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APPROXIMATION BY NÖRLUND AND RIESZ MEANS IN
WEIGHTED LEBESGUE SPACE WITH VARIABLE EXPONENT

AHMET TESTICI

Abstract. We investigate the approximation properties of Nörlund and Riesz
means of trigonometric Fourier series are investigated in the subset of weighted
Lebesgue space with variable exponent.

1. Introduction and Main results

Let T := [0, 2π] and let p (·) : T → [1,∞) be a Lebesgue measurable 2π peri-
odic function. We suppose that the considered exponent functions p (·) satisfy the
condition

1 < p− := ess inf
x∈T

p (x) ≤ ess sup
x∈T

p (x) := p+ <∞.

In addition to this requirement if there exist a positive constant c such that

|p (x)− p (y)| ln (1/ |x− y|) ≤ c, x, y ∈ T, 0 < |x− y| ≤ 1/2

then we say that p (·) ∈ P0 (T). The variable exponent Lebesgue space Lp(·) (T)
is defined as the set of all Lebesgue measurable 2π periodic functions f such that
ρp(·) (f) :=

∫ 2π
0
|f (x)|p(x) dx <∞. Equipped with the norm

‖f‖p(·) = inf
{
λ > 0 : ρp(·) (f /λ) ≤ 1

}
Lp(·) (T), p (·) ∈ P0 (T) becomes a Banach space. The fundamental properties of
Lebesgue spaces with variable exponent are explained in monographs [3, 4, 5].
For a given weight ω we define the weighted variable Lebesgue space Lp(·)ω (T)

as the set of all measurable 2π periodic functions f such that fω ∈ Lp(·) (T). The
norm of Lp(·)ω (T) can be defined as ‖f‖p(·),ω := ‖fω‖p(·).
If p (·)=constant, then L

p(·)
ω (T) coincides with the weighted Lebesgue spaces

Lpω (T). In this case Ap Muckenhoupt class becomes important point. In order

Received by the editors: September 17, 2018; Accepted: April 19, 2019.
2010 Mathematics Subject Classification. Primary 42A10, 41A25; Secondary 41A30.
Key words and phrases. Weighted Lebesgue space with variable exponent, Lipschitz class,

Nörlund mean, Riesz mean, Muckenhoupt weight, Fourier series.

c©2019 Ankara University
Communications Facu lty of Sciences University of Ankara-Series A1 Mathematics and Statistics

2014



APPROXIMATION BY NÖRLUND AND RIESZ MEANS 2015

to prove boundedness of some operators and crucial theorems of harmonic analy-
sis in weighted Lebesgue spaces it is needed that weight function ω belongs to
Ap Muckenhoupt class. Similar situations are valid in the weighted Lebesgue space
with variable exponent Lp(·)ω (T) . In our investigations we will use the Muckenhoupt
weights class Ap(·) (T) defined as

Definition 1. For a given exponent p (·) we say that ω ∈ Ap(·) (T) if

sup
Bj

|Bj |−1
∥∥∥ωχBj

∥∥∥
p(·)

∥∥∥ω−1χBj

∥∥∥
p′(·)

<∞, 1/p (·) + 1/p′ (·) = 1,

where supremum is taken over all open intervals Bj ⊂ T with the characteristic
functions χBj

.

Let f ∈ L1 (T) and let

f (x) ∼ a0
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) (1)

be Fourier series of f where

ak := ak(f) =
1

2π

π∫
−π

f (t) cos ktdt and bk := bk(f) =
1

2π

π∫
−π

f (t) sin ktdt

are Fourier coeffi cients of f. Let also

u0 (f) (x) :=
a0
2
, uk (f) (x) := ak cos kx+ bk sin kx , k = 1, 2, ..., n

where ak and bk are Fourier coeffi cients of f . We denote the n−th partial sums of
the series (1) by

Sn (f) (x) :=

n∑
k=0

uk (f) (x) , n = 0, 1, 2, ... .

Let (pn)
∞
n=0 be sequence of positive real numbers. We define the Nörlund and

Riesz means of the series (1), respectively,

Nn (f) (x) :=
1

Pn

n∑
m=0

pn−mum (f) (x) ,

and

Rn (f) (x) :=
1

Pn

n∑
m=0

pmum (f) (x) .

where Pn =
∑n
m=0 pm and P−1 = p−1 := 0. In the case of pn = 1 for all n =

0, 1, 2, .., the both ofNn (f) andRn (f)means coincide with the Cesàro mean σn (f),
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defined as

σn (f) (x) :=
1

n+ 1

n∑
m=0

um (f) (x) .

Definition 2. Let f ∈ Lp(·)ω (T), p (·) ∈ P0 (T) and ω (·) ∈ Ap(·) (T). We define the
modulus of smoothness as

Ω (f, δ)p(·),ω := sup
|h|≤δ

∥∥∥∥∥ 1

h

∫ h

0

[f (x+ t)− f (x)] dt

∥∥∥∥∥
p(·),ω

, δ > 0.

The correctness of this definition follows from the boundedness of the maximal
operator

M : f →Mf (x) := sup
B�x

1

|B|

∫
B

|f (t)| dt

in the Lp(·)ω (T), where B is any open subinterval of T (see, [7]). So we have that
if ω (·) ∈ Ap(·) (T), then the maximal operator M is bounded in Lp(·)ω (T), p (·) ∈
P0 (T). In this case there exist a positive constant c1(p) such that the inequality

‖Mf‖p(·),ω ≤ c1(p) ‖f‖p(·),ω (2)

holds for every f ∈ L
p(·)
ω (T). By this fact if f ∈ L

p(·)
ω (T) , p (·) ∈ P0 (T) and

ω (·) ∈ Ap(·) (T), then there exists a positive constant c2(p) such that

Ω (f, δ)p(·),ω ≤ c2(p) ‖f‖p(·),ω . (3)

Moreover, it can be shown that if f, g ∈ Lp(·)ω (T), then

Ω (f + g, δ)p(·),ω ≤ Ω (f, δ)p(·),ω + Ω (g, δ)p(·),ω and also lim
δ→0

Ω (f, δ)p(·),ω = 0.

W
p(·),r
ω (T), r = 1, 2, ..., denotes the class of all Lebesgue measurable 2π periodic

and r − 1 times continuously differentiable functions such that f (r) ∈ Lp(·)ω (T).

We define the variable exponent Lipschitz class Lipp(·)r (α, ω), 0 < α ≤ 1, as

Lipp(·)r (α, ω) :=

{
f ∈W p(·),r

ω (T) : Ω
(
f (r), δ

)
p(·),ω

= O (δα) , δ > 0

}
.

In the classical case the approximation properties of σn (f) in classical Lipschitz
classes where 1 ≤ p < ∞ and 0 < α ≤ 1 were investigated by Quade in [8]. The
Quade’s results were generalized by Mohapatra and Russel [9], Chandra [10, 11]
and Leindler [12]. In [11] under the some conditions related with the sequence
(pn)

∞
n=0 Chandra proved satisfactory results about approximation by the Nn (f)

and Rn (f) means in in classical Lipschitz classes where 1 ≤ p <∞ and 0 < α ≤ 1.
Guven carried and extended the results obtained in [11] to weighted Lipschitz classes
where 1 < p < ∞ (see, [13, 14]). In the Lebesgue space with variable exponent
space Guven and Israfilov investigated the approximation properties of Nn (f) and
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Rn (f) means for Lipschitz classes in [15]. After that Guven extended this results
to triangular matrix transforms in [16]. In weighted Lebesgue space with variable
exponent Israfilov and Testici were investigated the approximation properties of
matrix transform of Fourier series in [18]. In the Lebesgue space with variable
exponent approximation Nörlund and Riesz submethods were studied in [20]. In [21]
the results obtained in [13] generalize to weighted Lorentz space for the derivatives
of functions.

In this work we investigate the approximation properties of the Nörlund and
Riesz means of the Fourier series in Lipp(·)r (α, ω), 0 < α ≤ 1 where p (·) ∈ P0 (T) ,
ω ∈ Ap(·) (T), also it is important to emphasize that obtained results in this work
can be considered that generalizations of the given results in [15].
A sequence of positive real numbers (pn)

∞
n=0 is called almost monotone increasing

if there exists a constant K, depending only on the sequence (pn)
∞
n=0 such that for

all n ≥ m the inequality
pm ≤ Kpn

holds. Almost monotone increasing sequences are denoted by (pn)
∞
n=0 ∈ AMIS.

Along this work we will use the notations

∆gn := gn − gn+1 , ∆mg (n,m) := g (n,m)− g (n,m+ 1) ,

and f = O (g) means that there exists some positive constant c such that f ≤
cg. Moreover c(·), c1(·), c2(·), ..., denote the constants (in general different in the
different relations) depending in general on the parameters given in the brackets
and independent of n.
Our main results are following:

Theorem 3. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) , 0 < α < 1, and let (pn)
∞
n=0 be a

sequence of positive real numbers such that (pn)
∞
n=0 ∈ AMIS and

(n+ 1)
r+1

pn = O (Pn) . (4)

If f ∈ Lipp(·)r (α, ω), then the estimate

‖f −Nn (f)‖p(·),ω = O
(
n−(α+r)

)
, n = 1, 2, ...,

holds.

Theorem 4. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and let (pn)
∞
n=0 be a sequence of

positive real numbers such that
n−1∑
k=0

|∆pk| = O
(
Pn
nr+1

)
. (5)

If f ∈ Lipp(·)r (1, ω) , then the estimate

‖f −Nn (f)‖p(·),ω = O
(
n−(1+r)

)
, n = 1, 2, ...,
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holds.

Theorem 5. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) , and let (pn)
∞
n=0 be a sequence of

positive real numbers such that
n−1∑
m=0

∣∣∣∣∆( Pm
m+ 1

)∣∣∣∣ = O
(

Pn

(n+ 1)
r+1

)
. (6)

If f ∈ Lipp(·)r (α, ω), then the estimate

‖f −Rn (f)‖p(·),ω = O
(
n−(1+r)

)
, n = 1, 2, ...,

holds.

2. Auxiliary results

In weighted Lebesgue space with variable exponent the approximation problems
were studied using some different type modulus of smoothness in [17], [1], [2]. In
these works the weight function ω satisfies the condition that ω−p0 ∈ A(p(·)/p0)′

for some 1 < p0 < p−. After that under the more intelligible condition, namely
ω ∈ Ap(·), the direct and inverse theorems of approximation theory in the weighted
Lebesgue space with variable exponent were proved in [18] and [19], respectively.
For the formulations of the results obtained in this work we need some auxiliary
results proved in [18, 19].

Let Πn be the class of trigonometric polynomials of degree not exceeding n. The
best approximation number of f ∈ Lp(·)ω (T) is defined as

En (f)p(·),ω := inf
{
‖f − Tn‖p(·),ω : Tn ∈ Πn

}
, n = 0, 1, 2, .. ,

and if En (f)p(·),ω = ‖f − T ∗n‖p(·),ω, then T ∗n ∈ Πn is called the best approximation

trigonometric polynomial to f in Lp(·)ω (T).

Lemma 6. [18] Let p (·) ∈ P0 (T) and ω (·) ∈ Ap(·) (T). Then there exists a positive
constant c3(p) such that the inequality

‖Sn (f)‖p(·),ω ≤ c3(p) ‖f‖p(·),ω , n = 1, 2, ...,

holds for every f ∈ Lp(·)ω (T) .

Lemma 7. [19] Let p (·) ∈ P0 (T) and ω (·) ∈ Ap(·) (T). Then there exists a positive
constant c4(p) such that the inequality

‖σn (f)‖p(·),ω ≤ c4(p) ‖f‖p(·),ω , n = 1, 2, ...,

holds for every f ∈ Lp(·)ω (T) .
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Lemma 8. [18] If f ∈ Lp(·)ω (T) , p (·) ∈ P0 (T), ω (·) ∈ Ap(·) (T), then the estimate

En (f)p(·),ω = O
(

Ω (f, 1/n)p(·),ω

)
, n = 1, 2, ...,

holds.

Lemma 9. [19] If f ∈ W p(·),1
ω (T), p (·) ∈ P0 (T), ω (·) ∈ Ap(·) (T), then there exist

a positive constant c5 (p) such that the inequality

‖f − Sn (f)‖p(·),ω ≤
c5 (p)

n
En (f ′)p(·),ω , n = 1, 2, ...,

holds.

Lemma 10. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and 0 < α ≤ 1. If f ∈
Lip

p(·)
r (α, ω), then the estimate

En (f)p(·),ω = O
(
n−(α+r)

)
, n = 1, 2, ...,

holds.

Proof. Let f ∈ Lip
p(·)
r (α, ω). Since f ∈ W

p(·),r
ω (T) and r = 1, 2, ..., Lemma 9

implies that

En (f)p(·),ω ≤
c5 (p)

n
En (f ′)p(·),ω , n = 1, 2, ...,

Thus, consecutively r times, using this inequality, we have

En (f)p(·),ω ≤
c6 (p)

nr
En

(
f (r)

)
p(·),ω

. (7)

By Lemma 8 and (7) we obtain

En (f)p(·),ω ≤
c6 (p)

nr
En

(
f (r)

)
p(·),ω

≤ c7 (p)

nr
Ω
(
f (r), 1/n

)
p(·),ω

= O
(
n−(α+r)

)
.

�
Lemma 11. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) and 0 < α ≤ 1. If f ∈ Lipp(·)r (α, ω),
then the estimate

‖f − Sn (f)‖p(·),ω = O
(
n−(α+r)

)
, n = 1, 2, 3...,

holds.

Proof. Let Lipp(·)r (α, ω) , r = 1, 2, ..., and let T ∗n (n = 0, 1, 2, ...) be the best ap-
proximation trigonometric polynomial to f in Lp(·)ω (T). Applying Lemma 10 we
have

‖f − T ∗n‖p(·),ω = En (f)p(·),ω = O
(
n−(α+r)

)
.

By Lemma 6 for n = 1, 2, 3..., we obtain

‖f − Sn (f)‖p(·),ω ≤ ‖f − T ∗n‖p(·),ω + ‖T ∗n − Sn (f)‖p(·),ω
= ‖f − T ∗n‖p(·),ω + ‖Sn (T ∗n)− Sn (f)‖p(·),ω
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= O
(
‖f − T ∗n‖p(·),ω

)
= O

(
n−(α+r)

)
.

�

Lemma 12. Let p (·) ∈ P0 (T) , ω (·) ∈ Ap(·) (T) . If f ∈ Lip
p(·)
r (1, ω), then the

estimate
‖Sn (f)− σn (f)‖p(·),ω = O

(
n−(1+r)

)
, n = 1, 2, 3...,

holds.

Proof. Let f ∈ Lipp(·)r (1, ω) , r = 1, 2, ..., and let T ∗n (n = 0, 1, 2, ...) be the best ap-
proximation trigonometric polynomial to f in Lp(·)ω (T). Since f ∈ Lp(·)ω (T) applying
Lemma 7 and Lemma 10 we have

‖f − σn (f)‖p(·),ω ≤ ‖f − T ∗n‖p(·),ω + ‖T ∗n − σn (f)‖p(·),ω
= ‖f − T ∗n‖p(·),ω + ‖σn (T ∗n − f)‖p(·),ω
= O

(
‖f − T ∗n‖p(·),ω

)
= O

(
n−(1+r)

)
. (8)

By Lemma 11 for α = 1 and (8) we obtain

‖Sn (f)− σn (f)‖p(·),ω ≤ ‖Sn (f)− f‖p(·),ω + ‖f − σn (f)‖p(·),ω
= O

(
n−(1+r)

)
.

�

Lemma 13. Let (pn)
∞
n=0 be a sequence of positive numbers. If (pn)

∞
n=0 ∈ AMIS

and (n+ 1)
r+1

pn = O (Pn) , then
n∑

m=1

m−(α+r)pn−m = O
(
n−(α+r)Pn

)
for r = 0, 1, 2, ..., and 0 < α < 1.

Proof. Let r = 0, 1, 2, ..., and 0 < α < 1. In the case of r = 0, Lemma 13 was
proved in [12]. Similar way we can prove the other part of Lemma. Let k be integer
part of n/2. If (pn)

∞
n=0 ∈ AMIS and (n+ 1)

r+1
pn = O (Pn) , then

n∑
m=1

m−(α+r)pn−m ≤ Kpn

k∑
m=1

m−α + (k + 1)
−(α+r)

n∑
m=k+1

pn−m

= O
(
Pn/n

r+1
) k∑
m=1

m−α +O
(
n−(α+r)

)
Pn
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= O
(
n−(α+r)

)
Pn.

�

3. Proofs of the main results

Proof of the Theorem 3. Let 0 < α < 1. Since

f (x) =
1

Pn

n∑
m=0

pn−mf (x)

we have

f (x)−Nn (f) (x) =
1

Pn

n∑
m=0

pn−m {f (x)− Sm (f) (x)} .

By Lemma 11, Lemma 13 and (4) we obtain

‖f −Nn (f)‖p(·),ω ≤ 1

Pn

n∑
m=0

pn−m ‖f − Sm (f)‖p(·),ω

=
1

Pn

n∑
m=1

pn−mO
(
m−(α+r)

)
+
pn
Pn
‖f − S0 (f)‖p(·),ω

=
1

Pn
O
(
n−(α+r)Pn

)
+O

(
(n+ 1)

−(r+1)
)

= O
(
n−(α+r)

)
.

�

Proof of the Theorem 4. Let f ∈ Lipp(·)ω (1, ω) and
n−1∑
k=1

|∆pk| = O
(
Pn/n

r+1
)
. It is

clear that

Nn (f) (x) =
1

Pn

n∑
m=1

Pn−mum (f) (x) .

By Abel transform

Sn (f) (x)−Nn (f) (x) =
1

Pn

n∑
m=1

(Pn − Pn−m)um (f) (x)

=
1

Pn

n∑
m=1

∆m

(
Pn − Pn−m

m

)( m∑
k=1

kuk (f) (x)

)
+

1

n+ 1

n∑
k=1

kuk (f) (x) ,

hence

‖Sn (f)−Nn (f)‖p(·),ω ≤ 1

Pn

n∑
m=1

∣∣∣∣∆m

(
Pn − Pn−m

m

)∣∣∣∣
∥∥∥∥∥
m∑
k=1

kuk (f) (x)

∥∥∥∥∥
p(·),ω
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+
1

n+ 1

∥∥∥∥∥
n∑
k=1

kuk (f) (x)

∥∥∥∥∥
p(·),ω

.

Since

Sn (f) (x)− σn (f) (x) =
1

n+ 1

n∑
k=1

kuk (f) (x) ,

by Lemma 12 we get

1

n+ 1

∥∥∥∥∥
n∑
k=1

kuk (f) (x)

∥∥∥∥∥
p(·),ω

= O
(
n−(1+r)

)
.

Hence

‖Sn (f)−Nn (f)‖p(·),ω ≤
1

Pn

n∑
m=1

∣∣∣∣∆m

(
Pn − Pn−m

m

)∣∣∣∣O (m−r)+O
(
n−(1+r)

)
.

(9)
By a simple computations we have

∆m

(
Pn − Pn−m

m

)
=

1

m (m+ 1)

(
n∑

k=n−m
pk − (m+ 1) pn−m

)
and by induction one can easily obtain∣∣∣∣∣

n∑
k=n−m

pk − (m+ 1) pn−m

∣∣∣∣∣ ≤
m∑
k=1

k |pn−k+1 − pn−k| .

Thus,
n∑

m=1

∣∣∣∣∆m

(
Pn − Pn−m

m

)∣∣∣∣m−r ≤
n∑

m=1

∣∣∣∣∆m

(
Pn − Pn−m

m

)∣∣∣∣
≤

n∑
m=1

1

m (m+ 1)

(
m∑
k=1

k |pn−k+1 − pn−k|
)

=

n∑
k=1

k |pn−k+1 − pn−k|
(

n∑
m=k

1

m (m+ 1)

)

≤
n∑
k=1

k |pn−k+1 − pn−k|
( ∞∑
m=k

1

m (m+ 1)

)

=

n∑
k=1

|pn−k+1 − pn−k|

=

n−1∑
k=1

|∆pk| = O
(
Pn
nr+1

)
. (10)
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By (9) and (10) we have

‖Sn (f)−Nn (f)‖p(·),ω = O
(
n−(1+r)

)
. (11)

Combining Lemma 11 for α = 1 and (11) we obtain

‖f −Nn (f)‖p(·),ω ≤ ‖f − Sn (f)‖p(·),ω + ‖Sn (f)−Nn (f)‖p(·),ω

= O
(
n−(1+r)

)
.

�

Proof of the Theorem 6. By Abel transform,

Rn (f) (x) =
1

Pn

n−1∑
m=0

{Pm (Sm (f) (x)− Sm+1 (f) (x)) + PnSn (f) (x)}

=
1

Pn

n−1∑
m=0

Pm (−um+1 (f) (x)) + Sn (f) (x)

and hence we have

Rn (f) (x)− Sn (f) (x) = − 1

Pn

n−1∑
m=0

Pmum+1 (f) (x) . (12)

Using Abel transform
n−1∑
m=0

Pmum+1 (f) (x) =

n−1∑
m=0

Pm
m+ 1

(m+ 1)um+1 (f) (x)

=

n−1∑
m=0

∆

(
Pm
m+ 1

)( m∑
k=0

(k + 1)uk+1 (f) (x)

)

+
Pn
n+ 1

n−1∑
k=0

(k + 1)uk+1 (f) (x) .

By Lemma 12 and (6) we get∥∥∥∥∥
n−1∑
m=0

Pmum+1 (f) (x)

∥∥∥∥∥
p(·),ω

≤
n−1∑
m=0

∣∣∣∣∆( Pm
m+ 1

)∣∣∣∣
∥∥∥∥∥
m∑
k=0

(k + 1)uk+1 (f) (x)

∥∥∥∥∥
p(·),ω

+
Pn
n+ 1

∥∥∥∥∥
n−1∑
k=0

(k + 1)uk+1 (f) (x)

∥∥∥∥∥
p(·),ω

=

n−1∑
m=0

∣∣∣∣∆( Pm
m+ 1

)∣∣∣∣ (m+ 2) ‖Sm+1 (f)− σm+1 (f)‖p(·),ω

+Pn ‖Sn (f)− σn (f)‖p(·),ω
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=

n−1∑
m=0

∣∣∣∣∆( Pm
m+ 1

)∣∣∣∣O ((m+ 1)
−r
)

+O
(
Pn
nr+1

)
= O

(
Pn
nr+1

)
.

By (12) we have

‖Rn (f)− Sn (f)‖p(·),ω =
1

Pn

∥∥∥∥∥
n−1∑
m=0

Pmum+1 (f) (x)

∥∥∥∥∥
p(·),ω

=
1

Pn
O
(
Pn
nr+1

)
= O

(
n−(r+1)

)
.
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