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NUMERICAL SOLUTIONS OF TIME FRACTIONAL
KORTEWEG—DE VRIES EQUATION AND ITS STABILITY

ANALYSIS

ASIF YOKUŞ

Abstract. In this study, the fractional derivative and finite difference oper-
ators are analyzed. The time fractional KdV equation with initial condition
is considered. Discretized equation is obtained with the help of finite differ-
ence operators and used Caputo formula. The inherent truncation errors in the
method are defined and analyzed. Stability analysis is explored to demonstrate
the accuracy of the method. While doing this analysis, considering conserva-
tion law, with the help of using the definition discovered by Lax-Wendroff,
von Neumann stability analysis is applied. The numerical solutions of time
fractional KdV equation are obtained by using finite difference method. The
comparison between obtained numerical solutions and exact solution from ex-
isting literature is made. This comparison is highlighted with the graphs as
well. Results are presented in tables using the Mathematica software package
wherever it is needed.

1. Introduction

Nowadays, one of the developing conceptions is the fractional differential equa-
tions. This notion began to develop since 17th century with the help of several
mathematicians’ studies on differential and integration, like Leibniz, Euler, La-
grange, Abel, Liouville etc. [1, 2, 3]. (0.5)

th order derivative was defined by Leibniz
in the year 1695. Riemann-Liouville, Hadamard, Grunwald-Letnikov, Riesz and
Caputo have given the integral inequalities to the literature. In 2006, by Kilbas,
Srivastava, Trujillo and in 1993 by Samko, Kilbas, Marichev defined the fractional
theory and different derivatives with developments [4, 5].
The exact solutions of the fractional differential equations may not be easily

obtained, so we need numerical methods for fractional differential equations. One
of them is finite different method and it is one of the most popular methods of
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numerical solution of partial differential equations. There are some studies about
this method’s stability analysis. B.F. Feng, in his study, examined Von Neumann’s
Stability analysis by linearizing Korteweg-de Vries (in short, KdV) equation.
In this study, classical partial differential equations have been extended to the

fractional partial differential equations. There are many applications of this equa-
tion in the literature. The fractional partial differential equations have been used in
applications such as fluid, flow, finance, hydrology and others [6, 21]. In this paper,
we investigate finite difference numerical methods to solve the time fractional KdV
equation of the form [22]

∂αu(x, t)

∂tα
+ 6u(x, t)

∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0, (1.1)

u(x, 0) = u0, a ≤ x ≤ b and u(a, t) = u(b, t) = 0, 0 < t ≤ T , where 0 < α ≤ 1. Eq.
(1.1) uses a Caputo fractional derivative of order α, defined by

∂αf(x, t)

∂tα
=

1

Γ(m− α)

∫ t

0

∂m

∂ξm f(x, ξ)

(t− ξ)α−m+1
dξ (1.2)

where m is an integer that m− 1 < α ≤ m. The function Γ(.) is called as Gamma
function.

2. Analysis of Finite Difference Method

Let us define some notations to describe the finite forward difference method.
∆x is the spatial step, ∆t is the time step, xi = a+i∆x, i = 0, 1, 2, . . . , N points are
the coordinates of mesh and N = b−a

∆x , tj = j∆t, j = 0, 1, 2, . . . ,M and M = T
∆t .

The function u(x, t) is the value of the solution at these grid points which are
u(xi, tj) ∼= ui,j , where we denote by ui,j the numerical estimate of the exact value
of u(x, t) at the point (xi, tj). Now, we define the difference operators as

Htui,j = ui,j+1 − ui,j , (2.1)

Hxui,j = ui+1,j − ui,j , (2.2)

Hxxui,j = ui+1,j − 2ui,j + ui−1,j , (2.3)

Hxxxui,j = ui+2,j − 2ui+1,j + 2ui−1,j − ui−2,j . (2.4)

Thus, partial derivatives are approximated through the finite difference operators
as

∂u

∂x

∣∣∣∣
i,j

=
Hxui,j

∆x
+O(∆x2), (2.5)

∂3u

∂x3

∣∣∣∣
i,j

=
Hxxxui,j

2 (∆x)
3 +O(∆x2). (2.6)
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According to the shifted Caputo definition [23],

∂αu(x, t)

∂tα
∼=
{

h−α

Γ(2−β)Htu+ h−α

Γ(2−β)

∑i
k=1 Htui,j−kf(k), j ≥ 1

h−α

Γ(2−β)Htui,0, j = 0
(2.7)

There are many studies in the literature on fractional derivatives of Taylor Series.
The generalized Taylor series which is in these studies has been awarded by Odibat
[24].

∂αu(x, t)

∂tα

∣∣∣∣
i,j

= Γ(α+ 1)(∆t)−βHtui,j +O(∆t2α). (2.8)

In the finite difference method, substituting Eqs. (2.5), (2.6) and (2.7) into Eq.
(1.1) can be written as indexed

ui+1,j =
6(∆x)2u2

i,j + 1
2 (2ui+1,j +Hxxxui,j) + ϑ

[
Htui,j −

∑j
k=1 f(k)(Htui,j−k)

]
−1 + 6(∆x)2ui,j

,

(2.9)

where ϑ = (∆x)3

(∆t)αΓ(2−α) , f(k) = −k1−α + (1 + k)1−α and the initial values ui,0 =

u0(xi).

3. Consistency Analysis and Truncation Error

In this section, we investigate the consistency the Eq. (1.1) by the finite difference
method. At first, Taylor series expansions can be given in the form as follows,

ui+1,j = ui,j + ∆x
∂u

∂x
+ (∆x)2 ∂

2u

∂x2
+O(∆x3), (3.1)

ui,j+1 = ui,j + ∆t
∂u

∂t
+ (∆t)2 ∂

2u

∂t2
+O(∆t3), (3.2)

ui−1,j = ui,j −∆x
∂u

∂x
+ (∆x)2 ∂

2u

∂x2
−O(∆x3), (3.3)

ui+2,j = ui,j + 2∆x
∂u

∂x
+ (2∆x)2 ∂

2u

∂x2
+O(∆x3), (3.4)

ui−2,j = ui,j − 2∆x
∂u

∂x
+ (2∆x)2 ∂

2u

∂x2
−O(∆x3). (3.5)

Now, let us define an operator L,

L =
∂

∂t
+ 6u

∂

∂x
+

∂3

∂x3
. (3.6)

The indexed form of operator L can be written as

Li,j =
Htui,j

∆t
+ 6u

Hxui,j
∆x

+
Hxxxui,j

2 (∆x)
3 . (3.7)

If we substitute the indexed form Eqs. (3.1), (3.2), (3.3), (3.4), and Eq. (3.5) into
the Eq. (3.7) and do some necessary manipulations, then the approach will be
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∆t→ 0, and ∆x→ 0. So the Eq. (3.7) will be the same as left hand side of the Eq.
(1.1). This conclusion shows us that the Eq. (1.1) is consistent by finite difference
method.

Theorem 3.1. The truncation error of the finite difference method Eq. (1.1) to
the KdV equation is O((∆t)2α + (∆x)2).

Proof. Substituting Eqs. (2.5), (2.6) and (2.8) into Eq. (1.1) we arrive at

Γ(α+1)(∆t)−βHtui,j+O(∆t2α)+6ui,j

(
Hxui,j

∆x
+O(∆x2)

)
+

(
Hxxxui,j

2 (∆x)
3 +O(∆x2)

)
= 0.

(3.8)
If the necessary corrections are made in Eq. (3.8), it becomes

Γ(α+ 1)(∆t)−βHtui,j + ui,j
Hxui,j

∆x
+ δ

Hxxxui,j

2 (∆x)
3 +O(∆t2α + ∆x2) = 0. (3.9)

Eq. (1.1) can be written as indexed

Γ(α+ 1)(∆t)−βHtui,j + ui,j
Hxui,j

∆x
+ δ

Hxxxui,j

2 (∆x)
3 = 0. (3.10)

The truncation error is O(∆t2α + ∆x2). �

4. Linear Stability Analysis

In this section, we mainly study the stability for the finite difference method. To
describe this method, we consider the first-order conservation equation

∂u

∂t
+ τ

∂u

∂x
= 0, (4.1)

where u = u(x, t) is a physical function of the space variable x and time t. This
equation is frequently encountered in applied mathematics. Lax and Wendroff
studies using form Eq. (4.1) [25]. Substituting the Eq. (4.1) into Eq. (1.1) and
choosing α = 1, yields:

− τ ∂u
∂x

+ 6u(x, t)
∂u(x, t)

∂x
+
∂3u(x, t)

∂x3
= 0, (4.2)(

−τ u+ 3u2 +
∂2u(x, t)

∂x2

)
x

= 0. (4.3)

If we integrate the Eq. (4.3) with respect the variable x and choose the zero as an
integration, we have

− τ u+ U +
∂2u(x, t)

∂x2
= 0, (4.4)

where U = 3u2. The linear indexed form of the equation given Eq. (4.4) is as follow

− τ u+ U +
Hxx

(∆x)2
= 0. (4.5)
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Theorem 4.1. The finite difference method for the KdV equation is unconditionally
linear stable.

Proof. We consider Von Neumann’s Stability of the finite difference method for the
KdV equation. Let

ui,j = u(i∆x, j∆t) = u(p, q) = λqeIξp, ξ ∈ [−π, π] , (4.6)

where p = i∆x, q = j∆t and I =
√
−1. If we substitute the Eq. (4.6) into the Eq.

(4.5) yields:

λ =

[
− U(∆x)2

−2 + τ(∆x)2 + 2Cosξ

] 1
q

. (4.7)

According to the Von Neumann’s Stability analysis; if |λ| ≤ 1, finite difference
method for the KdV equation is stable.

|λ| ≤ 1⇔ |∆x| =
√
−2 + 2Cosξ

U − τ . (4.8)

For the Eq. (4.8) the stability depends on the constant τ . However, due to the
nature of the method of finite difference, stability will be examined with respect to
parameter h. For this reason, if we choose ξ = π

2 , U = 2 and τ = 1 in the Eq. (4.8)
and have −1 ≤ ∆x ≤ 1, then the finite difference method for the KdV equation is
stable. By using the Eq. (4.7), neutral stability curve can be drawn [26] for the
example Eq. (4.8).

The neutral stability curve is locally a parabola with minimum (0, 0). As shown
in the graphs, if we choose the ∆x close to zero, finite difference methods for the
KdV equation is stable. In other words, the finite difference algorithm is stable if
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xi tj NumericalSolution ExactSolution AbsoluteError

0.00 0.02 0.500301 0.499950 3.51144x10−4

0.02 0.02 0.500452 0.500000 4.51842x10−4

0.04 0.02 0.500502 0.499950 5.52118x10−4

0.06 0.02 0.500452 0.499800 6.51893x10−4

0.08 0.02 0.500301 0.499550 7.51088x10−4

0.10 0.02 0.500050 0.499201 8.49627x10−4

0.12 0.02 0.499699 0.498752 9.47433x10−4

Table 1. Numerical and exact solutions of Eq. (1.1) and absolute
errors when ∆x = 0.02 and 0 ≤ x ≤ 1

the round-off errors are small enough. The finite difference algorithm is said to be
stable if the round-off errors are small enough for all i as j → ∞ [25]. �

5. Numerical Example

We consider the fractional KdV equation of the form Eq. (1.1) with the initial
condition as follow:

u0(x) =
1

2
Sech2

(x
2

)
,−1 ≤ x ≤ 1. (5.1)

In the following numerical experiments we choose α = 0.8. The fractional KdV
Eq. (1.1) together with the above initial condition is constructed [22] such that the
exact solution is

u(x, t) =
1

2
Sech2

(
x− t

2

)
. (5.2)

The numerical solutions are obtained from the finite difference schemes discussed
above considering Eq. (2.9). The numerical solutions in the interval 0 ≤ x ≤ 1:
and the numerical solutions in the interval −1 ≤ x < 0:

xi tj NumericalSolution ExactSolution AbsoluteError

-0.02 0.02 0.500050 0.499800 2.50105x10−4

-0.04 0.02 0.499699 0.499550 1.48806x10−4

-0.06 0.02 0.499248 0.499201 4.73301x10−4

-0.08 0.02 0.498698 0.498752 5.42414x10−4

-0.10 0.02 0.498048 0.498204 1.55825x10−4

-0.12 0.02 0.497301 0.497558 2.57338x10−4

Table 2. Numerical and exact solutions of Eq. (1.1) and absolute
errors when ∆x = 0.02 and −1 ≤ x < 0

We know that truncation error will be small if ∆x and ∆t choose suffi ciently
small. There are appointed values close to zero indicate that the truncation error
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Figure 1. Numerical solution of Eq. (1.1) for finite difference and
an expansion method

Figure 2. Exact solution of Eq. (1.1) for an expansion method
and 0 < α ≤ 1

becomes very small. The behavior of the numerical results of both numerical and
exact solutions can be seen in the following graph by using value of ∆x = 0.2.
Considering the Eq. (2.9) which is obtained by using finite difference method,
as can be observed in the graph, in the interval −1 ≤ x < −0.37the potential
u increases with increasing the values of α. Nevertheless, the potential value u
decreases with increasing the values of α at −0.37 < x ≤ 1. We can see this
situation in the figures as follow. The numerical solutions by using Eq. (2.9) and
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Figure 3. Exact solution (left) and Numerical solution (right) of
Eq. (1.1)

the exact solution by using Eq. (5.2) are depicted in Fig. ?? We demonstrate how
numerical solutions of the KdV equation are close to corresponding exact solution.

6. Conclusions

In this study, we considered the numerical solution of fractional dispersion equa-
tion by using Finite Difference Method. The method can be applied to many other
nonlinear equations. What is more, this method is also computerizable, which al-
lows us to perform complicate and tedious algebraic calculation on a computer.
Fractional finite difference methods are useful to solve the fractional differential
equations. In some way, these numerical methods have similar form with the classi-
cal equations. Some of them can be seen as the generalizations of the finite difference
methods for the typical differential equations. The numerical method for solving
the fractional reaction-dispersion equation has been described and demonstrated.
Finally, we point out that, for given equation with initial values, the corresponding
analytical and numerical solutions are obtained according to the recurrence Eq.
(2.9) using Mathematica software package.
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