one unbranched
axon to one of the facial nerve rami (Figure 4b). Thus,
the index of axonal branching in the facial nerve trunk of
intact animals, calculated from the zygomatic motoneu-
rons, is 0%. 

Two months after facial nerve cut and suture (Figure
4c) or cut and entubulation with various ECM-proteins
(Figure 4e), myotopic organization into subnuclei was
no longer observed, i.e. all retrogradely labeled
motoneurons were scattered throughout the facial nucle-
us (Figures 4d and f). This lack of myotopy was pre-
sumably due to the numerous collateral branches34

emerging from individual transected axons which per-

Figure 2. Schematic drawing illustrating the
exact entubulation site of the facial nerve
(arrow). Adopted from Dohm et al.20



6 Skouras E, Angelov DN

Anatomy 2010; 4

sisted, grew into different rami and retrogradely trans-

ported the different fluorescent dyes to their parent

motoneurons in the facial nucleus. 

In addition, double and triple labeling of motoneu-

ronal perikarya was commonly observed (Figures 4d

and f). The only explanation for multiple labeling is that

the axonal branches projected into different facial nerve

rami (e.g. zygomaticus, buccalis or marginalis mandibu-

lae) and therefore retorgradely transported two or three

fluorescent dyes simultaneously to the parent perikarya.

Finally, as a result of this collateral branching at the

lesion site, each of the individual facial nerve rami con-

tained axons or axonal branches of more motoneurons

than in intact animals, which in the periphery caused

hyperinnervation of targets.38,39,82

In this experimental set, the index of axonal branch-

ing was 50-70% (sum of the percentages of all retro-

gradely double-labeled facial perikarya). None of the

therapeutic entubulations had a significant influence on

the projection patterns. Thus, there was a complete lack

of myotopic organization, increased total numbers of

projecting motoneurons and a consistently elevated

Figure 3. Video-based motion analysis of vibrissae
motor performance. Angles, angular velocity, and angu-
lar acceleration on the intact (left) and operated side
(right) were measured during vibrissal protraction (a)
and retraction (b). Note the significant change in angle
from the sagittal line (Fr-Occ) during protraction and
retraction on the intact side; vibrissae on the operated
side remain spastic. Fr: frontal; Occ: occipital; d: dexter;
s: sinister. Adopted from Tomov et al.23
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degree of axonal branching regardless of whether the
animals were subjected to any of the therapeutical para-
digms or not. Obviously, the branching capacity of

lesioned motoneurons is so strongly determined that
even significant changes in the local microenvironment
of the lesion site are not able to suppress it. 
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Figure 4. Myotopic organization of the facial nucleus and collateral axonal branching as estimated by the pattern of retrograde labeling. In intact
animals (a and b), simultaneous application of DiI (red), FG (yellow) and FB (blue) to the zygomatic, buccal and mandibular nerve branches
respectively labels distinct subnuclei with no overlap. Two months after transection and suture (FFA) (c and d) or entubulation (e and f) the
myotopic organization is lost and there occurred numerous double labeled motoneuronal perikarya. Adopted from Streppel et al.21
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Estimation the degree of polyinnervation of the NMJ

Finally, the re-innervation pattern of individual

skeletal muscle fibers was investigated (Figure 5a).

Although post-lesional polyinnervation of the end-plates

has been claimed to be transient,40 accumulating evi-

dence suggests that it persists after establishment of

nerve-muscle contacts32,41,42,83-87 and previous work indi-

cates that it has a deleterious effect on recovery of facial
motor function.28 In intact animals, all motor endplates
of the largest vibrissal muscle, the levator labii superioris,
were monoinnervated (Figure 5c). After facial nerve
transection and suture, 53% were polyinnervated, i.e.
innervated by two or more axons (Figure 5b). Neither
entubulation reduced the proportion of polyinnervated
endplates (about 50%). 
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Figure 5. Quality of target muscle reinnervation. a: Schematic drawing of the extrinsic vibrissae muscles. 
αα-δδ: the four caudal hair follicles, the muscles slings of which "straddle" the five vibrissae rows (A-E); I: infra-
orbital nerve L: m. levator labii superioris; M: m. maxillolabialis; N: m. nasalis; O: orbit; S: septum intermus-
culare; T: m. transversus nasi. b and c: Superimposed stacks of confocal images of end-plates in the levator
labii superioris muscles of intact and surgically treated rats visualized by staining of the motor end-plates with
Alexa Fluor 488 α-bungarotoxin (green fluorescence) and immunostaining of the intramuscular axons for
neuronal class III β-tubulin (Cy3 red fluorescence). Panels b and c show examples of polyinnervated and a
monoinnervated end-plate, respectively. Three axonal branches (arrows in b) reach the boundaries of the
polyinnervated end-plate delineated by the alpha-bungarotoxin staining. In contrast, the monoinnervated
end-plate is reached by a single axon (empty arrow in c) with several preterminal rami. In both examples,
the whole end-plates are within the stack of confocal images. Scale bar shown in c indicates 125 μm.
Adopted from Grosheva et al.145

a

b c



Local Perturbation of Microtubules’
Synthesis Reduces Collateral Branching of
Axons at the Lesion Site and Improves
Recovery of Whisking Function

Accumulating knowledge shows that neurite
regrowth is part of the neurons’ receptor-mediated
response to extracellular guidance cues.88 Since most
receptor-mediated signal transduction pathways con-
verge on to the Rho-family of small GTPases, axonal
elongation is associated with substantial reorganization
of the cytoskeleton.62,63,89,90 Accordingly, an alteration of
the dynamics of postlesional cytoskeletal reorganization
may lead to an increased rate of axonal regrowth. There
are 3 major intracellular cytoskeletal components
responsible for the cytomechanical forces in the leading
edge of the axon: actin microfilaments, myosin and
microtubules.68 In their recent work, Peeva et al.91 con-
centrated our observations on the microtubules. 

A microtubule is a long, hollow cylinder that is made
of a polymer of α- and β-tubulins and has a diameter of 25
nm. It has intrinsic polarity, with a fast-growing ‘plus end’
and an opposite, slow-growing ‘minus end’. In axons,
microtubules run in a longitudinal orientation and serve as
rails along which membranous organelles and macromol-
ecular complexes can be transported; they are unipolar,
with the plus end pointing away from the cell body.92

Facilitating the fusion of vesicles with the plasma
membrane, microtubules have been shown to promote
the extension of growth cone lamellipodia.93,94

Upregulated levels of tubulin in the perikarya and
increased delivery of mictotubules to regrowing axon
tips have been considered essential for regeneration.95-98

Accordingly, Schaefer et al.99 and Fukata et al.100 have
shown that the population of microtubules that invade
the peripheral domain via filopodia are highly dynamic,
suggesting functional specializations, perhaps in
exploratory and/or signaling capacity. 

Finally, drugs that attenuate either microtubule or
actin dynamics (inhibition of actin polymerization with
cytochalasin, stabilization of microtubules with taxol, or
damping of microtubule dynamics with vinblastine) have
been shown to inhibit in vitro axonal branching but not

elongation.101-104 Treatment with vincristine, an inhibitor
of microtubule formation blocks the outgrowth of some
axons and delays the regeneration of others.105

As a logical continuation of these in vitro studies,
Grosheva et al.106 proved whether a similar treatment in
vivo would also increase the rate of neurite regrowth and
improve recovery of muscle function. Such a test was not
only highly relevant to everyday clinical practice, but
also could be applied very rapidly – some pharmacologi-
cal agents that affect microtubule dynamics are regis-
tered and established drugs for use in human patients. 

In this work Grosheva et al.106 applied established
pharmacological agents to perturb microtubule assembly
towards stabilization (enhanced polymerization with 10
μg/ml taxol) or increased synthesis (challenged by desta-
bilization with 100 μg/ml nocodazole and 20 μg/ml vin-
blastine) to the transected buccal branch of the rat facial
nerve. 

Evaluation of the effect(s) two months later included
estimations of (i) vibrissae motor performance by video-
based motion analysis, (ii) degree of collateral axonal
branching by double retrograde neuronal labeling with
crystals of Fluoro-Gold and DiI and (iii) pattern of
motor end-plate re-innervation (proportions of mono-
and poly-reinnervated) in the largest extrinsic vibrissal
muscle, the levator labii superioris. They found that only
stabilization of microtubules with 10 μg/ml taxol
reduced intramuscular axonal sprouting and polyinner-
vation of the motor end-plates which was accompanied
by improved restoration of function.106

Local Application of Olfactory Ensheathing
Cells (OECs), Bone Marrow-Derived
Mesenchymal Stem Cells (BM-MSC) or
Schwann Cells (SC) to Reduce Collateral
Branching of Axons at the Lesion Site
does not Improve Quality of Reinnervation
and Recovery of Whisking Function 

The failure of ECM proteins to foster rapid axonal
regrowth and thus reduce collateral axonal branching [see
Chapter: Application of Extracellular Matrix (ECM)
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Proteins to Reduce Collateral Branching of Axons at the
Lesion Site Turns out to be Unsuccessful] suggested that
the amount of neurotrophic factors at the lesion site may
be unsufficent. In order to test this hypothesis, several
scientific groups decided to transplant dissociated glial
cells into the lesion site and prove whether they might
act as a trophic-factor source. In addition, glial cell trans-
plantations also aimed at reconstructing the nerve con-
nection by filling a large gap between the proximal and
distal nerve stump with cell suspensions applied within
guidance channels. 

Schwann cells (SC) and olfactory
ensheathing cells (OECs)

They have been used since they are closely-related

glial cell types that commonly express a number of neu-

rotrophic molecules,42,107,108 e.g. the brain-derived neu-

rotrophic factor (BDNF) and the ciliary neurotrophic

factor (CNTF). These molecules have been shown to

affect neurite outgrowth and sprouting.109-112

Furthermore OECs have been shown to stimulate

regeneration of central and peripheral neurons.113-116

Comparing the effects of glial cell transplantation on

CNS axon regrowth, it was found that SC increase

sprouting at the lesion site whereas OECs reduce sprout-

ing but increase growth into the distal part of the

lesioned spinal cord.115,117-119

Bone marrow-derived mesenchymal 

stem cells (BM-MSC)

Stem cells are undifferentiated cells that renew them-

selves to maintain the stem cell pool. At the single-cell

level they should be able to differentiate into more than

one mature, functional cell. In addition, when trans-

planted, stem cells should be capable of replacing a dam-

aged organ or tissue for the lifetime of the recipient.120

BM-MSC are pluripotent121 and have neuronal122 and

glial123,124 differentiation potential. 

BM-MSC can differentiate along a glial or Schwann

cells lineage125-135 and have therefore been considered as

potential candidates for improving the rate of axonal

regrowth and re-myelination by reducing the degree of

axonal branching136,137 and hopefully, therefore, improve

function. And indeed, transplanted BM-MSC have been

shown to improve recovery of function after injury of rat

sciatic nerve138-142 and to remyelinate the spinal cord.143,144

Compared to intact animals, vibrissal motion was
poor in rats receiving any entubulation of the facial
nerve. The amplitude was reduced respectively by an
average of 70% and angular velocity by 80%. Due to
poor axonal pathfinding and excessive growth of axonal
branches at the lesion site, there was no myotopical
organization of the facial nucleus into subnuclei and the
index of collateral branching was about 70%. Neither
entubulation reduced the proportion of polyinnervated
endplates.22,145,146

Focal Treatment with Neutralizing
Antibodies Against the Soluble
Neurotrophic Factors NGF, BDNF, FGF-2,
IGF-I, CNTF, GDNF Reduces Collateral
Axonal Branching at the Lesion Site, 
but Promotes no Recovery of Whisking
Function 

Based on our results showing that, in spite of their
known effect to support neurite elongation, neither
ECM proteins, nor cultured OECs, BM-MSC, or SC
suppressed the redundant axonal branching,20,22,145,146

Streppel et al.21 hypothesized that that the aberrant axon-
al branching could, at least in part, be due to the
increased expression of trophic molecules at the lesion
site. Accordingly, an inhibition or blockade of these fac-
tors should reduce branching and improve the accuracy
of reinnervation. This is why they applied neutralizing
antibodies to several neurotrophic agents and checked
whether some of them would reduce the proportion of
branched axons. 

Following analysis of local protein expression by
immunocytochemistry and by in situ hybridization, the
facial nerve trunk of adult rats was transected and insert-
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ed both ends into a silicon tube containing (i) collagen
gel with neutralizing concentrations of antibodies to
NGF, BDNF, bFGF, IGF-I, CNTF and GDNF; (ii)
five-fold higher concentrations of the antibodies; (iii)
combination of antibodies. 

Two months later, retrograde labeling was used to
estimate the portion of motoneurons the axons of which
had branched and projected into 3 major branches of the
facial trunk. After control entubulation in collagen gel
containing non-immune mouse IgG, 85% of all
motoneurons projecting along the zygomatic branch
sprouted and sent at least one twin axon to the buccal
and/or marginal-mandibular branches of the facial
nerve. Neutralizing concentrations of anti-NGF, anti-
BDNF and anti-IGF-I significantly reduced sprouting.
The most pronounced effect was achieved after applica-
tion of anti-BDNF, which reduced the portion of
branched neurons to 18%. All effects after single appli-
cation of antibodies were concentration-dependent and
superior to those observed after combined treatment.
Thus, treatment of rats with antibodies against NGF,
BDNF, bFGF, IGF-I, CNTF or GDNF increased the
precision of reinnervation, as evaluated by multiple ret-
rograde labelling of motoneurons, more than two times
as compared to control animals.21

The subsequent biometric analysis of vibrissae move-
ments however, did not show positive effects on func-
tional recovery suggesting that polyneuronal reinnerva-
tion of the motor end-plates- rather than collateral
branching – may be the critical limiting factor. In sup-
port of this hypothesis, Guntinas-Lichius et al.28 found
that motor end-plates with morphological signs of mul-
tiple innervation were much more frequent in reinner-
vated muscles of rats which did not recover after injury
(51% of all end-plates) compared to animals with good
functional performance (10%). 

This milestone report28 provided, for the first time,

controlled experimental evidence for the contribution of

axonal branching and misdirection to the failure of

recovery of function following facial nerve injury. By

manipulating the local environment using neutralizing

antibodies to growth factors, a strong reduction in col-

lateral axonal branching from the proximal stump was

achieved. In the same animals, however, function of the

re-innervated vibrissae muscles remained as poor as in

non-treated injured animals. As a potential reason for the

ineffectiveness of the treatment Guntinas-Lichius et al.28

identified the well-known post-transectional polyneu-

ronal innervation of the motor endplates, a phenomenon

which was not directly manipulated in our experiments.

These results raised questions of fundamental impor-

tance with regard to the mechanisms limiting functional

recovery and to the perspectives for identifying new effi-

cient treatment strategies. 

Furthermore, since polyneuronal innervation of mus-

cle fibers is activity-dependent and can be manipulated,

these findings raised hopes that clinically feasible and

effective therapies could be soon designed and tested. 

Intra-operative Electrical Stimulation of
the Proximal Stump before Nerve Suture
Fails to Improve Quality of Target
Reinnervation and Functional Recovery
after Nerve Repair 

Although clinicians and researchers have tested the

usefulness of electric current applications for enhance-

ment of peripheral nerve regeneration for more than a

century, the efficacy of such treatment for facial palsy has

remained questionable.3,147 For example, clinical experi-

ence has shown positive effects on occasion148,149 but,

mostly, electrical stimulation has been considered to be

inefficient.150,151

Recently, a novel clinically feasible approach to

enhance peripheral nerve regeneration after femoral

nerve (a mixed nerve i.e. sensory and motor) lesion in

rats was suggested.152-155 Brief, low-frequency electrical

stimulation (1 hour, 20 Hz) is delivered to the proximal

nerve stump of the severed nerve prior to its surgical

reconstruction. Stimulation leads to depolarization of

the motoneuron perikarya and a significant shortening of

the period of asynchronous, “staggered” axonal
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regrowth; in addition, preferential motor reinnervation

is accelerated.156,157 These beneficial effects are associated

with a faster and enhanced up-regulation of brain-

derived neurotrophic factor (BDNF) and its tyrosine

kinase B (TrkB) receptor in motoneurons;158,159 in addi-

tion, TrkB-dependent expression of the HNK-1 (human

natural killer cell antigen-1) glycoepitope is increased in

the quadriceps branch of the femoral nerve.160 Brief elec-

trical stimulation after sciatic nerve injury also promotes

axonal regeneration and attenuates facilitation of spinal

motor responses.161

Recent experiments have also shown that, although

the brief stimulation protocol considerably accelerates

functional recovery after femoral nerve repair in mice, it

does not however improve the long term, final out-

come.162 This is why Skouras et al.163 tested the therapeu-

tic potential of the treatment in the facial nerve (purely

motor) injury paradigm in rats, a regeneration model

system differing in many aspects from the femoral nerve

paradigm such as motoneuron connectivity, nerve com-

position and muscle properties. 

Testing the efficacy of electrical stimulation in the

facial nerve paradigm appeared especially warranted

considering that most of the clinical experience, and con-

troversy, associated with electrical stimulation is related

to treatment of facial palsy.164-166 Rates were subjected to

one hour of electrical stimulation immediately following

nerve cut and prior to nerve repair by end-to-end anas-

tomosis (Figure 6). Video-based motion analysis was

used to monitor vibrissal motor performance over a 4-

month recovery period, a non-invasive approach allow-

ing precise and longitudinal assessment of whisker pad

muscle function.23 Subsequently morphological analyses

involving retrograde tracing and endplate morphology

on the same animals were performed21,28 to elucidate,

respectively, whether ES influenced the degree of collat-

eral axonal branching at the lesion site and/or motor

end-plate polyinnervation, both of which are associated

with functional deficits following facial nerve injury. 

The results of Skouras et al.163 showed that in adult

rats, the brief electrical stimulation immediately after

transection and for 1 hour prior to end-to-end suture of

the severed facial nerve, a purely motor nerve tract, does

not lead to improved motor recovery at 4 months.

Regardless of whether the animals were electrically stim-

ulated or not, the degree of collateral branching of axons

at the lesion site was high (50-70%), the proportion of

polyinnervated motor end-plates in the musculature was

approximately 50% and the amplitude of vibrissal whisk-

ing remained at 25-30% of that in intact animals. 
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Figure 6. a: Intraoperative electrical stimulation of the proximal stump of the transected right facial nerve. b: The right facial nerve was exposed
and a teflon-coated stainless steel wire (50 μm in diameter, bared of insulation at its tip) was twisted to form a loop around the nerve stump. c:
A second electrode, used as an anode, was fixed to a muscle close to the nerve. In all electrically stimulated rats, the threshold voltage required
to elicit visible contractions of the whisker pad muscles was determined by applying square 0.1 ms pulses at 20 Hz at varying voltage intensities
using a pulse generator (Master-8, A.M.P.I., Jerusalem, Israel). Immediately thereafter, the nerve stump was transected with fine scissors about
2 mm distally from the electrode. The proximal nerve stump was then stimulated for 1 hour by applying square 0.1 ms pulses at 20 Hz using
amplitudes 3 times above threshold levels (typically 3-4 V). Thereafter, the electrodes were removed, and the ends of the nerve were sutured
with single epineural 11-0 nylon stitches (arrow). Adopted from Skouras et al.163
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Post-operative Electrical Stimulation of
Paralyzed Vibrissal Muscles does not to
Promote Motor Recovery After Facial
Nerve Repair 

Electrical stimulation (ES) of denervated muscles is a
potent therapy which, maintaining muscle mass and
structural integrity, can counteract loss of muscle
excitability and muscle atrophy resulting from disuse.167-171

However, evidence has yet to be presented as to whether,
and to what degree, preservation of a larger muscle mass
and better functional properties of denervated muscles
would promote functional recovery after reinnervation. 

To elucidate these issues further and provide evi-
dence for the therapeutic benefit or otherwise of ES,
Sinis et al.172 examined facial nerve injury in the rat model
focusing on whisking as the functional readout.
Following facial nerve lesion, rats received ES or sham
stimulation (SS) of the vibrissal muscles over a 2-month
period at stimulation intensities sufficient to depolarize
the regenerating intramuscular nerves (Figure 7).
Starting on the first day after end-to-end suture (facial-
facial anastomosis), ES (square 0.1 ms pulses at 5 Hz at
an ex tempore established threshold amplitude of
between 3.0 and 5.0 V) was delivered to the vibrissal
muscles for 5 minutes a day 3 times a week. 

Restoration of vibrissal motor performance following
ES or SS was evaluated using video-based motion analy-
sis and correlated with the degree of collateral axonal
branching at the lesion site, the number of motor end-

plates in the target musculature and the quality of their
reinnervation, i.e. the degree of mono- versus poly-
innervation. Neither protocol reduced collateral branch-
ing. ES did not improve functional outcome, reduced the
number of innervated motor end-plates to approximate-
ly one fifth of normal values and failed to reduce the pro-
portion of polyinnervated motor end-plates. It is con-
cluded that ES is not beneficial for recovery of whisking
function after facial nerve repair in rats.172

Mechanical Stimulation of Paralyzed
Vibrissal Muscles Improves Quality of
Motor Target Reinnervation and
Promotes Recovery of Whisking
Following Facial Nerve Repair 

Clinically, there are few options for treating dener-
vated muscles. One possibility is electrical stimulation
(ES), although a great deal of controversy surrounds its
use with either some benefit148,149,173,174 or no effect151,164-

166,175-178 being described. Electrical stimulation of dener-
vated soleus muscle inhibits intramuscular sprouting and
diminishes motor-end plate polyinnervation.179,180

However, regular ES of totally denervated muscle fibers
suppresses the production of chemical mediators
required for reconnection of an axon branch with its
motor endplate on the muscle and also reduces the spon-
taneous electrical activity of orphaned muscle fibers (fib-
rillation) which is thought to be a signal for sprouting of
the remaining healthy motor nerve.181,182 By contrast, ES
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Figure 7. a: Schematic drawing of the infratemporal portion of the rat facial nerve. The site of transection and end-to-end suture of the facial
nerve trunk, i.e. facial-facial anastomosis (FFA) is indicated by an arrow. b: Sham-stimulation of rats. Acupuncture needle electrodes were insert-
ed, but no current was applied to the electrodes. c: Postoperative electrical stimulation of the vibrissal muscles. Adopted from Sinis et al.172
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of muscle fibers that retain a partial nerve supply may
simulate voluntary muscle overuse and contribute to
suppression of the chemical mediators required for the
reinnervation of the denervated fibers.183 For the above
reasons, ES is not a method of choice and indeed has not
been widely used to treat facial paralysis. 

Following denervation and before reinnervation,
severe changes also occur within the muscle including
loss of muscle bulk and circulation; connective tissue also
shrinks and becomes adherent (fibrosis).184-186 After sever-
al months of complete denervation, muscle membrane
properties change, becoming relatively non-responsive
to electrical stimulation.187-189 For patients expected to
have nerve re-growth after complete denervation, it is
important to minimize fibrosis within the muscle con-
nective tissue so that there will be movable muscle struc-
tures after muscle re-innervation to allow reacquisition
of the contractile proteins that make muscles work.190-193

Angelov et al.29 therefore decided to try a novel
approach and use mechanical stimulation of facial nerve
injury. Based on clinically established positive benefits of
soft tissue massage, supposed to promote muscle blood
flow and to keep in optimum condition whilst awaiting
nerve recovery,150,194-196 the vibrissae and whisker pads
were gently stroked by hand for 5 minutes daily for two
months after transection and suture of the facial nerve. 

The first signs of vibrissal motor performance recov-
ery were detected at 4-5 weeks post transection and
within the following weeks, recovery reached its maxi-
mum and stayed at this level for the next two months.
Whisker pads and vibrissae were therefore stroked gen-
tly by hand for 5 minutes daily for two months after tran-

section and suture of the facial nerve. Mechanical stimu-
lation was compared with (i) “environmental” stimula-
tion whereby rats’ vibrissae encountered objects in an
enriched environment, (ii) holding animal in the same
manner and for the same amount of time as used during
manual stimulation (i.e. a sham “handling” control) and
(iii) manual stimulation of the intact contralateral
whiskerpad (Figure 8). 

Only the manual ipsilteral stimulation resulted in a
complete return of normal vibrissal motor performance
with a concomitant pronounced reduction in polyinner-
vation.29 This report provided the first controlled exper-
imental evidence for the efficacy of mechanical muscle
stimulation to improve functional recovery after facial
nerve injury in the rat. By stroking the whiskers Angelov
et al.29 stimulated their fine vibrissal muscle slings inner-
vated by the facial nerve, achieved a significantly reduc-
tion of the proportion of polyinnervated motor end-
plates and full recovery of vibrissal motor performance.
These findings show that manual mechanical stimulation
can contribute to improved recovery for facial nerve
injuries197 and that clinical studies may be warranted. 

Manual Stimulation of Facial Muscles
Improves Functional Recovery after
Hypoglossal-Facial Anastomosis and
Interpositional Nerve Grafting of the
Facial Nerve

Clinically, soft tissue massage following nerve dam-
age has been shown to result in improved blood flow,
facial symmetry and smiling.150,195 Furthermore, previous
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Figure 8. a: Manual mechanical stimulation of the right, i.e. ipsilateral to the nerve transection and suture (FFA) vibrissae and whiskerpad mus-
cles. b: Manual mechanical stimulation of the left, i.e. contralateral to FFA vibrissae and whiskerpad muscles. c: Handling of the animals. Adopted
from Angelov et al.29
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studies in experimental animals have shown that mild
electrical stimulation of the denervated soleus muscle
inhibits intramuscular sprouting and diminishes motor-
end plate polyinnervation.179,180 Based on these findings,
Angelov et al.29 previously tested the effect of manual
stimulation (MS), namely gently stroking the whisker
pads by hand for 5 minutes a day for 2 months following
FFA in rats. Faint signs of vibrissal motor performance
were first noted at 4-5 weeks post FFA and after a fur-
ther two weeks, recovery was complete with function
being indistinguishable from that in intact animals.29

Encouraged by the improvement in function by using

MS after FFA29,198 examined whether the same simple

rehabilitation technique would be also effective follow-

ing two other common types of facial nerve reconstruc-
tion, hypoglossal-facial anastomosis (HFA) and interpo-
sitional nerve grafting (IPNG; Figure 9).

The recent experimental evidence for the contribu-
tion of manual stimulation to the recovery of vibrissal
function following facial nerve injury29 was confirmed.
This next report showed a positive effect after two com-
mon types of facial nerve reconstruction, HFA and
IPNG. As for FFA, improved recovery of vibrissal motor
performance after HFA and IPNG was associated with a
significant reduction in the proportion of polyinnervated
motor endplates. These results provide new perspectives
for implementation of efficient and effective clinical
treatment strategies.198
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Figure 9. a-c: Schematic drawings of the infratemporal portion of the rat facial nerve adapted from Dörfl.56 a: Transection and imme-
diate end-to-end suture of the facial nerve trunk, i.e. facial-facial anastomosis (FFA), indicated by an arrow. b: Transection of the facial
and hypoglossal nerves with subsequent end-to-end suture of the proximal hypoglossal stump to the distal facial fragment (HFA:
hipoglossofacial anastomosis), indicated by an arrow. c: Transection of the facial nerve with subsequent end-to-end suture (arrow)
with the interpositional nerve graft (IPNG) between the proximal and distal facial fragments. d: Manual mechanical stimulation (MS)
of the right, i.e. ipsilateral to the facial nerve transection vibrissae and whiskerpad muscles. Adopted from Guntinas-Lichius et al.198
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Manual Stimulation of the Orbicularis
Oculi Muscle Improves Eyelid Closure
after Facial Nerve Injury 

One of the most disturbing deformities in the course
of facial palsy is the blinkless eye. In addition to their
static expression, these patients suffer many complica-
tions from an inability to protect their eyes, including
partially obscured visual fields, epiphora (overflow of
teardrops upon the cheek), and/or drying of the eye
which may in turn lead to keratitis sicca (inflammation of
the cornea), corneal abrasions and loss of vision.199

Clinical interventions are varied and include surgical
approaches whereby static implants passively assist eyelid
closure or microsurgical manipulation of nerves and
muscles dynamically stimulate active eyelid closure.200-203

However, results are usually unsatisfactory and function-
al recovery is often poor.183,204-206

Encouraged by the efficacy of manual stimulation in
improving function of facial muscles,29 Bischoff et al.207

examined whether the same simple rehabilitation tech-
nique would also prove effective for another facial mus-
cle, the orbicularis oculi (OOM; Figure 10). This mus-
cle is also innervated solely by the facial nerve53,208,209 and
controls eyelid closure and blinking, both of which can
be severely compromised by facial nerve injury in
humans and with significant consequences.205,210,211

Bischoff et al.207 confirmed recent experimental evi-
dence for the efficacy of manual stimulation following
facial nerve injury in promoting recovery of vibrissal

function29,198,212 by showing that manual stimulation also
improves motor recovery of another denervated mimic
muscle, the orbicularis oculi (OOM). In addition, as for
the whisker-pad muscles, improved eyelid closure was
associated with a significant reduction in the proportion
of poly-innervated motor endplates. Combined, these
"proof of principle" findings have immediate implica-
tions for clinical rehabilitation following facial nerve
injury. 

Manually-Stimulated Recovery of Motor
Function after Facial Nerve Injury
Requires Intact Sensory Input 

As already pointed out, examining the factors limiting
restoration of function using the facial nerve in rats as a
model, special emphasis was laid on those branches (buc-
cal and mandibular) that supply the whisker pads. Facial
nerve cut and anastomosis (FFA) results in robust
sprouting at the lesion site and within target muscles.20-22

A combined quantitative structural and functional
approach in the same animals to examine respectively the
extent of sprouting and whisker movement led to a num-
ber of findings. First, limiting sprouting at the lesion site
using antibodies to growth factors did not improve func-
tion.28 Second, facial nerve injury in rats with retinal dys-
trophy (Royal College of Surgeons strain) resulted in
better functional outcome compared to seeing rats, pre-
sumably due to forced whisker use.23 Together, these
findings lead to the conclusion that the main site limit-
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Figure 10. a: Schematic drawing of the infratemporal portion of the rat facial nerve. Transection and immediate end-to-end suture of the facial
nerve trunk, i.e. facial-facial anastomosis (FFA), indicated by an arrow. b: Handling of the animals. c: Manual mechanical stimulation of the right,
i.e. ipsilateral to the facial nerve transection orbicularis oculi muscle (OOM). Adopted from Bischoff et al.207
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ing restoration of whisking was the far periphery where
intramuscular sprouting within the whisker pads results
in a high proportion of poly-innervated motor end-
plates.28 Indeed, recently it was shown in rats that brief,
daily stroking (manual stimulation, MS) of the vibrissal
muscles slings following facial-facial anastomosis (FFA),
hypoglossal-facial anastomosis (HFA) and inter-posi-
tional nerve grafting (IPNG) significantly reduced
motor end-plate polyinnervation and concomitantly
improved whisking function.29,198

Both clinical and experimental data show that recov-
ery of function is better following damage of a purely
motor nerve compared to mixed peripheral nerves, that
is, those posesssing both motor and sensory axons such
as the median nerve.213-217 Nerve supply to facial muscles
has the distinct advantage that the motor and sensory

supplies are separate.218,219 In the case of the facial nerve,

sensory feed back occurs via the trigeminal nerve with

direct ipsilateral connections between the trigeminal and

the facial nucleus in the brainstem.220-226

Pavlov et al.212 took a two step approach to examine

the role of afferent inputs. First, they estimated, using

synaptophysin immunohistochemistry, the influence of

MS on the afferent synaptic input to the facial nucleus.

In addition, the influence of the trigeminal sensory input

by extirpating one of its branches, the infraorbital nerve

(ION) was tested (Figure 11). The procedure ablates

sensory input from the vibrissal muscle pads to facial

motoneurons. Outcome was determined by measuring

the degree of polyinnervation of vibrisal motor end-

plates and examining recovery of whisking function. 

17Therapy of post-operative facial palsy

Anatomy 2010; 4

Figure 11. Schematic drawings illustrating the
infratemporal portion of the facial nerve and the
site of its transection and suture (indicated by an
arrow) in a and the close relationship between
the peripheral fascicles of the facial nerve and
those of the infraorbital nerve (arrow indicates
the site of excision) in b. Adopted from Pavlov et
al.212
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The quantification of the total synaptic input to
motoneurons in the facial nucleus (by synaptophysin
immunocytochemistry) following FFA with and without
subsequent MS showed that, without MS, this input was
reduced when compared to intact animals. The number
of synaptophysin-positive terminals returned to normal
values following MS. Thus, MS appears to counteract
the deafferentation of regenerated facial motoneurons. 

The elimination of the trigeminal sensory input to
facial motoneurons by extirpation of the ipsilateral infra-
orbital nerve (IONex) showed that, without MS, vibrissal
motor performance and pattern of end-plate reinnerva-
tion were as aberrant as after FFA without MS. MS did
not influence the reinnervation pattern after IONex and
functional recovery was even worse than after IONex
without MS. Thus, when the sensory system is intact,
MS restores normal vibrissal function and reduces the
degree of polyinnervation. When afferent inputs are
abolished, these effects are eliminated or even reversed.
Pavlov et al.212 concluded that rehabilitation strategies
must be carefully designed to take into account the
extent of motor and/or sensory damage. 

Recovery of Whisking Function Promoted
by Manual Stimulation of the Vibrissal
Muscles after Facial Nerve Injury Requires
Insulin-like Growth Factor 1 (IGF-1) 

A number of factors have been identified which
improve the accuracy of reinervation. Stimulating muscles
with flaccid paralysis by a variety of means (e.g. electrical
stimulation, mechanical stimulation, exercise) inhibits
intramuscular sprouting and diminishes motor-end-plate
polyinnervation.179,227 Similarly, it has been recently shown
that manual stimulation (MS) of denervated whisker pads
after facial nerve injury reduces the amount of terminal
sprouting; more accurate reinnervation patterns are asso-
ciated with improved whisking function and blink reflex-
es.29,207 Another factor involves terminal Schwann cells
(TSC) which, after injury, extend numerous processes that
form bridges within target muscles and act as a substrate
for terminal sprouts to reach multiple adjacent (rather

than single) motor endplates.228-230 Moreover, both run-
ning exercise and electrical stimulation limit the formation
of such bridges and therefore improve the accuracy of
reinnervation.47,180

A number of molecular factors have been identified
which underpin the above structural correlates with
insulin-like growth factor-1 (IGF-1) being pivotal. It
induces muscle regeneration231-236 and prevents muscle
atrophy.237-240 It is also involved in Schwann cell viability
and myelination.241,242 In addition, it is closely correlated
with neuronal responses to injury being up-regulated at
the time of axonal sprouting and elongation.21,243-246

However, addition of exogenous IGF-1 fails to increase
the accuracy of regeneration or functional outcomes
such as muscle power, motor evoked potentials and con-
duction velocity.247,248

Although IGF-1 mediates exercise-induced anabolic
changes in muscle tissue,249-251 it is not known whether
this neurotrophic factor is involved in stimulation-
induced changes within regenerating peripheral nerve
axons. Recently Kiryakova et al.252 first examined IFG-1
expression after facial nerve injury and then used the
manual stimulation (MS) protocol in IGF-1 deficient
mice to examine whether MS could improve accuracy of
reinnervation and recovery of function when IGF-1 was
diminished. 

Kiryakova et al.252 examined the effect of daily MS for
2 months after FFA in IGF-1+/- heterozygous mice; con-
trols were wild-type (WT) littermates including intact
animals. They quantified vibrissal motor performance
and the percentage of NMJ bridged by S100-positive
TSC (Figure 12). There were no differences between
intact WT and IGF-1+/- mice for vibrissal whisking
amplitude (48o and 49o) or the percentage of bridged
NMJ (0%). 

After FFA and handling alone (i.e. no MS) in WT
animals, vibrissal whisking amplitude was reduced (60%
lower than intact) and the percentage of bridged NMJ
increased (42% more than intact). MS improved both
the amplitude of vibrissal whisking (not significantly dif-
ferent from intact) and the percentage of bridged NMJ
(12% more than intact). 
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After FFA and handling in IGF-1+/- mice, the pattern
was similar (whisking amplitude 57% lower than intact;
proportion of bridged NMJ 42% more than intact).
However, MS did not improve outcome (whisking ampli-

tude 47% lower than intact; proportion of bridged NMJ
40% more than intact). Kiryakova et al.252 concluded that
IGF-I is required to mediate the effects of MS on target
muscle reinnervation and recovery of whisking function. 
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Figure 12. a: Schematic drawing of the infratemporal portion of the rat facial nerve. The site of transection and
end-to-end suture of the facial nerve trunk, i.e. facial-facial anastomosis (FFA) is indicated by an arrow. b:
Manual mechanical stimulation of the right, i.e. ipsilateral to the nerve transection and suture (FFA) vibrissae and
whiskerpad muscles. c: Handling of the animals. d: The developed spatial model allows precise measurement of
angles, angular velocity, and angular acceleration on the intact (left) and operated side (right) during protrac-
tion and retraction of the vibrissae along the sagittal fronto-occipital (Fr-Occ) line. e and f: Typical S-100 pos-
itive cytoplasmic bridges (arrows) connecting two adjacent motor end-plates in m. levator labii superioris of
stimulated WT-mice from group 6 (e) and of stimulated IGF-I-deficient mice from group 5 (f) 2 months after
transection and suture of the facial nerve. Motor end-plates are stained by α-bungarotoxin (Alexa Fluor 488,
green fluorescence) and the terminal Schwann cells (TSC) by S-100 protein (Cy3, red fluorescence). 30 μm thick
cryostat section. Adopted from Kiryakova et al.252
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