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Abstract

In this research paper, the nonlinear fractional relaxation equation involving the generalized Caputo deriva-
tive is reduced to an equivalent integral equation via the generalized Laplace transform. Moreover, the
upper and lower solutions method combined with some �xed point theorems, and the properties of the
Mittag-Le�er function are applied to investigate the existence and uniqueness of positive solutions for the
problem at hand. At the end, to illustrate our results, we give an example.
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1. Introduction

The fractional calculus (FC) is approximately 300 years old which is a generalization of classical calculus as
it deals with the non-integer order. One can discover that there are many de�nitions of fractional derivatives
that have been investigated in the literature. e.g., we refer here to the most well-known types such as
Reimann-Liouville, Caputo, Hilfer, Hadamard, and Katugampola derivative, and many others. The best
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way to deal with an assortment of fractional operators is to understand the general forms of fractional
operators that include other operators.

Fractional di�erential equations (FDEs) upspring in sundry areas of science and engineering. There
have been many results on existence and uniqueness of solutions for nonlinear FDEs of the following type:
evolution, functional, impulsive under various conditions can be found in the articles [4, 7, 14, 1, 16, 25] and
the references cited therein.

On the other hand, there has been much more focus paid in developing the theory of existence and
uniqueness of positive solutions for nonlinear FDEs have been investigated by using Leray-Schauder, coinci-
dence degree theory, �xed point index theory, �xed point theorems in cones and so on, we refer the readers
to [10, 11, 13, 12, 15, 23, 6, 22, 20, 30]. For instance, N. Li and C. Wang in [22] studied the existence and
uniqueness of positive solution for nonlinear FDE{

Dθ
0+φ(t) = f(t, φ(t)), 0 < t < 1,
φ(0) = 0,

(1)

where 0 < θ < 1, Dθ
0+ is the standard Riemann Liouville fractional derivative of order θ, and f : [0, 1] ×

[0,∞)→ [0,∞) is continuous function.
In another paper, by using �xed point theorem on cones with the upper and lower solutions method, A.

Chidouh et al. [15] considered the nonlinear fractional relaxation di�erential equation involving the standard
Caputo fractional derivative{

CDθ
0+φ(t) + wφ(t) = f(t, φ(t)), 0 < t ≤ 1, w > 0
φ(0) = φ0 > 0,

(2)

where 0 < θ < 1, and f : [0, 1]× [0,∞)→ [0,∞) is continuous function.
For recent papers on ψ-fractional derivative of FDEs, can be found in [2, 3, 8, 9, 5, 21, 24, 27, 28, 29]

and the references cited therein.
By motivating from the above papers, in this paper, we investigate the existence and uniqueness of

positive solution of the following nonlinear fractional relaxation equation:{
CDθ,ψ

0+ φ(t) + wφ(t) = f(t, φ(t)), 0 < t ≤ 1,
φ(0) = φ0 > 0,

(3)

where 0 < θ < 1 is a real number,w is a positive parameter, CDθ,ψ
0+ is the generalized Caputo fractional

derivative (so-called ψ−Caputo fractional derivative) of order θ, f : [0, 1]×R+ → R+ is a given continuous,
and ψ : [0, 1] → [0, 1] is a strictly increasing such that ψ ∈ C1[0, 1] with ψ′(t) 6= 0, for all t ∈ [0, 1]. The
positive solution which we consider in this work is such that φ(t) ≥ 0, 0 ≤ t ≤ 1, φ ∈ C[0, 1] and satis�es
the problem (3).

To our knowledge, less work appears in the initial value problem (3) by using of upper and lower so-
lution method. Our aim is to study the existence and uniqueness of positive solutions of the problem (3)
through some properties of Mittag-Le�er function, generalized Laplace transform and �xed point theorems.
Moreover, the result of existence obtained through constructing the upper and lower control functions of the
nonlinear terms without any monotone requirement except for the continuity.

The paper is organized as follows: In section 2, we present some preliminaries concerning the assumpitions
and several lemmas needed throughout this paper. In section 3, initial value problem (3) is reduced to an
equivalent integral equation via generalized Laplace transform. Further, the existence and uniqueness of
positive solutions of given problem are obtained by using the upper and lower solutions method combined
with the �xed point theorems. An example is given in the last section.

2. Preliminary results

In this section we recall some basic de�nitions and lemmas related to fractional calculus, Generalized
Laplace transform, Mittag-Le�er function, and �xed point theorems useful for our results. Let C[0, 1] be
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the Banach space endowed with the sup norm

‖φ‖ = sup
t∈[0,1]

|φ(t)| ,

Consider the classical cone E de�ned by

E = {φ ∈ C[0, 1] : φ(t) ≥ 0, 0 ≤ t ≤ 1}.

De�nition 2.1. [19] Let θ > 0, and f : [a, b]→ R be an integrable function. Then the generalized Riemann-
Liouville fractional integral of order θ for a function f with respect to ψ is given by

Iθ,ψa+ f(t) =
1

Γ(θ)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))θ−1f(s)ds.

where ψ : [a, b]→ R is a strictly increasing function such that ψ′(t) 6= 0, for all t ∈ [a, b].

De�nition 2.2. [19] Let n − 1 < θ < n, and f : [a, b] → R be an integrable function. Then the generalized
Riemann-Liouville fractional derivative of order θ for a function f with respect to ψ is de�ned by

Dθ,ψ
a+ f(t) =

[ 1

ψ′(t)

d

dt

]n
In−θ,ψa+ f(t),

where n = [θ] + 1 and ψ as in De�nition 2.1.

De�nition 2.3. [19] Let n−1 < θ < n, and f ∈ Cn−1[a, b]. Then the generalized Caputo fractional derivative
of order θ for a function f with respect to ψ is given by

CDθ,ψ
a+ f(t) = Dθ,ψ

a+

[
h(t)−

n−1∑
k=0

f
[k]
ψ (a)

k!

(
ψ(t)− ψ(a)

)k]
.

where n = [θ] + 1 for θ /∈ N, and n = θ for θ ∈ N, and f
[k]
ψ (t) =

[
1

ψ′(t)
d
dt

]k
f(t). Moreover, if

f ∈ Cn[a, b], then ψ-Caputo fractional derivative can be written as

CDθ,ψ
a+ f(t) = In−θ,ψa+

[ 1

ψ′(t)

d

dt

]n
f(t)

=
1

Γ(n− θ)

∫ t

a
ψ′(τ)(ψ(t)− ψ(τ))n−θ−1f

[n]
ψ (τ)dτ.

In paricular, if θ = n ∈ N, we have
CDθ,ψ

a+ f(t) = f
[n]
ψ (t).

Lemma 2.1. Let θ, β ∈ R with β > n. If g(t) = (ψ(t)− ψ(a))β−1. Then we have

Iθ,ψa+ g(t) =
Γ(β)

Γ(β + θ)
(ψ(t)− ψ(a))θ+β−1,

and
CDθ,ψ

a+ g(t) =
Γ(β)

Γ(β − θ)
(ψ(t)− ψ(a))β−θ−1.

In case, g(t) = [ψ(t)− ψ(a)]k, then

CDθ,ψ
a+ g(t) = 0, ∀k ∈ {0, 1, . . . , n− 1} , n ∈ N.

Now, we give some concepts of generalized Laplace transform introduced by [18].
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De�nition 2.4. The Laplace transform of a function f is de�ned by the improper integral

L{f(t)} =

∫ ∞
0

e−stf(t)dt, (4)

provided that the integral in (4) exists for all s larger than or equal to some s0, where f is de�ned for t ≥ 0.

De�nition 2.5. Let f, ψ : [a,∞) −→ R be real valued functions such that ψ(t) is continuous and ψ′(t) > 0
on [a,∞). Then the generalized Laplace transform of f is de�ned by

Lψ{f(t)} =

∫ ∞
a

e−s[ψ(t)−ψ(a)]ψ′(t)f(t)dt,

for all values of s. In particular, if a = 0, ψ(0) = 0, then we have

Lψ{f(t)} =

∫ ∞
0

e−sψ(t)ψ′(t)f(t)dt.

Theorem 2.1. Let f, ψ : [a,∞) −→ R be real valued functions such that ψ(t)is continuous and ψ′(t) > 0 on
[a,∞) and such that the generalized Laplace transform of f exists. Then

Lψ{f(t)} = L
{
f
(
ψ−1(t+ ψ(a))

)}
, (5)

where L{f} is the usual Laplace transform of f .

Lemma 2.2. Let Re(θ) > 0 and
∣∣ λ
sθ

∣∣ < 1. Then

Lψ{Eθ(λ [ψ(t)− ψ(a)]θ} =
sθ−1

sθ − λ
, (6)

and

Lψ{[ψ(t)− ψ(a)]β−1Eθ,β(λ [ψ(t)− ψ(a)]θ} =
sθ−β

sθ − λ
. (7)

Theorem 2.2. Assume that θ > 0, (n = [θ] + 1) and f(t), D1;ψf(t), D2;ψf(t), ..., Dn−1;ψf(t) are continuous

function on each interval (a,∞) and of ψ(t)-exponential order, while CDθ;ψ
a+
f(t) is piecewise continuous on

[a, t]. Then

Lψ

{
CDθ;ψ

a+
f(t)

}
= sθLψ{f(t)} −

n−1∑
k=0

sθ−k−1Dk;ψ f(a), (8)

where Dj;ψ =
(

1
ψ′(t)

d
dt

)j
.

De�nition 2.6. The generalized convolution of f and g de�ned by

(f ∗ψ g) (t) =

∫ t

a
f(τ)g

(
ψ−1[ψ(t) + ψ(a)− ψ(τ)]

)
ψ′(τ)dτ,

where f and g are piecewise continuous functions at each interval [a, b] and of exponential order. Moreover,
we have Lψ {f ∗ψ g} = Lψ{f}Lψ{g}.

De�nition 2.7. A function u ∈ C[0, 1] ∩ L[0, 1] is said to be a solution of (3) if u satis�es the equation
CDθ,ψ

0+
φ(t) + wφ(t) = f(t, φ(t)), 0 < t ≤ 1, with the conditions φ(0) = φ0 > 0.

De�nition 2.8. A function φ ∈ C[0, 1] is called a positive solution of the problem (3) if φ(t) ≥ 0 for all
t ∈ [0, 1] and φ satis�es the problem (3).
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De�nition 2.9. The two-parameter function of the Mittag-Le�er is de�ned by the series expansion

Eθ,β(z) =
∞∑
n=0

zn

Γ(θn+ β)
, θ > 0, β ∈ C, z ∈ C.

For β = 1, we obtain the Mittag-Le�er function one parameter,

Eθ(z) =
∞∑
n=0

zn

Γ(θn+ 1)
, θ > 0, z ∈ C.

Lemma 2.3. The generalized Mittag-Le�er function Eθ,β(−φ) with φ ≥ 0 is completely monotonic if and
only if 0 < θ ≤ 1 and β ≥ θ. In other words, it yields

(−1)n
dn

dφn
Eθ,β(−φ) ≥ 0, ∀ n ∈ N.

Obiviously, 0 ≤ Eθ,β(−φ) ≤ 1

Γ(β)
where φ ≥ 0, 0 < θ ≤ 1 and β ≥ θ.

Lemma 2.4. Let θ, β, γ > 0 and λ ∈ R. Then we have

Iθ0+
[
(ψ(t)− ψ(0))β−1Eγ,β(λ (ψ(t)− ψ(0))γ)

]
= (ψ(t)− ψ(0))θ+β−1Eγ,θ+β(λ (ψ(t)− ψ(0))γ).

Moreover,∫ t

0
ψ′(s)(ψ(t)− ψ(s))θ−1Eθ,θ(λ (ψ(t)− ψ(s))θ)ds = [ψ(t)− ψ(0)]θEθ,θ+1(λ[ψ(t)− ψ(0)]θ).

Proof. By the De�nitions 2.1, 2.9 and Lemma 2.1, we get

Iθ,ψ0+

[
(ψ(t)− ψ(0))β−1Eγ,β(λ (ψ(t)− ψ(0))γ)

]
=

1

Γ(θ)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))θ−1

[
(ψ(s)− ψ(0))β−1Eγ,β(λ (ψ(s)− ψ(0))γ)

]
ds

=
1

Γ(θ)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))θ−1

[ ∞∑
n=0

λn

Γ(γn+ β)
(ψ(s)− ψ(0))γn+β−1

]
ds

=
∞∑
n=0

λn

Γ(θn+ β)
Iθ,ψ0+ (ψ(t)− ψ(0))γn+β−1

=
∞∑
n=0

λn

Γ(γn+ θ + β)
[ψ(t)− ψ(0)]θ+γn+β−1

= [ψ(t)− ψ(0)]θ+β−1Eγ,θ+β(λ (ψ(t)− ψ(0))γ .

Lemma 2.5. Let θ, β > 0 be arbitrary. Then for any c < 0 and σ1, σ2 ∈ [0, 1] ,

Eθ,θ+β(cσθ2) −→ Eθ,θ+β(cσθ1) as σ1 −→ σ2.

De�nition 2.10. Let (U, ‖.‖) be a Banach space and T : U → U. The operator T is a contraction operator
if there is an κ ∈ (0, 1) such that u, v ∈ U imply

‖Tu− Tv‖ ≤ κ‖u− v‖.

Theorem 2.3. [31] (Banach �xed point theorem). Let (U, d) be a non-empty complete metric space with a
contraction mapping T : U → U . Then, T has a unique �xed-point u in U .

Theorem 2.4. [31] (Schauder �xed point theorem). Let U be a Banach space and let Ξ a closed convex,
bounded subset of U . If T : Ξ −→ Ξ is a continuous map such that the set {Tu : u ∈ Ξ} is relatively compact
in U . Then T has at least one �xed point.
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3. Main results

In this section, we shall prove the existence and uniqueness of positive solution for a ψ−Caputo problem
(3). Before starting and proving the main results, we introduce the following lemma:

Lemma 3.1. Let 0 < θ < 1 and f : [0, 1] × R+ → R+ is a continuous function, and ψ : [0, 1] → R+ is a
strictly increasing function such that ψ′(t) 6= 0, for all t ∈ [0, 1]. Then the fractional integral equation

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ. (9)

is a solution of ψ−Caputo problem (3).

Proof. One can apply the generalized Laplace transform introduced by [18] to get the required formula
(9).

Remark 3.1. In particular,

1. If w = 0, then the ψ−Caputo problem (3) has a unique solution de�ned by

φ(t) = φ0 +

∫ t

0
[ψ(t)− ψ(τ)]θ−1f(τ, φ(τ))ψ′(τ)dτ.

2. If ψ(t) = t, then the ψ−Caputo problem (3) reduces to problem (2) which has a unique solution de�ned
by

φ(t) = φ0Eθ(−wtθ)

+

∫ t

0
(t− τ)θ−1Eθ,θ(−w(t− τ)θ)f(τ, φ(τ))dτ.

Transform the ψ−Caputo problem (3) into a �xed point equation as follows

φ = Πφ, φ ∈ C[0, 1],

where the operator Π de�ned by

Πφ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ. (10)

Now, we need the following axiom lemma to prove our results.

Lemma 3.2. The operator Π : E → E is completely continuous.

Proof. In view of Lemma 2.3, and taking into consideration that f is continuous and nonnegative function,
we obtain that the operator Π : E → E is continuous.
Let us suppose that the function f : [0, 1]× Sγ → R+ be bounded by ζ, where Sγ = {φ ∈ E, ‖φ‖ ≤ γ}. Let
φ ∈ Sγ . Then, for t ∈ [0, 1] and using Lemma 2.3, we have

|Πφ(t)| ≤
∣∣∣φ0Eθ(−w[ψ(s)− ψ(0)]θ)

∣∣∣
+

∣∣∣∣∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

∣∣∣∣
≤ φ0 +

1

Γ(θ)

∫ t

0
[ψ(t)− ψ(τ)]θ−1|f(τ, φ(τ))ψ′(τ)|dτ

≤ φ0 +
ζ[ψ(t)− ψ(0)]θ

Γ(θ + 1)
,
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which implies

‖Πφ‖ ≤ φ0 +
ζ[ψ(1)− ψ(0)]θ

Γ(θ + 1)
.

This proves that the family Π(Sγ) = {Πφ : φ ∈ Sγ} is uniformly bounded. Now we shall show that the
family Π(Sγ) = {Πφ : φ ∈ Sγ} is an equicontinuous.

Consider φ ∈ Sγ . Then for any t1, t2 ∈ [0, 1] with t1 ≤ t2, we get

| |Πφ(t2)−Πφ(t1)| ≤
∣∣∣φ0Eθ(−w[ψ(t2)− ψ(0)]θ)− φ0Eθ(−w[ψ(t1)− ψ(0)]θ)

∣∣∣
+

∣∣∣∣∫ t2

0
[ψ(t2)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t2)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

−
∫ t1

0
[ψ(t1)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t1)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

∣∣∣∣
≤

∣∣∣φ0Eθ(−w[ψ(t2)− ψ(0)]θ)− φ0Eθ(−w[ψ(t1)− ψ(0)]θ)
∣∣∣

+
1

Γ(θ)

∫ t1

0

∣∣∣[ψ(t1)− ψ(τ)]θ−1 − [ψ(t2)− ψ(τ)]θ−1
∣∣∣f(τ, φ(τ))ψ′(τ)dτ

+
1

Γ(θ)

∫ t2

t1

∣∣∣[ψ(t2)− ψ(τ)]θ−1
∣∣∣|f(τ, φ(τ))ψ′(τ)|dτ

≤
∣∣∣φ0Eθ(−w[ψ(t2)− ψ(0)]θ)− φ0Eθ(−w[ψ(t1)− ψ(0)]θ)

∣∣∣
+

ζ

Γ(θ)

∫ t1

0

(
[ψ(t1)− ψ(τ)]θ−1 − [ψ(t2)− ψ(τ)]θ−1

)
ψ′(τ)dτ

+
ζ

Γ(θ)

∫ t2

t1

∣∣∣[ψ(t2)− ψ(τ)]θ−1
∣∣∣ψ′(τ)dτ

≤
∣∣∣φ0Eθ(−w[ψ(t2)− ψ(0)]θ)− φ0Eθ(−w[ψ(t1)− ψ(0)]θ)

∣∣∣
+

2ζ

Γ(θ + 1)

(
[ψ(t2)− ψ(t1)]

θ
)
.

As t1 → t2 and bearing in mind that the function y(t) = φ0Eθ(−w[ψ(t)−ψ(0)]θ) is continuous on [0, 1], the
right side of above inequality tends to zero. Which implies that Π(Sγ) is equicontinuous. As a consequence
of Arzela�Ascoli theorem, we can conclude that Π is compact.

Now will we de�ne the lower and upper control functions as follows,

De�nition 3.1. Let a, b ∈ R+(b > a). Then for any φ ∈ [a, b] ⊂ R+, we de�ne the upper-control function
f(t, φ) = sup

a≤η≤φ
f(t, η), and lower-control function f(t, γ) = inf

φ≤η≤b
f(t, η). It is clear that functions f(t, φ) and

f(t, φ) are non-decreasing on φ and satis�es

f(t, φ) ≤ f(t, φ) ≤ f(t, φ).

De�nition 3.2. Let φ(t), φ(t) ∈ E and a ≤ φ(t) ≤ φ(t) ≤ b comply with

CDθ,ψ
0+ φ(t) + wφ(t) ≥ f(t, φ(t)), 0 ≤ t ≤ 1,

φ(0) ≥ φ0,
or

φ(t) ≥ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ.
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Then φ(t) is called upper solution for the ψ-Caputo problem (3). On the other hand, we have

CDθ,ψ
0+ φ(t) + wφ(t) ≤ f(t, φ(t)), 0 ≤ t ≤ 1,

φ(0) ≤ φ0,

or

φ(t) ≤ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ.

Then φ(t) is also called lower solution for the ψ-Caputo problem (3).

Now, we are ready to give the main results of this paper.

Theorem 3.1. Assume that f : [0, 1]×R+ → R+ is continuous function, ψ as in Lemma 3.1, and φ, φ are a
pair of upper and lower solution of (3), respectively, then the ψ-Caputo problem (3) has at least one positive
solution. Moreover,

φ(t) ≤ φ(t) ≤ φ(t), t ∈ [0, 1].

Proof. De�ne the set K as follows

K := {φ ∈ E : φ(t) ≤ φ(t) ≤ φ(t), t ∈ [0, 1]}.

It is clear that K is a convex, bounded, and closed subset of the Banach space E, then taking into account
Lemma 3.2, we have the operator Π : K → K is completely continuous due to K ⊂ E. It is su�cient to show
that Π : K → K. By the De�nitions 3.1,3.2 and for any φ(t) ∈ K, we have φ(t) ≤ φ(t) ≤ φ(t), it follows that

Πφ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

≤ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

≤ φ(t). (11)

Similarly,

Πφ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

≥ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ

≥ φ(t) (12)

It follows from the equations (11) and (12) that

φ(t) ≤ Πφ(t) ≤ φ(t), 1 ≥ t ≥ 0,

which implies Πφ ∈ K, that proves that Π : K → K is compact. By means of �xed point theorem of
Schauder, Π has a �xed point in K. Hence the ψ-Caputo problem (3) has at least one positive solution φ(t)
in C[0, 1].
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Corollary 3.1. Let f : [0, 1]× R+ → R+ is continuous function, and there exist two constants M1,M2 ≥ 0
such that

M1 ≤ f(t, ς) ≤M2, (t, ς) ∈ [0, 1]× R+ (13)

Then the ψ-Caputo problem (3) has at least one positive solution φ(t) ∈ C[0, 1]. Moreover, for each t ∈ [0, 1],

φ(t) ≥ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M1[ψ(t)− ψ(τ)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ), (14)

and

φ(t) ≤ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M2[ψ(t)− ψ(τ)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ). (15)

Proof. From the De�nitions 3.1,3.2 and equation (13), we have

M1 ≤ f(t, ς) ≤ f(t, ς) ≤M2. (16)

Now, we consider the following ψ-Caputo problem

CDθ,ψ
0+ φ(t) + wφ(t) = M2, 0 ≤ t ≤ 1,

φ(0) = φ0 > 0
(17)

Then, the ψ-Caputo problem (17) has a positive solution

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M2

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)ψ′(τ)dτ.

Using Lemma 2.4, we get

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ) +M2[ψ(t)− ψ(0)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ).

On the other hand, by (16), we conclude that

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M2

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)ψ′(τ)dτ

≥ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ.

Thus, the function φ(t) is the upper solution of the ψ-Caputo problem (3).
Obviously, in the same way, the ψ-Caputo problem of the type

CDθ,ψ
0+ φ(t) + wφ(t) = M1, 0 ≤ t ≤ 1,

φ(0) = φ0 > 0,

has also a positive solution

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M1

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)ψ′(τ)dτ

= φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M1[ψ(t)− ψ(0)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ).
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On the opposite side, by (16), we get

φ(t) = φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+M1

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)ψ′(τ)dτ

≤ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)f(τ, φ(τ))ψ′(τ)dτ.

Thus, the function φ(t) is the lower solution of the ψ-Caputo problem (3). By Theorem (3.1), we get that
the ψ-Caputo problem (3) has at least one positive solution φ(t) ∈ C[0, 1], which produces the inequalities
(14) and (15).

Corollary 3.2. Assume that f : [0, 1]× R+ → [σ,∞) is continuous function where σ > 0 such that

0 < lim
φ→+∞

f(t, φ) < +∞. (18)

Then the ψ-Caputo problem (3) has at least one positive solution.

Proof. From the equation (18), suppose there exists positive constants m1 and m2 such that

f(t, φ) ≤ m1, (19)

for any φ ≥ m2, t ∈ [0, 1]. Consider Θ = max0≤t≤1,0≤φ≤m2 f(t, φ). It follows from equation (19) that

σ ≤ f(t, φ) ≤ m1 + Θ, (20)

forany φ ≥ 0, t ∈ [0, 1]. Therefore, according to Corollary 3.2, the ψ-Caputo problem (3) has at least one
positive solution φ ∈ C[0, 1]. which veri�es the subsequent inequalities

φ(t) ≥ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+σ[ψ(t)− ψ(0)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ).

and

φ(t) ≤ φ0Eθ(−w[ψ(t)− ψ(0)]θ)

+(m1 + Θ)[ψ(t)− ψ(0)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ).

Corollary 3.3. Assume that f : [0, 1] × R+ → [σ,∞) is continuous function where σ > 0 and there exist
two constants r1, r2 > 0, such that

max{f(t, φ) : (t, φ) ∈ [0, 1]× [0, r2]} ≤ r1Γ(θ + 1)− φ0. (21)

Then the ψ-Caputo problem (3) has at least one positive solution φ ∈ C[0, 1].

Proof. From the equation (21), we have

σ ≤ f(t, φ) ≤ r1Γ(θ + 1)− φ0,

for any (t, φ) ∈ [0, 1] × [0, r2]. In view of Corollary 3.1, we deduce directly that the ψ-Caputo problem (3)
has at least one positive solution φ ∈ C[0, 1]. which obeying

0 ≤ ‖φ‖ ≤ r1.
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The �nal result is based on the Banach �xed point theorem.

Theorem 3.2. Assume that f : [0, 1]× R+ → R+ is continuous and there exist A > 0 such that

‖f(t, y)− f(t, y∗)‖ ≤ A‖y − y∗‖, for t ∈ [0, 1] and y, y∗ ∈ R+.

Then the ψ-Caputo problem (3) has a unique positive solution provided that

Rψ,θ,A :=
[ψ(1)− ψ(0)]θ

Γ(θ + 1)
A < 1, (22)

where ψ as in Lemma 3.1.

Proof. Consider the operator Π de�ned by (10). Then we shall prove that this operator is a contraction in
C[0, 1]. Let φ, φ∗ ∈ C[0, 1]. Then by Lemmas 2.3,2.4 and for t ∈ [0, 1], we have

‖Π(φ)−Π(φ∗)‖ = sup
t∈[0,1]

|Π(φ)(t)−Π(φ∗)(t)|

≤ sup
t∈[0,1]

∫ t

0
[ψ(t)− ψ(τ)]θ−1Eθ,θ(−w[ψ(t)− ψ(τ)]θ)|f(τ, φ(τ))− f(τ, φ∗(τ))|ψ′(τ)dτ

≤ sup
t∈[0,1]

[ψ(t)− ψ(0)]θEθ,θ+1(−w[ψ(t)− ψ(0)]θ)‖f(·, φ(·))− f(·, φ∗(·))‖

≤ sup
t∈[0,1]

[ψ(t)− ψ(0)]θ

Γ(θ + 1)
A‖φ− φ∗‖

≤ Rψ,θ,A‖φ1 − φ2‖.

From the inequality (22), Π is contraction mapping. Hence, by Theorem 2.3, we can conclude that Π has
a unique �xed point which is the unique positive solution of ψ-Caputo problem (3) on [0, 1].

4. Example

In this section, we give two examples to illuminate our results.

Example 4.1. Consider the fractional di�erential equation with integral boundary condition

CD
1
2
;ψ

0+
u(t) + u(t) = ψ(t)− ψ(0) + 0.5

1+u(t) , 0 < t ≤ 1,

u(0) = 1,
(23)

where θ = 1
2 , f(t, u) = ψ(t)− ψ(0) + 0.5

1+u .

i) It is easy to see that f is continuous and nonnegative function. It follows that,

‖f(t, u)− f(t, v)‖ ≤ 1

2
‖u− v‖ = A‖u− v‖ ,

for all t ∈ [0, 1] and u, v ∈ [0,∞). Set ψ(t) := et. Then we �nd that

Rψ,θ,A =

√
e− 1

π
< 1.

All assumptions of Theorem 3.2 hold. Therefore, Theorem 3.2 guarantees that (23) has a unique
positive solution u(t) ∈ C[0, 1].
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ii) For all (t, φ) ∈ [0, 1]× R+, we have
1

2
≤ f(t, φ) ≤ e− 1

2
.

Thus, the condition (13) holds with M1 = 1
2 and M2 = e − 1

2 . Hence by Corollary 3.1, the problem
(23) has a positive solution which veri�es φ(t) ≤ φ(t) ≤ φ(t) where

φ(t) = E 1
2
(−
(
et − 1

) 1
2 ) +

(
e− 1

2

)(
et − 1

) 1
2 E 1

2
, 3
2
(−
(
et − 1

) 1
2 ),

and

φ(t) = E 1
2
(−
(
et − 1

) 1
2 ) +

1

2

(
et − 1

) 1
2 E 1

2
, 3
2
(−
(
et − 1

) 1
2 )

are respectively the upper and lower solutions of the problem (23).

iii) For all (t, φ) ∈ [0, 1]× R+, we have

0 < lim
φ→+∞

f(t, φ) < e− 1.

Thus, the condition (18) holds with M1 = 1
2 and M2 = e − 1

2 . Hence by Corollary 3.2, the problem
(23) has a positive solution.

iv) Let σ = 1
2 and r2 = 1

3 , there exists r1 ∈ (0,+∞) such that

max{f(t, φ) : (t, φ) ∈ [0, 1]× [0,
1

3
]} = e− 1 +

3

8
≤ r1

√
π

2
− 1,

Thus, the condition (21) holds with M1 = 1
2 and M2 = e − 1

2 . Hence by Corollary 3.3, the problem
(23) has a positive solution φ satis�es 0 ≤ ‖φ‖ ≤ r1.
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