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MEAN ERGODIC TYPE THEOREMS

G. OĞUZ AND C. ORHAN

Abstract. Let T be a bounded linear operator on a Banach space X. Re-
placing the Cesàro matrix by a regular matrix A = (anj) Cohen studied a
mean ergodic theorem. In the present paper we extend his result by taking a
sequence of infinite matrices A = (A(i)) that contains both convergence and
almost convergence. This result also yields an A-ergodic decomposition. When
T is power bounded we give a characterization for T to be A-ergodic.

1. Introduction

Let X be a Banach space and T be a bounded linear operator on X into itself.

By Mn(T ) we denote the Cesàro averages of T given by Mn(T ) :=
1

n+ 1

n∑
j=0

T j .

An operator T ∈ B(X) is called mean ergodic, respectively uniformly ergodic,
if {Mn(T )} is strongly, respectively uniformly, convergent in B(X). Cohen [3]
considered the problem of determining a class of regular matrices A = (anj) for
which

Ln :=

∞∑
j=1

anjT
j

converges strongly to an element invariant under T . It is the case when {Lnx : n ∈
N} is weakly compact and lim

k

∞∑
j=k

|an,j+1 − anj | = 0 uniformly in n (see also [11]).

Observe that Cohen’s result is an extension of the mean ergodic theorems due to
von Nuemann [10], F. Riesz [8] and K. Yosida [12].
In the present paper, replacing the matrix A = (anj) by a sequence of infinite

matrices (A(i)) = (a(i)nj ) we study results in an analogy of Cohen.
Now, we give some basic notations concerning the sequence of infinite matrices.

Let A be a sequence of infinite matrices (A(i)) = (a(i)nj ). Given a sequence x = (xj)
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we write

A(i)n x =

∞∑
j=1

a
(i)
njxj

if it exists for each n and i ≥ 0. The sequence (xj) is said to be summable to the
value s by the method A if

A(i)n x→ s (n→∞, uniformly in i). (1)

If (1) holds, we write x→ s(A).
The method A is called conservative if x → s implies x → s′(A). If A is

conservative and s = s′, we say that A is regular. We now recall a theorem which
characterizes the regularity of the sequences of infinite matrices.

Theorem 1 ([2, 9]). Let A be the sequence of infinite matrices (A(i)) = (a
(i)
nj ).

Then, A is regular if and only if the following conditions hold:
(1)

∑
j

|a(i)nj | <∞, (for all n, for all i),

(2) There exists an integer m such that sup
i≥0, n≥m

∑
j

|a(i)nj | <∞,

(3) for all j, lim
n
a
(i)
nj = 0, (uniformly in i),

(4) lim
n

∑
j

a
(i)
nj = 1, (uniformly in i).

In addition, we write

‖A‖ := sup
n,i

∑
j

|a(i)nj |, (2)

and ‖A‖ < ∞ to mean that, there exists a constant M such that
∑
j

|a(i)nj | ≤ M ,

(for all n, for all i) and the series
∑
j

a
(i)
nj converges uniformly in i for each n.

Throughout the paper we assume that the sequence of matrices (A(i)) = (a(i)nj )
satisfies the following conditions:

(i) A is regular,
(ii) ‖A‖ <∞,
(iii) lim

k
sup
i,n

∞∑
j=k

|a(i)n,j+1 − a
(i)
nj | = 0.

2. Main results

In this section, using a sequence of infinite matrices we give a theorem analogous
to one of Cohen [3].
We now present a lemma which will be used in the proof of the main theorem.
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Lemma 2. Let T and A(i)n be bounded linear operators on a Banach space X into
itself such that TA(i)n = A

(i)
n T for all n and i. If

lim
n→∞

A(i)n (x− Tx) = 0, (uniformly in i), (3)

and
A(i)n x→ x0(w), (n→∞, uniformly in i),

then Tx0 = x0, where (w) indicates the weak convergence.

Proof. By X ′ we denote the dual space of X. Let f ∈ X ′. Then, by weak conver-
gence (uniformly in i) of (A(i)n x) we have

lim
n
sup
i
f(A(i)n x− x0) = 0. (4)

Since T is a linear and continuous operator on X, we also have

lim
n
sup
i
f(TA(i)n x− Tx0) = 0. (5)

It follows from (3) and the fact that f ∈ X ′,

lim
n→∞

sup
i
f(A(i)n x−A(i)n Tx) = 0. (6)

Using the commutativity TA(i)n = A
(i)
n T for each n and i, one may write

f(x0 − Tx0) = f(x0 −A(i)n x) + f(A(i)n x−A(i)n Tx) + f(TA(i)n x− Tx0). (7)

Applying the operator lim
n
sup
i
to both sides of (7) we get that∣∣∣∣limn sup

i
f(x0 − Tx0)

∣∣∣∣ ≤ ∣∣∣∣limn sup
i
f(x0 −A(i)n x)

∣∣∣∣+ ∣∣∣∣limn sup
i
f(A(i)n x−A(i)n Tx)

∣∣∣∣
+

∣∣∣∣limn sup
i
f(TA(i)n x− Tx0)

∣∣∣∣ . (8)

Then by (4), (5), (6) and (8), we conclude that f(x0 − Tx0) = 0 for all f ∈ X ′.
This implies that Tx0 = x0. �

We now present the main result of the paper.

Theorem 3. Let X be a Banach space and T : X → X be a bounded linear
operator. Suppose that there exists an H > 0 such that ‖T j‖ ≤ H for all j ∈ N.
Suppose that the sequence of infinite matrices (A(i)) = (a(i)nj ) satisfies the conditions

(i)-(iii) and define A(i)n x =
∞∑
j=1

a
(i)
njT

jx. Assume that there exists a subsequence

{A(i)npx} ⊂ {A
(i)
n x} such that

lim
p
sup
i
A(i)npx = x0(w), (9)
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where x0 ∈ X. Then, Tx0 = x0 and lim
n→∞

A
(i)
n x = x0 (uniformly in i). Denote by

P the strong limit in B(X) of {A(i)n x}. Then it is the projection onto the space
N(I − T ) of T -fixed points corresponding to the ergodic decomposition
X = R(I − T )⊕N(I − T ) and P = P 2 = TP = PT .

Proof. From the hypothesis there exists an H > 0 such that ‖T j‖ ≤ H for all
j ∈ N. Since ‖A‖ <∞, for x ∈ X we have∥∥∥A(i)n x∥∥∥ =

∥∥∥∥∥∥
∞∑
j=1

a
(i)
njT

jx

∥∥∥∥∥∥ ≤ H ‖x‖
∞∑
j=1

|a(i)nj |

≤ H ‖x‖ sup
n,i

∞∑
j=1

|a(i)nj | < H ‖x‖ ‖A‖. (10)

Since X is complete, each {A(i)n x} is defined on X. By taking supremum over
‖x‖ = 1 in both sides of (10), we get, for all n and i, that

‖A(i)n ‖ ≤ H‖A‖. (11)

Also we have

TA(i)n x =

∞∑
j=1

a
(i)
njT

j+1x = A(i)n Tx. (12)

By the hypothesis, we have for any ε > 0 that there exists a k0 = k0(ε) ∈ N such
that for all k ≥ k0

sup
i,n

∞∑
j=k

|a(i)n,j+1 − a
(i)
nj | < ε.

Hence, we get, for each x ∈ X, that∥∥∥A(i)n (x− Tx)∥∥∥ =
∥∥∥∥∥∥a(i)n1Tx+

∞∑
j=1

(a
(i)
n,j+1 − a

(i)
nj )T

j+1x

∥∥∥∥∥∥
≤ H ‖x‖ (sup

i
|a(i)n1|+ sup

i

k0−1∑
j=1

|a(i)n,j+1 − a
(i)
nj |+ sup

i,n

∞∑
j=k0

|a(i)n,j+1 − a
(i)
nj |)

≤ H ‖x‖

2 sup
i

k0∑
j=1

|a(i)nj |+ ε

 .
Then, for n > nε we also have sup

i

k0∑
j=1

|a(i)nj | < ε which yields∥∥∥A(i)n (x− Tx)∥∥∥ ≤ H ‖x‖ 3ε.
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This implies
lim
n→∞

A(i)n (x− Tx) = 0, (uniformly in i). (13)

Furthermore, from (9), (12) and (13), the conditions of Lemma 2 are satisfied.
Thus, one can get Tx0 = x0.
Now, we consider the linear subspace X0 spanned by x − Tx for x ∈ X. We will
show that x0 − x ∈ X0. To achieve this, we follow the idea given by Cohen [3].
Assume that x0 − x /∈ X0. Then, one can easily see that there exists an f ∈ X ′
such that

f(u) = 0, u ∈ X0; f(x− x0) = 1.
Since T kx − T k+1x ∈ X0 for k = 0, 1, 2, . . . , we have f(T kx − T k+1x) = 0. Then,
it is easy to show that f(x− T jx) = 0. So we obtain

f(x) = f(T jx), j = 1, 2, . . . (14)

Moreover, from (11) and (13), it follows that

lim
n
sup
i
A(i)n u = 0, u ∈ X0. (15)

Since f ∈ X ′, one can get by (14) that

f(A(i)n x) =

∞∑
j=1

a
(i)
njf(T

jx) =

 ∞∑
j=1

a
(i)
nj

 f(x)
which yields

lim
n
sup
i
f(A(i)n x) = f(x). (16)

By (9) and (16) we obtain

0 = lim
p
sup
i
f(A(i)npx− x0) = limp supi

(f(A(i)npx)− f(x0))

= f(x)− f(x0) = f(x− x0).
This is a contradiction. Then we necessarily have x0 − x ∈ X0. Since Tx0 = x0 we
have T jx0 = x0 for j = 1, 2, . . . . Hence we have

A(i)n x0 =

∞∑
j=1

a
(i)
njT

jx0 =

 ∞∑
j=1

a
(i)
nj

x0 (17)

from which we immediately get

lim
n
sup
i
A(i)n x0 = x0. (18)

Since x = x0 + (x− x0), we get from (15) and (18) that

lim
n
sup
i
A(i)n x = x0,

which proves the first claim.
We can write x = x0+(x−x0) such that x0 ∈ N(I−T ) and (x−x0) ∈ R(I−T ) ⊂
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R(I − T ). Now let ε > 0 and let z ∈ R(I − T ) ∩N(I − T ). Following [4] we then
have ‖z − (u− Tu)‖ < ε/(3H ‖A‖) for u ∈ X. Hence∥∥∥A(i)n (z − (u− Tu))∥∥∥ <

∥∥∥∥∥∥
∞∑
j=1

a
(i)
njT

j

∥∥∥∥∥∥ ‖z − (u− Tu)‖ < ε

3
. (19)

Since z ∈ R(I − T ) ∩N(I − T ), we observe that

A(i)n z =

∞∑
j=1

a
(i)
njT

jz =

∞∑
j=1

a
(i)
njz (20)

from which we get
lim
n
sup
i
A(i)n z = z. (21)

By (15), (19) and (21), we conclude that

‖z‖ =
∥∥∥z −A(i)n z +A(i)n z∥∥∥ ≤ ∥∥∥z −A(i)n z∥∥∥+∥∥∥A(i)n (z − (u− Tu))∥∥∥+∥∥∥A(i)n (u− Tu)∥∥∥ < ε.

Hence, we find that R(I − T ) ∩N(I − T ) = {0}, which implies that

X = R(I − T )⊕N(I − T ).

On the other hand, we know that lim
n
sup
i
A
(i)
n x = x0. Let Px := lim

n
sup
i
A
(i)
n x = x0.

Then, since Tx0 = x0 and Px = x0 one can obtain, for all x ∈ X, that
Tx0 = TPx = x0 = Px,

which yields TP = P . Also, we have T jP = P for all j ∈ N. Hence, we observe
that

A(i)n Px =

∞∑
j=1

a
(i)
njT

jPx =

∞∑
j=1

a
(i)
njPx

Applying the operator lim
n
sup
i
to both sides we find P 2 = P .

In addition, from (15) we obtain Px = PTx for all x ∈ X, that is P = PT . This
concludes the proof. �

Remark 4. If we define the sequence of matrices (A(i)) = (a(i)nj ) by

a
(i)
nj =


1

n+ 1
, i ≤ j ≤ i+ n,

0 , otherwise

then A reduces to almost convergence method of Lorentz [6]. Observe that (a(i)nj )
defined as above satisfies the conditions (i)-(iii) imposed in Section 1. Some results
concerning the almost convergence of the sequence of operators may be found in [1]
and [7].



2270 G. OĞUZ AND C. ORHAN

Given a sequence A of matrices (A(i)) = (a(i)nj ), if the limit of
{
A
(i)
n x
}
exists then

we call the operator T an A-ergodic operator. Motivated by that of Proposition
2.2 in [5] we have the following

Theorem 5. Let X be a Banach space, T be a bounded linear operator on X into
itself. Assume that there exists an H > 0 such that ‖T j‖ ≤ H for all j ∈ N. Let
(A(i)) = (a

(i)
nj ) be a sequence of infinite matrices satisfying the conditions (i)-(iii).

Then, the operator T is A-ergodic if and only if (I − T )(I − T )X = (I − T )X.

Proof. Let the operator T be A-ergodic. Then, by Theorem 3 we have

X = R(I − T )⊕N(I − T ).
The necessity is proved by applying the operator (I − T ).
Assume that (I − T )(I − T )X = (I − T )X. We have, for x ∈ N(I − T ), that

A(i)n x =

∞∑
j=1

a
(i)
njT

jx =

∞∑
j=1

a
(i)
njx.

Hence, we get
‖A(i)n x− x‖ → 0, (n→∞, uniformly in i). (22)

Now, let x ∈ R(I − T ). Hence, there exists xk ∈ R(I − T ) so that xk → x. One
can get ∥∥∥A(i)n x∥∥∥ ≤ ∥∥∥A(i)n xk∥∥∥+ ∥∥∥A(i)n (xk − x)∥∥∥ .
If we choose k in order to make ‖xk−x‖ suffi ciently small, we find that ‖An(xk−x)‖
is also suffi ciently small (no matter what n may be) because of the fact that A
satisfies (ii) and T is power bounded.Combining this with (15), we observe, for
x ∈ R(I − T ), that

‖A(i)n x‖ → 0, (n→∞, uniformly in i). (23)

Thus, by (22) and (23) the sequence {A(i)n } is strongly convergent on
R(I − T )⊕N(I − T ). Since (I − T )(I − T )X = (I − T )X, for y ∈ X there exists
z ∈ R(I − T ) such that (I − T )z = (I − T )y. We then get h = y − z ∈ N(I − T ).
Since we have y = h + z such that h ∈ N(I − T ) and z ∈ R(I − T ), the proof is
completed. �
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