
PAPER DETAILS

TITLE: The Topp-Leone generalized odd log-logistic family of distributions: properties,

characterizations and applications

AUTHORS: M Ç KORKMAZ,H M YOUSOF,M ALIZADEH,Gg HAMEDANI

PAGES: 1506-1527

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/676383



Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 2, Pages 1506—1527 (2019)
DOI: 10.31801/cfsuasmas.542988
ISSN 1303—5991 E-ISSN 2618-6470

Available online: March 21, 2019

http://communications.science.ankara.edu.tr/index.php?series=A1

THE TOPP-LEONE GENERALIZED ODD LOG-LOGISTIC
FAMILY OF DISTRIBUTIONS: PROPERTIES,
CHARACTERIZATIONS AND APPLICATIONS

M. KORKMAZ, H. M. YOUSOF, M. ALIZADEH, AND G.G. HAMEDANI

Abstract. A new family of distributions called the Topp-Leone generalized
odd log-logistic-G family is introduced and studied. We provide some math-
ematical properties of the new family including ordinary and incomplete mo-
ments, generating function and order statistics. We assess the performance of
the maximum likelihood estimators in terms of biases and mean squared errors
by means of two simulation studies. Finally, the usefulness of the family is il-
lustrated by means of two real data sets. The new model provides consistently
better fits than other competitive models for these data sets.

1. Introduction

Various continuous univariate models have been extensively used for modeling
data in many areas. So, several families of distributions have been constructed
by extending common classes of continuous distributions. These generalized dis-
tributions give high flexibility by adding one or more parameters to the baseline
model. The main goal of this article is to propose a new class of distributions from
the Topp-Leone model and the generalized odd log logistic model that can have
increasing and upside down bathtub hazard rate to be used for modeling lifetime
data. Recently, several properties of the Topp-Leone distribution have been in-
vestigated by several authors. The cumulative distribution function (cdf) of the
Topp-Leone distribution is given by

FTL (x;α) = {x (2− x)}α =
{

1− [1− x]
2
}α

, (1)

where 0 < x < 1 and α > 0 is a shape parameter. Recently, several properties
of the Topp-Leone distribution have been investigated by several authors such as
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Nadarajah and Kotz (2003), Ghitany et al. (2005), Zhou et al. (2006), Kotz and
Seier (2007), Zghoul (2011), Gen012) and Gen013).
On the other hand, generalized odd log-logistic (GOLL-G) family defined by

Cordeiro et al. (2017) has the following cdf

HGOLL−G (x;β, θ,ψ) = G (x;ψ)
βθ

{
G (x;ψ)

βθ
+
[
1−G (x;ψ)

θ
]β}−1

, (2)

where β, θ > 0 are shape parameters and G (x;ψ) is the baseline cdf with parameter
vector ψ. For θ = 1, the odd log-logistic-G (OLL-G) family, defined by Gleaton
and Lynch (2006), is obtained. The GOLL-G family is more flexible than OLL-G
family.
Many odd log-logistic-G families can be cited such as the Kumaraswamy odd log-

logistic family of distributions by Alizadeh et al. (2015), the Zografos-Balakrishnan
odd log-logistic family of distributions by Cordeiro et al. (2016a), the beta odd log-
logistic generalized family of distributions by Cordeiro et al. (2016b), the general-
ized odd log-logistic family of distributions by Cordeiro et al. (2017), the another
generalized odd log-logistic family of distributions by Haghbin et al. (2017), the
Topp-Leone odd log-logistic G (TLOLL-G) family of distributions by Brito et al.
(2017) and the exponential Lindley odd log-logistic G family by Korkmaz et al.
(2018).
This paper is organized as follows. In Section 2, we defined the new family. In

Section 3, we provide two special TLGOLL-G distributions. In Section 4, several
of its mathematical properties are derived. Section 5 provides some useful charac-
terization results. The maximum likelihood inference of the model parameters is
performed in Section 6 as well as two simulation studies are presented for maximum
likelihood estimations of the parameters in Section 7. Applications to two real data
sets illustrating the performance of the methodology have been proposed in Section
8. The paper is concluded in Section 9.

2. The new family

In this Section, we define a new flexible family of distributions with various
types of hazard rate and density flexibility. A method of generating families of
distributions is to combine with F (H) structure which have the cdf as the value of
the cdf of the distribution F whose range is the unit interval H. With this idea, by
using equations (1) and (2), we can define the cdf of the new family by

F (x;α, β, θ,ψ) =

1−


[
1−G (x;ψ)

θ
]β

G (x;ψ)
βθ

+
[
1−G (x;ψ)

θ
]β

2

α

, x ∈ R, (3)

where α, β, θ > 0 are the additional shape parameters which ensure the flexibility
of the model. The pdf corresponding to Equation (3) is given by
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f (x;α, β, θ,ψ) =
2αβθg(x;ψ)G(x;ψ)βθ−1[1−G(x;ψ)θ]

2β−1{
G(x;ψ)βθ+[1−G(x;ψ)θ]

β
}3

×

1−

1− G (x;ψ)
βθ

G (x;ψ)
βθ

+
[
1−G (x;ψ)

θ
]β

2

α−1

, x ∈ R. (4)

For θ = 1, the TLGOLL-G family is reduced to TLOLL-G family. Hereafter, the
random variable X is denoted byX ∼TLGOLL-G(α, β, θ,ψ). Further, we can omit
the dependence on the vector ψ of the parameters and write simply G (x;ψ) = G (x)
and g (x;ψ) = g (x). The hazard rate function (hrf) of X is given by

h (x) =

2αβθg(x)G(x)βθ−1[1−G(x)θ]
2β−1{

G(x)βθ+[1−G(x)θ]
β
}3 (

1−
{
1− G(x)βθ

G(x)βθ+[1−G(x)θ]β

}2)α−1
1−
(
1−
{
1− G(x)βθ

G(x)βθ+[1−G(x)θ]β

}2)α , x ∈ R. (5)

The quantile function of X is given by

xu = G−1




[(
1− u1/β

)−0.5 − 1
]1/α

[(
1− u1/β

)−0.5 − 1
]1/α

+1


1/θ
 ,

where G−1 (·) is the inverse of the baseline cdf. Hence, If U is a uniform random
variable on (0, 1), then XU has TLGOLL-G distribution.

3. Two Special members of the family

Here, we obtain two special sub-models of the new family. These special models
extend some well-known distributions given in the literature.

3.1. The TLGOLL-normal (TLGOLL-N) distribution. To extend the nor-
mal distribution, we consider TLGOLL-N distribution as first example by taking
G (x;µ, σ) = Φ

(
x−µ
σ

)
and g (x;µ, σ) = φ

(
x−µ
σ

)
to be the cdf and pdf in (3), where

x, µ ∈ R, σ > 0, φ (·) and Φ (·) are the pdf and cdf of the standard normal distrib-
ution, respectively. The cdf of the TLGOLL-N distribution is given by

F (x;α, β, θ, µ, σ) =

1−


[
1− Φ

(
x−µ
σ

)θ]β
Φ
(
x−µ
σ

)βθ
+
[
1− Φ

(
x−µ
σ

)θ]β

2

α

, x ∈ R.

Some possible plots of the TLGOLL-N density and hrf for selected parameter values
are displayed in Figure 1. This figure shows that the pdf shapes of the TLGOLL-N
can be skewed, bi-modal and uni-modal shaped. Also, its hrf shapes are increasing
or firstly increasing shaped then bathtub shaped.
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Figure 1. The pdf and hrf of the TLGOLL-N distribution for
selected parameter values

3.2. The TLGOLL-Weibull (TLGOLL-W) distribution. As a second sub-
model, we consider the Weibull distribution with cdf G (x;λ, γ) = 1− exp [−(λx)γ ]
for x > 0 and λ, γ > 0. The cdf of the TLGOLL-W distribution is given by

F (x;α, β, θ, λ, γ) =

1−


[
1−

(
1− e−(λx)γ

)θ]β
(
1− e−(λx)γ

)βθ
+
[
1−

(
1− e−(λx)γ

)θ]β

2

α

, x > 0.

Figure 2. The pdf and hrf of the TLGOLL-W distribution for
selected parameter values

Some possible plots of the TLGOLL-W density and hrf for selected parame-
ter values are displayed in Figure 2. Figure 2 shows that the pdf shapes can be
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bi-modal, uni-modal, decreasing, firstly U shaped then decreasing shaped. Never-
theless, its hrf shapes can be bathtube shaped, uni-modal shaped, firstly increasing
shaped then bathtub shaped, decreasing and increasing shaped.
From these results, we can say that the TLGOLL-G family can generate very

flexible distributions for data modeling.

4. Some mathematical properties

4.1. Useful expansions. Using the generalized binomial expansion the cdf in (3)
can be written as

F (x) =

∞∑
i=0

(−1)i
(
α

i

) [
1− G(x)βθ

G(x)βθ + [1−G(x)β ]
θ

]2 i

=

∞∑
i=0

2 i∑
j=0

(−1)i+j
(
α

i

)(
2 i

j

) A︷ ︸︸ ︷
G(x)βθ j{

G(x)βθ +
[
1−G(x)β

]θ}j︸ ︷︷ ︸
B

.

Expanding A and B as

A

B
=

∑∞
k=0 akG(x)k∑∞
k=0 bkG(x)k

=

∞∑
k=0

ckG(x)k

where

ak =

∞∑
l=k

(−1)l+k
(
βθj

l

)(
l

k

)
,

and bk = hk(β, θ, 2 i), the quantity hk(β, θ, 2 i) defined in Appendix A and c0 =

a0 (b0)
−1 and for k ≥ 1 we have

ck = (b0)
−1
[
ak − (b0)

−1
k∑
r=1

br ck−r

]
.

Finally, the cdf of the TLGOLL-G family can be expressed as

F (x) =

∞∑
k=0

dkG(x)k =

∞∑
k=0

dk Πk(x) (6)

where

dk =

∞∑
i=0

2 i∑
j=0

(−1)i+j
(
α

i

)(
2 i

j

)
ck(β, θ, i, j)
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and Πγ(x) = G(x)γ is the exp-G cdf with power parameter γ > 0. By differentiating
Equation (6), we obtain the density function of X as

f(x) =

∞∑
k=0

dk+1 πk+1(x), (7)

where πγ(x) = γg (x)G (x)
γ−1 is the exp-G pdf with power parameter γ > 0.

Equation (7) reveals that the TLGOLL-G density function is a linear combination
of exp-G densities. Based on this equation, we can obtain some statistical quantities
for the new family from the corresponding ones of the exp-G model.

4.2. Moments, incomplete moments and generating function. The rthordinary
moment of X is given by E(Xr) = µ′r =

∫∞
−∞ xr f (x) dx.Then we obtain

µ′r =

∞∑
k=0

dk+1E(Y rk+1). (8)

Henceforth, Yγ denotes the exp-G random variable with power parameter γ. For
γ > 0, we have E

(
Y rγ
)

= γ
∫∞
−∞ xr g (x) G (x)

γ−1
dx, which can be computed

numerically in terms of the baseline quantile function (qf) QG (u) = G−1 (u) as
E
(
Y nγ
)

= γ
∫ 1
0
QG (u)

n
uγ−1du. Setting r = 1 in (8), we have the mean of

X. The last integration can be computed numerically for most parent distri-
butions. The skewness and kurtosis measures can be calculated from the or-
dinary moments using well-known relationships. The nthcentral moment of X,
say Mn, is Mn = E(X − µ)n =

∑n
h=0(−1)h

(
n
h

)
(µ′1)

n µ′n−h. The cumulants (κn)
of X follow recursively from κn = µ′n −

∑n−1
r=0

(
n−1
r−1
)
κr µ

′
n−r, where κ1 = µ′1,

κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + µ′31 , etc. The skewness and kurtosis measures

also can be calculated from the ordinary moments using well-known relationships.
The main applications of the first incomplete moment refer to the mean deviations
and the Bonferroni and Lorenz curves. These curves are very useful in demogra-
phy, economics, reliability, insurance and medicine. The rthincomplete moment,
say Ir (t), of X , can be expressed from (7) as

Ir (t) =

∫ t

−∞
xrf (x) dx =

∞∑
k=0

dk+1

∫ t

−∞
xr πk+1(x)dx. (9)

The first incomplete moment I1 (t) can be obtained from (9) with r = 1. A general
equation for I1 (t) can be derived from (9) as I1 (t) =

∑∞
k=0 dk+1 Jk+1 (x) , where

Jγ (x) =
∫ t
−∞ xπγ (x) dx is the first incomplete moment of the exp-G model. The

moment generating function (mgf) MX (t) = E
(
etX

)
of X can be derived from

equation (7) asMX (t) =
∑∞
k=0 dk+1Mk+1 (t) ,whereMγ (t) is the mgf of Yγ . Hence,



1512 M. KORKMAZ, H. M. YOUSOF, M. ALIZADEH, AND G.G. HAMEDANI

MX (t) can be determined from the exp-G generating function. For the TLGOLL-
W model, we have

µ′r = Γ (1 + r/γ)

∞∑
k,w=0

υ
(r,k+1)
w,k , ∀ r > −γ,

and

Ir (t) = Γ (1 + r/γ, (λ/t)
γ
)

∞∑
k,w=0

υ
(r,k+1)
w,k , ∀ r > −γ,

where

υ
(r,k+1)
w,k = dk+1 (k + 1) (−1)

w
λ−r (w + 1)

−(r+γ)/γ
(
k

w

)
.

We obtain skewness and kurtosis values for TLGOLL-N and TLGOLL-W distri-
butions in Figure 3 and Table 1. It is well-known that the normal distribution has
zero skewness and three kurtosis values. So, it is more effective to model on sym-
metrical data for inference. Hence, its modeling ability is bounded. From Figure 3,
we see that TLGOLL-N distribution can be left skewed, right skewed and symmet-
rical as well as having different kurtosis values from ordinary normal distribution.
Table 1 shows that very different skewness and kurtosis values have been obtained
for the same λ and γ values. Consequently, we can say that these new models can
be more useful for various data sets than their ordinary models.

Figure 3. Skewness and kurtosis plots of TLGOLL-N distribution
for µ = 0 and σ = 1

4.3. Moments of residual and reversed residual life. The nthmoment of the
residual life say, an(t) = E[(X − t)n | X > t], n = 1, 2,. . . , uniquely determines
F (x) and is given by

an(t) =
1

1− F (t)

∫ ∞
t

(x− t)ndF (x).
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Table 1. Skewness and kurtosis values for special TLGOLL-W
and W distributions

Param eters TLGOLL−W (α, β, θ, λ, γ) W (λ, γ)
α, β, θ, λ, γ Skewness Kurtosis Skewness Kurtosis
0.5,1,0.5,1,0.5 15.3611 467.4255 6.6187 87.7200
2,1,1,0.5,1 1.6099 7.0800 2 9
2,2,5,5,5 0.0265 3.4042 -0.2542 2.8803
2,2,2,0.5,0.5 1.9323 11.1769 6.6187 87.7200
5,5,5,10,5 173.4906 30100 -0.2541 2.8803
1.2,15,5,2,2 -0.3628 3.9412 0.6311 3.2451

Therefore

an(t) =

∞∑
k=0

n∑
r=0

dk+1 (1− t)n

1− F (t)

∫ ∞
t

xrπk+1(x)dx.

The nth moment of the reversed residual life say, An(t) = E [(t−X)n | X ≤ t] for
t > 0 and n = 1, 2,. . . uniquely determines F (x). We obtain An(t) = 1

F (t)

∫ t
0
(t −

x)ndF (x). Then, the nth moment of the reversed residual life of X becomes

An(t) =

∞∑
k=0

n∑
r=0

dk+1
F (t)

(−1)
r

(
n

r

)
tn−r

∫ t

0

xrπk+1(x)dx.

The mean residual life (MRL) function or the life expectation at age t defined by
z1(t) = E [(X − t) | X > t], which represents the expected additional life length for
a unit which is alive at age t. The MRL of X can be obtained by when n = 1 in
An(t) equation. For the TLGOLL-W model we have

an(t) =
Γ (1 + n/γ, (λ/t)

γ
)

[1− F (t)]

∞∑
k,w=0

n∑
r=0

υ
(n,k+1)
w,k,r , ∀ n > −γ,

and

An(t) =
Γ (1 + n/γ, (λ/t)

γ
)

F (t)

∞∑
k,w=0

n∑
r=0

ϑ
(n,k+1)
w,k,r , ∀ n > −γ,

where

υ
(n,k+1)
w,k,r = dk+1 (k + 1) (−1)

w
(1− t)n λ−n (w + 1)

−(n+γ)/γ
(
k

w

)
,

and

ϑ
(n,k+1)
w,k,r = dk+1 (k + 1) (−1)

w+r
tn−rλ−n (w + 1)

−(n+γ)/γ
(
n

r

)(
k

w

)
.
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4.4. Order statistics. SupposeX1, . . . , Xn is a random sample from any TLGOLL-
G model and letXi:n denote the ith order statistic. The pdf ofXi:n can be expressed
as

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i
j

)
F (x)j+i−1.

We can write the density function of Xi:n as

fi:n(x) =

∞∑
l,k=0

dl,k hl+k+1(x), (10)

where

dl,k =
n! (i− 1)! (l + 1)

(l + k + 1)
dl+1

n−i∑
j=0

(−1)j

(n− i− j)! j!ζj+i−1,k

and the quantities ζj+i−1,k can be determined with ζj+i−1,0 = dj+i−10 and recur-

sively for k ≥ 1, ζj+i−1,k = (k d0)
−1∑k

m=1[m (j+ i)− k] dm ζj+i−1,k−m. Equation
(10) is the main result of this section. It reveals that the pdf of the TLGOLL-G
order statistics is a linear combination of exp-G density functions. So, several math-
ematical quantities of the TLGOLL-G order statistics such as ordinary, incomplete
and factorial moments, mean deviations and several others can be determined from
those quantities of the exp-G distribution. For the TLGOLL-W model we have

E (Xq
i:n) = Γ (1 + q/γ)

∞∑
l,k,w=0

υ
(q,l+k+1)
l,k,w ,∀ q > −γ,

where

υ
(q,l+k+1)
l,k,w = dl,k (l + k + 1) (−1)

w
λ−q (w + 1)

−(q+γ)/γ
(
l + k

w

)
.

5. Characterization

This section deals with certain characterizations of TLGOLL-G distribution.
These characterizations are in terms of: (i) two truncated moments and (ii) con-
ditional expectations of functions of the random variable. One of the advantages
of characterization (i) is that the cdf is not required to have a closed form. Due
to the nature of our cdf, we believe our characterizations may be the only possible
ones. We present our characterizations (i) and (ii) in two subsections.

5.1. Characterizations based on two truncated moments. In this subsec-
tion we present characterizations of TLGOLL-G distribution in terms of a simple
relationship between two truncated moments. This characterization result employs
a theorem due to Glel (1987), see Theorem 1 of Appendix B. Note that the result
holds also when the interval H is not closed. Moreover, as mentioned above, it
could also be applied when the cdf F does not have a closed form. As shown in
Glel (1990), this characterization is stable in the sense of weak convergence.
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Proposition 5.1. Let X : Ω → R be a continuous random variable and let

q1 (x) =
G(x)θ(1−β)

(
G(x)βθ+[1−G(x)θ]

β
)3[

1−
(

[1−G(x)θ]β

G(x)βθ+[1−G(x)θ]β

)2]α−1 and q2 (x) = q1 (x)
[
1−G (x)

θ
]
for x ∈ R.

The random variable X has pdf (4) if and only if the function η defined in Theorem
1 has the form

η (x) =
2β

2β + 1

[
1−G (x)

θ
]
, x ∈ R.

Proof. Let X be a random variable with pdf (4), then

(1− F (x))E [q1 (X) | X ≥ x] = α
[
1−G (x)

θ
]2β

, x ∈ R,

and

(1− F (x))E [q2 (X) | X ≥ x] =
2αβ

2β+

[
1−G (x)

θ
]2β+1

, x ∈ R,

and finally

η (x) q1 (x)− q2 (x) = − 1

2β + 1
q1 (x)

[
1−G (x)

θ
]
< 0 for x ∈ R.

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2βθg(x)G (x)
θ−1[

1−G (x)
θ
] x ∈ R,

and hence

s (x) = log

{[
1−G (x)

θ
]−2β}

, x ∈ R.

Now, in view of Theorem 1, X has pdf (4) .

Corollary 5.1. Let X : Ω → R be a continuous random variable and let q1 (x)
be as in Proposition 5.1. The pdf of X is (4) if and only if there exist functions q2
and η defined in Theorem 1 satisfying the differential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2βθg(x)G (x)
θ−1[

1−G (x)
θ
] x ∈ R.

The general solution of the differential equation in Corollary 5.1 is

η (x) =
[
1−G (x)

θ
]−1 [

−
∫

2βθg(x)G (x)
θ−1

(q1 (x))
−1
q2 (x) +D

]
,
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where D is a constant. Note that a set of functions satisfying the above differential
equation is given in Proposition 5.1 with D = 0. However, it should be also noted
that there are other triplets (q1, q2, η) satisfying the conditions of Theorem 1.

5.2. Characterization based on the conditional expectation of certain
functions of the random variable. In this subsection we employ a single func-
tion ψ ofX and characterize the distribution ofX in terms of the truncated moment
of ψ (X) . The following proposition has already appeared in Hamedani’s previous
work (2013), so we will just state it here as a proposition, which can be used to
characterize TLGOLL-G distribution for α = 1.
Proposition 5.2. Let X : Ω → (d, e) be a continuous random variable with

cdf F . Let ψ (x) be a differentiable function on (d, e) with limx→e− ψ (x) = 1.
Then for δ 6= 1,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (d, e)

if and only if

ψ (x) = (1− F (x))
1
δ−1 , x ∈ (d, e) .

Remark 5.2. For α = 1, (d, e) = R, ψ (x) =

(
[1−G(x)θ]

β

G(x)βθ+[1−G(x)θ]
β

)
and δ = 2

3 ,

Proposition 5.2 provides a characterization of TLGOLL-G distribution.

6. Maximum Likelihood Estimations (MLEs) of the parameters

Several approaches for parameter estimation were proposed in the literature but
the maximum likelihood method is the most commonly employed. The MLEs enjoy
desirable properties and can be used for constructing confidence intervals and also
for test statistics. The normal approximation for these estimators in large samples
can be easily handled either analytically or numerically. Here, we consider the
estimation of the unknown parameters of the new family from complete samples
only by maximum likelihood Method. Let x1, . . . , xn be a random sample from
TLGOLL-G model with a (q + 3)× 1 parameter vector Ξ =(α, β, θ,ψ)ᵀ, where ψ
is a q × 1 baseline parameter vector. The log-likelihood function for Ξ is

` (Ξ) = log 2 + logα+ log β + log θ +

n∑
i=0

log g (xi;ψ)

+ (βθ − 1)

n∑
i=0

logG (xi;ψ) + (2β − 1)

n∑
i=0

log
[
1−G (xi;ψ)

θ
]

−3

n∑
i=0

log

{
G (xi;ψ)

βθ
+
[
1−G (xi;ψ)

θ
]β}
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+ (α− 1)

n∑
i=0

log

1−

1− G (xi;ψ)
βθ

G (xi;ψ)
βθ

+
[
1−G (xi;ψ)

θ
]β

2 .

Setting the nonlinear system of equations U (α) = U (β) = U (θ) = U (ψr) =

0 (for r = 1 = . . . , q) and solving them simultaneously yields the MLEs Ξ̂ =

(α̂, β̂, θ̂, ψ̂
ᵀ
)ᵀ. To solve these equations, it is more convenient to use nonlinear

optimization methods such as the quasi-Newton algorithm to numerically maximize
`(Ξ).
The likelihood ratio (LR) statistic can be used for comparing the TLGOLL-G

model with TLOLL-G model, which is equivalently to test H0 : θ = 1. For this situ-
aiton, the LR statistic is computed with w = 2[`(α̂, β̂, θ̂, ψ̂)− `(α̃, β̃, 1, ψ̃)], where
(α̂, β̂, θ̂, ψ̂) are the unrestricted MLEs and (α̃, β̃, 1, ψ̃) are the restricted estimates
under H0. The statistic w is asymptotically (as n → ∞) distributed as χ2υ, where
υ is difference of two parameter vectors of nested models. For example, υ = 1 for
above hypothesis test.

7. Simulation studies

In this Section, we perform two simulation studies by using the TLGOLL-W
and TLGOLL-N distributions to see the performance of the MLEs corresponding
to these distribution. The random numbers generation is obtained by the inverse
of their cdfs. All results related to MLEs were obtained using optim-CG routine in
the R programme.

7.1. Simulation study 1. In the first simulation study, we obtain the graphi-
cal results. We generate N = 1000 samples of size n = 20, 25, 30, . . . , 1000 from
TLGOLL-W distribution with parameters values α = 4, β = 2, θ = 8, λ = 0.1
and γ = 2. We calculate the empirical mean, standard deviation (sd), bias and
mean square errors (MSE) of the MLEs. The bias and MSE are calculated by (for
h = α, β, θ, λ, γ)

B̂iash = 1
N

∑N

i=1

(
ĥi − h

)
and

M̂SEh = 1
N

∑N

i=1

(
ĥi − h

)2
,

respectively. We give results of this simulation study in Figure 4. From Figure 4,
we observe that when the sample size increases, the empirical means approach the
true parameter value whereas all biases, sds and MSEs approach to 0 in all cases.
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Figure 4. Simulation results of the special TLGOLL-W distribution

Table 2. The empirical means and standard deviations (in paren-
theses) for the special TLGOLL-N distributions.

7.2. Simulation study 2. In the second simulation study, we generate 1, 000 sam-
ples of sizes 20, 100 and 150 from selected TLGOLL-N distributions. For this sim-
ulation study, we obtain the empirical means and sd’s of the MLEs. The results of
this simulation study are reported in Table 2. Table 2 shows that when the sample
size increases, the empirical means approach true parameter value whereas the sds
decrease in all the cases as expected.
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As a results, we can say that the MLE method works very well to estimate the
parameters of the TLGOLL-G distribution.

8. Empirical applications

In this section, we illustrate the flexibility of the TLGOLL-N and TLGOLL-
W models via two data sets. We also compare these models with others mod-
els which are well-known in the literature. To determine the optimum model,
we also compute the estimated log-likelihood values ˆ̀, Akaike Information Crite-
ria (AIC), corrected Akaike information criterion (CAIC), Bayesian information
criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer von Mises
(W ∗) and Anderson-Darling (A∗) goodness of-fit statistics for all models. We note
that the AIC, CAIC, BIC and HQIC are given by AIC = −2̂̀+ 2p, CAIC =

−2̂̀+ 2pn (n− k − 1)
−1
, BIC = −2̂̀+ p log n and HQIC = −2̂̀+ p log (log n),

where p is the number of the estimated model parameters and n is the sample size.
The W ∗ and A∗ statistics can be calculated as

W ∗ =
∑n

i=1

(
F̂
(
x(i)
)
− i− 0.5

n

)2
+

1

12n

and

A∗ = −
∑n

i=1

2i− 1

n

[
ln F̂

(
x(i)
)

+ ln ˆ̄F
(
x(n+1−i)

)]
− n.

The statistics W ∗ and A∗ are described in detail in Chen and Balakrishnan (1995)
and Evans et al. (2008). In general, it can be chosen as the best model which has
the smaller values of the AIC, CAIC, BIC, HQIC, W ∗ and A∗ statistics and the
larger values of ˆ̀. MLEs computations are performed by the maxLik routine and
the statistics W ∗ and A∗ are obtained by the goftest routine in the R programme.
The details are given below.

8.1. Otis IQ Scores of non-white males data set. The first real data set is
the Otis IQ Scores of 52 non-white males hired by a large insurance company in
1971. This data set has been analyzed by Roberts (1988), Gupta and Gupta (2004),
Sharafi and Behboodian (2008) and Jamalizadeh et al. (2011). The data are: 91,
102, 100, 117, 122, 115, 97, 109, 108, 104, 108, 118, 103,123, 123, 103, 106, 102,
118 ,100, 103, 107, 108, 107, 97, 95,119, 102, 108, 103, 102, 112, 99, 116, 114, 102,
111, 104, 122, 103, 111, 101, 91, 99, 121, 97, 109, 106, 102, 104, 107, 95. For this
data set, we compare the TLGOLL-N model with the N model, TLOLL-N model,
beta normal (B-N) model (Eugene et al., 2002), Marshall-Olkin normal (MO-N)
model (Garcia et al., 2010), Kumaraswamy normal (Kw-N) model (Cordeiro and
Castro, 2011), McDonald normal (Mc-N) model (Alexander et al., 2012) and odd
log-logistic normal (OLL-N) model (Braga et al., 2016).
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8.2. Voltage data. The second data set, studied by Meeker and Escobar (1998,
p. 383), gives the times of failure and running times for a sample of devices from
a field-tracking study of a larger system. The data are: 275, 13, 147, 23, 181, 30,
65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293, 88, 247, 28, 143,
300, 23, 300, 80, 245, 266. This data also analyzed by Cordeiro et al. (2010) and
Alexander et al. (2012).
The total time test (TTT ) plot due to Aarset (1987) is an important graphical

approach to verify whether the data can be applied to a specific distribution or
not. According to Aarset (1987), the empirical version of the TTT plot is given
by plotting T (r/n) = [

∑r
i=1 yi:n + (n − r)yr:n]/

∑n
i=1 yi:n against r/n, where r =

1, . . . , n and yi:n(i = 1, . . . , n) are the order statistics of the sample. Aarset (1987)
showed that the hazard function is constant if the TTT plot is graphically presented
as a straight diagonal, the hazard function is increasing (or decreasing) if the TTT
plot is concave (or convex). The hazard function is U-shaped (bathtub) if the TTT
plot is firstly convex and then concave, if not, the hazard function is unimodal. The
TTT plots for Voltage data set is presented in Figure 5. This plot indicates that
the empirical hazard rate functions of the data set is U-shaped (bathtub).

Figure 5. TTT plot for Voltage data

For this data set, we compare the TLGOLL-W model with the TLOLL-W
model, W model, exponentiated Weibull (E-W) model (Mudholkar and Srivas-
tava, 1993), Marshall-Olkin Weibull (MO-W) model (Marshall and Olkin, 1997),
beta Weibull (B-W) model (Famoye et al., 2005), Kumaraswamy Weibull (Kw-W)
model (Cordeiro et al., 2010) and McDonald Weibull (Mc-W) model (Alexander et
al., 2012).
Table 3 lists the MLEs, their standard erros of the parameters and ˆ̀values from

the fitted models and Table 4 shows AIC, CAIC, BIC, HQIC, W ∗ and A∗ statistics
for both data sets. The TGLOLL-N and TLGOLL-W models could be chosen as
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the best model among the fitted models since these models have the lowest values
of the AIC, CAIC, HQIC, W ∗ and A∗ statistics and have the biggest ˆ̀ values.

Table 3. MLEs, standard erros of the estimates (in parentheses)
and ˆ̀ for the applications models

Data Set Model α̂ β̂ θ̂ µ̂ σ̂ −ˆ̀

I TLGOLL-N 0.8261 0.0480 0.3747 115.4490 0.9407 177.5493
(0 .2414) (0 .0112) (0 .1201) (0 .0025) (0 .0026)

TLOLL-N 0.7770 0.0829 - 113.3936 1.7777 179.0879
(0 .1857) (0 .0152) (0 .2795) (0 .0384)

Mc-N 0.0160 0.0573 2.7977 111.0082 1.4883 179.2420
(0 .0023) (0 .0132) (0 .0315) (0 .0001) (0 .0001)

B-N 2.4062 0.2218 - 93.3939 5.7048 182.1709
(0 .6739) 0.0337 (0.0250) (0 .0439)

Kw-N 6.4121 0.4031 - 89.6488 8.5717 182.2576
(2 .3057) 0.1434 (0.8662) (1 .5830)

MO-N 0.2507 - - 112.8747 8.3928 182.3138
(0 .2446) (4 .7639) (0 .9630)

OLL-N 0.5051 - - 107.4663 4.8560 183.0290
(0 .2968) (1 .5178) (2 .0013)

N - - - 106.6537 8.2288 183.3872
(1 .1637) (0 .8150)

λ̂ γ̂
II TLGOLL-W 2.9534 0.0385 1.4733 0.0054 7.3178 162.3933

(0 .5680) (0 .0056) (0 .0078) (0 .00002) (0 .0077)

TLOLL-W 3.7055 0.0575 - 0.0055 6.3932 169.5266
(0 .7083) (0 .0082) (0 .0001) (0 .0004)

Mc-W 0.0359 0.0390 1.7500 0.0052 7.9997 168.6354
(0 .0080) (0 .0088) (0 .1384) (0 .0001) (0 .0020)

B-W 0.0751 0.0592 - 0.0051 7.9097 169.7702
(0 .0175) 0.0128 (0.0001) (0 .0007)

Kw-W 0.0488 0.2095 - 0.0043 7.6793 172.0609
(0 .0230) 0.0814 (0.0003) (0 .0005)

MO-W 5.5194 - - 0.0116 0.9564 182.7515
(6 .9393) (0 .0084) (0 .3064)

E-W 0.1168 - - 0.0030 7.0202 176.9930
(0 .0221) (0 .0002) (0 .0012)

W - - - 0.0053 1.2650 184.3138
(0 .0007) (0 .2042)
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Table 4. Information criteria results, A∗ and W ∗ statistics for
the applications models

Data Set Model AIC CAIC BIC HQIC A∗ W∗

I TLGOLL-N 365.0986 366.4030 374.8548 368.8389 0.2593 0.0377
TLOLL-N 366.1757 367.0268 373.9807 369.1679 0.3700 0.0584
Mc-N 368.4839 369.7883 378.2401 372.2242 0.3422 0.0520
B-N 372.3418 373.1928 380.1467 375.3340 0.4427 0.0672
Kw-N 372.5152 373.3663 380.3202 375.5074 0.4249 0.0625
MO-N 370.6275 371.1275 376.4813 372.8717 0.5009 0.0722
OLL-N 372.0581 372.5581 377.9118 374.3023 1.0994 0.2336
N 370.7743 371.0192 374.6768 372.2704 0.8137 0.1390

II TLGOLL-W 334.7865 337.2865 341.7925 337.0278 0.7142 0.0851
TLOLL-W 347.0531 348.6531 352.6579 348.8461 1.0526 0.1560
Mc-W 347.2707 349.7707 354.2767 349.5120 0.9262 0.1196
B-W 347.5404 349.1404 353.1452 349.3334 0.8173 0.1320
Kw-W 352.1217 353.7217 357.7265 353.9148 1.1869 0.1682
MO-W 371.5030 372.4361 375.7,66 372.8478 1.9065 0.2575
E-W 359.9859 360.9090 364.1895 361.3307 2.3032 0.3851
W 372.6277 373.0721 375.4301 373.5242 2.1106 0.3316

Figure 6. The fitted pdfs and cdfs for the data sets

The plots of the fitted densities and fitted cdfs of all models are displayed in
Figure 6. These plots also reveal that the TGLOLL-N and TGLOLL-W models
provide the good fit to these data compared to the other models. The TLGOLL-N
model fits the data set as bi-modal shaped whereas ordinary N model fits the data
set as symmetrical bell-shaped. At the same time, The TLGOLL-W model fits the
data set as firstly U-shaped then decreasing shaped whereas ordinary W model fits
the data set as uni-modal shaped. Hence, we observe that fittings of the TLGOLL-
N and TLGOLL-W are better than the fittings of the ordinary N and W models
and successfully capture the shape of the data.
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Figure 7. Fitted hrf plots

Further, we sketch the fitted hrf plots of TLGOLL-W,TLOLL-W, Mc-W, MO-W
and W models in Figure 7. From this Figure, we see that W and MO-W model
have fitted as increasing hrf shaped whereas TLGOLL-W model has fitted bathtub
hrf shaped. This result of TLGOLL-W model deals with Figure 5.
A comparison of the proposed distributions with some of their sub-models using

LR statistics is performed in Table 5. Table 5 shows that TLGOLL-G models
provide a better representation of the data than the their sub-model based on the
LR test at the 10% significance level. We reject the null hypotheses of two LR
tests in favor of the TLGOLL-G distributions. The rejection is extremely highly
significant for the voltage data as well as for the IQ data. Hence, we can say that
the additional parameter is effective on sub-models.

Table 5. LR statistics for both data sets

Model Hypothesis w p-value
TLGOLL-N vs TLOLL-N H0 : θ = 1 , H1 : H0 false 3.0772 0.0794
TLGOLL-W vs TLOLL-W H0 : θ = 1 , H1 : H0 false 14.2666 0.0001

9. Conclusions

A new family of distributions called the Topp-Leone Generalized Odd Log-logistic
G family is introduced and studied. We provided some mathematical properties
of the new family including ordinary and incomplete moments, generating func-
tion and order statistics. Some new useful characterization results based on two
truncated moments as well as on the conditional expectation of certain functions of
the random variable are provided. We assessed the performance of the maximum
likelihood estimators in terms of the biases and mean squared errors by means of
two simulation studies. Finally, the usefulness of the family is illustrated by means
of two real data sets. The new proposed models provide consistently better fits
than other competitive models on data sets.
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Appendix A.

Four useful power series
We present four power series required for the algebraic developments in Section

3. First, for a > 0 real non-integer, we have the binomial expansion

(1− u)a =

∞∑
j=0

(−1)j
(
a

j

)
uj , (A1)

where the binomial coeffi cient is defined for any real. Second after using twice
generalized binomial expansion and changing the summation over j, k, for any 0 <
u < 1, one can write

uα =

∞∑
k=0

sk u
k

where

sk = sk(α) =

∞∑
i=k

(−1)i+k
(
α

i

)(
i

k

)
.

Third, we can expand zλ in Taylor series to obtain

zλ =

∞∑
k=0

(λ)k (z − 1)k (k!)
−1

=

∞∑
i=0

fi z
i,

where

fi = fi(λ) =

∞∑
k=i

(−1)k−i (k!)
−1
(
k

i

)
(λ)k (A2)

and (λ)k = λ(λ− 1) . . . (λ− k + 1) denotes the falling factorial. Fourth, we obtain
an expansion for [G(x)βθ + [1−G(x)θ]β ]c. We can write from equation (A1)

[G(x)βθ + [1−G(x)θ]β ] =

∞∑
j=0

tj G(x)j , (A3)

where

tj(α, β) = sj(βθ) +

∞∑
p=0

(−1)p
(
β

p

)
sj (θ p) for j ≥ 0,

and fj(α) is defined by (A2). Then, using (A3), we have

[G(x)βθ + [1−G(x)θ]β ]c =

∞∑
i=0

fi

 ∞∑
j=0

tj G(x)j

i

,

where fi = fi(c). Finally, using again equations (A2) and (A3), we obtain

[G(x)βθ + [1−G(x)θ]β ]c =

∞∑
j=0

hj(β, θ, c)G(x)j ,
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where hj(β, θ, c) =
∑∞
i=0 fimi,j and (for i ≥ 0) mi,j = (j t0)

−1∑j
m=1[m(j + 1) −

j] tmmi,j−m (for j ≥ 1) and mi,0 = ti0.

Appendix B.

Theorem 1. Let (Ω,F ,P) be a given probability space and let H = [a, b] be an
interval for some d < b (a = −∞, b =∞ might as well be allowed) . Let X : Ω→
H be a continuous random variable with the distribution function F and let q1 and
q2 be two real functions defined on H such that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,
is defined with some real function η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H) and
F is twice continuously differentiable and strictly monotone function on the set H.
Finally, assume that the equation ηq1 = q2 has no real solution in the interior of
H. Then F is uniquely determined by the functions q1, q2 and η , particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q1
ηq1−q2 and C

is the normalization constant, such that
∫
H
dF = 1.
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