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ASYMPTOTIC PROPERTIES OF SIMPLE LINEAR
MEASUREMENT ERROR MODELS

RUKIYE E. DAGALP

A�������. The main objective of this paper is to study estimators of regres-
sion models on the independent variable X which is not directly observed
for some reasons. In such a situation, a substitute variable W is observed
instead. This substitution complicates the statistical analysis of the observed
data when the purpose of the analysis is inference about a model defined in
terms of X. The substitution causes a inconsistent estimator; this is defined as
a measurement error problem. To correct this problem, the conditional score
and corrected score methods are proposed by Stefanski&Carroll (1985) and
Nakamura (1990), respectively. In this study, large sample distribution the-
ory for both the conditional score and corrected score estimators are derived
and the performance of the estimators and the adequacy of the large sample
distribution theory are obtained via Monte Carlo simulation.

1. I���	
����	�

The regression analysis is a statistical methodology for studying the func-
tional relationship between two or more quantitative variables so that one can be
explained from the other variables. Y named as the response variable is a dependent
variable whose variation can be explained by an explanatory or named independent
variable X. The independent variable in the regression analysis cannot be observed
for some reasons either because it is too expensive to obtain, unavailable, or mis-
measured. In this kind of situations, a substitute variable W is observed instead
of the true variable X. Therefore, the statistical inference of regression coefficient
involves the additive measurement error model, W = X+U, where U is a measure-
ment error with 0 mean and a constant variance. The effect of measurement error
on fitting a regression model causes inconsistent parameter estimation and also its
statistical inferences. The statistical analysis of inaccurately measured data or data
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measured with a substitute variable causes a common problem that is called atten-
uation, in other words measurement error problem. When measurement error is in
presence, the statistical models and methods for analyzing the such data is studied
by Fuller and Hidiroglou (1978), Moran (1971) and recently Prentice (1982), Wolter
and Fuller (1982a, 1982b), Carroll et al.(1984), Stefanski (1985) and Stefanski and
Carroll (1985). The model fitting has been studied for functional case in which the
X is regarded as an unknown fixed constants, and structural case in which the X
is regarded as a random variable. For fixed X, several approaches are given to cor-
rect bias due to measurement error. One is regression calibration method studied
by Carroll and Stefanski (1990) and Glesjer (1990)). The conditional score function
suggested by Stefanski and Carroll (1987) and another one is corrected score func-
tion given by Stefanski (1989) and Nakamura (1990). Also, the conditional-score
and corrected-score are defined and derived for the interactions between error-free
and error-prone regressors in the models by Dagalp (2001). The SIMEX (simula-
tion extrapolation) method is proposed by Cook and Stefanski (1994). Actually,
the analysis of data with measurement error is well described by Fuller (1987) and
Carroll et al. (1995). Hanfelt and Liang (1997) focused more directly on hypoth-
esis test which is an alternative to Wald’s test for the regression parameters. In
this article, basic theory of the conditional-score and the corrected-score methods
are explained. Asymptotic properties of the conditional-score and corrected-score
estimators are derived and results of a simulation studied are presented.
Consider the usual simple linear regression model Yi = α+βxXi+ εi, i = 1, ..., n

where εi represents experimental error, and the additive measurement error model
for the observed Wi = Xi + Ui, where Ui represents measurement error. In this
article, the simple linear regression model is regarded as a form of the exponential
family given in McCullagh and Nelder (1989, Chap. 2). Given a covariate X =
x, the response variable Y has density function as a generalized linear model in
canonical form

fY |X(y|x;θ) = exp
{
yη − b(η)
σ2ε

+ c(y, σ2ε)

}
, (1.1)

with respect to σ-finite measure m(·). where η = α + βxx is called the natural
parameter, b(η) = η2

2 , c(y, σ
2
ε) = − y2

2σ2ε
− log(√2πσ2ε), and θ = (α, βx, σ

2
ε)
T is the

unknown parameter. The mean and variance of Y given X are b′(η) and σ2εb
′′(η),

where b′ and b′′ are the first and second derivatives of b(η) with respect to η,
respectively. When the measurement error U is distributed as a normal random
variable with mean zero and variance σ2u, the density of W given X = x is

fW |X(w|x, σ2u) = (2π)−
1
2 (σ2u)

− 1
2 exp

{
− 1

2σ2u
(w − x)2

}
. (1.2)

The models in (1.1) and (1.2) together define a generalized linear measurement
error model, but in this paper, simple linear model case is taken into consideration.
In the simple linear case, it is emphasized that the parameters of interest (α, βx)
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appear in regression model for b′(η) = E(Y | X) = η, which depends on the
unobserved true variable X. For some cases, the variable W is observed instead of
X with a measurement error variable. Hence, the second component of the model
relates the observed substitute variable W to X. If the model fits the observed
data, prediction of the parameter of interest results in biased estimators. If X is
directly observed, then the (α, βx, σ

2
ε) is estimated by solving the normal equations

given in matrix form as
n∑
i=1

{Yi − b′(ηi)}
(
1

Xi

)
=

(
0

0

)
(1.3)

n∑
i=1

[(
n− p
n

)
σ2ε −

{Yi − b′(ηi)}2
b′′(ηi)

]
= 0 (1.4)

where the natural parameter, ηi = α+ βxXi and p is the number of parameters in
the model. Note that the estimating equations (1.3) and (1.4) result in maximum
likelihood estimators when n − p is replaced by n.The equations in (1.3) yield the
ordinary least squares estimate of slope on the true data given by

β̂Y |X =
SXY
SXX

,

and substituting W for X in (1.3) yields to the so-called naive slope estimator that
is given by

β̂Y |W =
SWY

SWW
=

SXY + SY U
SXX + 2SXU + SUU

,

where SXX is the sample variance of X1, ...,Xn, SUU is the sample variance
of U1, ..., Un, SXU is the sample covariance of (Xi, Ui) and SY U is the sample
covariance of (Yi, Ui) , i = 1, 2, ..., n. By the Law of Large Numbers, both SY U and

SXU converge in probability to zero, SXX
P−→ σ2X , and SUU

P−→ σ2U , as n −→ ∞.
Thus, by Slutky’s theorem,

β̂Y |W
P−→ λβX , as n −→∞

where λ = σ2X
σ2X+σ

2
U
so-called the attenuation factor (Fuller, 1987) is a real number in

the range [0, 1] for σ2X positive and finite. The extreme case λ = 1 is obtained when
there is no measurement error

(
σ2U = 0

)
. The other extreme case is approached

only in the limit as σ2U −→ ∞ for fixed σ2X <∞. The naive slope estimator β̂Y |W
is biased towards zero because of 0 ≤ λ ≤ 1.
The purpose is to obtain sufficient and consistent estimators of the parameters

on the observed data instead of the true data. Some methods are suggested to
correct this attenuation to get statistical inference for the parameters of interest.
The conditional-score and corrected-score are defined in the following sections for
measurement error problem.
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2. C	�
���	��-S�	�� E�������	�

Consider the simple linear regression model of Y on X

Y = α+ βXX + ε,

and the additive measurement error model

W = X + U,

where the error-free regressor X ∼ N
(
μX , σ

2
X

)
, the experimental error ε ∼

N
(
0, σ2ε

)
, and the measurement error U ∼ N (

0, σ2U
)
are independent variables. A

common strategy for handling models with unobserved X1, . . . , Xn, so-called nui-
sance parameters, is to base inference on conditional likelihoods since functional
maximum likelihood estimation neither is computationally achievable nor the es-
timators are generally consistent due to the large number of nuisance parameters
(Neyman and Scott, 1948; Stefanski and Carroll, 1987). Stefanski and Carroll
(1987) showed how to derive conditional estimating equations for generalized linear
measurement error models. When X is given, the conditional density of Y and the
conditional density of W given as

Y | X ∼ N (
η, σ2ε

)
, and W | X ∼ N (

X,σ2U
)

are independent. Hence, the joint density of (Y,W ) given the unobserved predictor
X, is

fY,W |X(y, w|x; θ) = fY |X(y|x; θ)fW |X(w|x).
To find the estimator for error-free unobserved regressor X, functional maximum
likelihood estimation maximizes the likelihood as a function of θ and the unobserved
predictors X1, . . . , Xn, i.e.,

L(θ;X1, . . . , Xn|(Y1,W1), . . . , (Yn,Wn)) =
n∑
i=1

log{fY,W |X(Yi,Wi|xi; θ)}. (2.1)

Consider the joint density in (2.1) and define Ω = σ2U
σ2ε
. The joint density of (Y,W )

given X = x can be written as

fY,W |X(y, w|x; θ) = h1(δ, x)h2(y, w; θ),
where

h1(δ, x) = exp

{
x

σ2U
{yΩβX + w} −

1

2

x2

σ2U

}
,

h2(y, w) = exp

{
yα− b(η)

σ2ε
+ c(y, σ2ε)−

1

2

w2

σ2U
− 1
2
log

[
(2π)σ2U

]}
and

δ = w + yΩβX .



ASYMPTOTIC PROPERTIES OF SIMPLE LINEAR MEASUREMENT ERROR MODELS 75

When X is regarded as a parameter and all other parameters as known in the
density of (Y,W |X), the statistic

Δ = Δ(Y,W ; θ) =W + Y ΩβX (2.2)

is complete and sufficient for X by the Factorization Theorem (Casella and Berger
1990, p.250). Thus, the distribution of Y |Δ depends only on Y , W and θ, but not
on the unobserved true regressor X. From the joint density function of (Y,Δ), the
conditional density of Y given Δ is

fY |Δ(y|δ; θ) = exp
{
yϕ− 1

2

y2β2XΩ

σ2ε
+ c(y, σ2ε)− log

{
S(ϕ, βX , σ

2
ε)
}}
, (2.3)

where

ϕ =
η + (δ − x)βX

σ2ε
=
α+ βXδ

σ2ε
,

and S(·, ·, ·) is defined as

S(ϕ, βX , σ
2
ε) =

∫
exp

{
yϕ− 1

2

y2β2XΩ

σ2ε
+ c(y, σ2ε)

}
dy.

The moments of Y given Δ = δ can be computed from the partial derivatives of
S(ϕ, βX , σ

2
ε) with respect to ϕ because (2.3) is an exponential family density in ϕ

and Y is the natural sufficient statistic. The conditional distribution of Y given
Δ = δ is an exponential family with respect to the σ-finite measure m(·) which
does not depend on θ. Thus

E{f ′Y |Δ(y|δ; θ)} =
∫
f ′Y |Δ(y|δ; θ)dy = 0, (2.4)

where

f ′Y |Δ(y|δ; θ) =
∂

∂θ
fY |Δ(y|δ; θ).

From this equation, consistent estimating equations for θ can be derived to estimate
the regression parameters of interest. An alternative derivation of the conditional-
score from the conditional distribution of Y given Δ = δ is suggested by Ste-
fanski and Carroll (1985) as defined and derived clearly by Dagalp (2001). The
conditional-score function given by Stefanski and Carroll (1987) is

ΨC(Y,W ; θ) = l
′ − E [l′|Δ] , (2.5)

where

l′ = l′(Y,W ; θ) = E

{
f ′Y |X(Y |X; θ)
fY |X(Y |X; θ) |Y,W

}
= E

{
f ′Y |X(Y |X; θ)
fY |X(Y |X; θ) |Δ

}
. (2.6)

Using the fact that the σ-algebra generated by Δ is a sub-σ-algebra generated by Y
andW , thus combining the results in (2.5) and (2.6), the conditional-score function
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is driven as

ΨC(Y,W ; θ) =

⎛⎜⎝ Y − E(Y |Δ)
{Y − E(Y |Δ)}Δ

{Y − E(Y |Δ)}2 − σ2ε
1+ΩβX

⎞⎟⎠ . (2.7)

It follows from (2.5) and (2.7) that

E {ΨC(Y,W ; θ)} = 0, (2.8)

and from (2.8) , the conditional-score estimators can be obtained as solutions of
n∑
i=1

ΨC(Yi,Wi; θ̂) = 0

named as a consistent estimating equations for θ.

3. C	������
-S�	�� E�������	�

The corrected-score method is proposed and defined by Stefanski (1989) and
Nakamura (1990) and later studied by Novick (2000). It is a natural competitor
to the conditional-score estimator and a technique for eliminating asymptotic bias
caused by measurement error for the generalized measurement error models. In
this paper, the corrected-score method is defined for simple linear measurement
error models by using unbiased estimating equations for the parameters of interest.
Assume that there exists an unbiased score function Ψ for the true data X as an
error-free predictor. The unknown parameter θ in the absence of measurement error
is estimated as the solution of the consistent estimating equations and is called the
true estimator.
Suppose that Ψ(Y,X; θ) is a score function from the model for the true data

such that the estimator θ̂True, solving
n∑
i=1

Ψ(Yi, Xi; θ̂True) = 0 (3.1)

is consistent for θ. It follows

E {Ψ(Y,X; θ)} = 0.
Suppose that there exists a certain smooth Ψ functions such that

E {ΨM (Y,W ; θ) | Y,X} = Ψ(Y,X; θ) (3.2)

where ΨM (Y,X; θ) is a corrected-score function of the observed data. It follows
from this property that

E {ΨM (Y,W ; θ)} = 0,
so that ΨM (., .; .) is a Fisher-consistent score function (Carroll, Ruppert and Ste-
fanski, 1995). The M-estimator θ̂M based on the observed data is defined as the
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solution to
n∑
i=1

Ψ(Yi, Xi; θ̂M ) = 0.

The problem is that, the corrected-score function satisfying (3.2) does not always
exist, and when it exists, it is not easily find. The corrected-score functions for some
models have been studied and derived by Stefanski (1989) who provides a mean of
determining corrected-score functions for a large class of models. Let Z ∼ N(0, 1)
be independent of (Y,W ) and i =

√−1. For the existence of a certain smooth Ψ
functions a corrected-score can be found as

ΨM (Y,W ; θ) = E {Ψ(Y,W + iσUZ; θ)|Y,W} . (3.3)

When it exists, the corrected-score function in (3.3) can sometimes be found math-
ematically and can always be computed by Monte Carlo simulation (Novick, 2000).
Consider the linear regression model Y = α + βXX + ε and the measurement

error model W = X + U where the error-free regressor X ∼ N
(
μX , σ

2
X

)
, the

experimental error ε ∼ N
(
0, σ2ε

)
, and the measurement error U ∼ N

(
0, σ2U

)
are

independent variables, the true-data likelihood score function is

Ψ(Y,X; θ) =

⎛⎝ Y − η
(Y − η)X

(Y − η)2 − σ2ε

⎞⎠ , (3.4)

where η = α+ βXX, and θ = (α, βX , σ
2
ε)
T . To find the corrected-score function in

(3.3) from certain smooth Ψ functions in (3.4), result shows that the corrected-score
function ΨM (·, ·, ·, ·) is given as

ΨM (Y,W ; θ) =

⎛⎝ Y − ηw
(Y − ηw)W + βXσ

2
U

(Y − ηw)2 − β2Xσ2U − σ2ε

⎞⎠ , (3.5)

where ηw = α + βXW . Taking the expectation of ΨM and routine calculations
show that

E {ΨM (Y,W ; θ) | Y,X} = Ψ(Y,X; θ),
and thus

E {ΨM (Y,W ; θ) | X} = E {Ψ(Y,X; θ) | X} = 0.
The corrected-score estimating equations based on the observed data are then

n∑
i=1

ΨM (Yi,Wi; θ̂) = 0. (3.6)

An estimator satisfying the equations in (3.6) is called a corrected-score esti-
mator and ΨM (·, ·, ·, ·) in ( 3.5) is called the corrected-score function for linear
regression.
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4. L����-S���� I�������� �	� C	�
���	��-S�	�� ��

C	������
-S�	�� E��������

Corrected-score and conditional-score defined in this paper provide M-estimators
which are consistent in the absence of measurement error. These estimators are de-
termined by solving the unbiased estimating equations of the form in (3.1). The
conditional-score and corrected-score estimators are obtained by replacing Ψ func-
tion by ΨC in (2.7) and ΨM in (3.5), respectively. Provided that

E {Ψ(Y,W ; θ)} = 0.
If it is known that the large sample distribution of M-estimators is multivariate nor-

mal with mean 0 and a covariance matrix that depends on Ψ and Ψ
′
=

(
∂/∂θT

)
Ψ

under some regularity and moments conditions (Stefanski, 1985). Asymptotic
distribution of M-estimators are reviewed and applied to conditional-score and
corrected-score estimators by a Taylor-series expansion,

1

n

n∑
i=1

Ψ(Yi,Wi; θ) + Ân(θ)
(
θ̂ − θ

)
+ op(n

−1) = 0,

where Ân(θ) =
1

n

n∑
i=1

∂

∂θT
Ψ(Yi,Wi; θ). Under the assumption Ân(θ) is a non-

singular matrix, then

√
n
(
θ̂ − θ

)
= −

{
Ân(θ)

}−1 1√
n

n∑
i=1

Ψ(Yi,Wi; θ) + op(1).

The asymptotic normality follows from the Central Limit Theorem. Thus, the
M-estimator θ̂ is asymptotically normally distributed with mean θ and covariance
matrix n−1A−1n (θ)Bn(θ)

{
A−1n (θ)

}T
, where

An(θ) =
1

n

n∑
i=1

E

{
∂

∂θT
Ψ(Y i,Wi; θ)

}
,

Bn(θ) =
1

n

n∑
i=1

E
{
Ψ(Yi,Wi; θ)Ψ

T (Yi,Wi; θ)
}
.

For the case of independent and identically distributed variables {Yi,Wi}, i =
1, . . . , n, A and B are defined as

An(θ)
n→∞−→ A(θ) = E

{
∂

∂θT
Ψ(Y,W ; θ)

}
,

Bn(θ)
n→∞−→ B(θ) = E

{
Ψ(Y,W ; θ)ΨT (Y,W ; θ)

}
.
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For the conditional-score function in (2.7), the matrices A and B are designated
AC and BC , that are also given by the expressions, respectively;

AC = E

{
E

{
∂

∂θT
ΨC(Y,W ; θ) | Δ

}}
= E{aC(Δ; θ)}, (4.1)

BC = E
[
E

{
ΨC(Y,W ; θ)Ψ

T
C(Y,W ; θ) | Δ

}]
= E{bC(Δ; θ)}.

For the corrected-score function in (3.5), the A and B matrices are designated AM
and BM that can be written as

AM = E

{
E

{
∂

∂θT
ΨM (Y,W ; θ) | X

}}
= E{aM (X; θ)},

BM = E
{
E

{
ΨM (Y,W ; θ)Ψ

T
M (Y,W ; θ) | X

}}
= E{bM (X; θ)}.

Replacing each term in the form Xj , j = 1, 2 by E{(W + iσUZ)
j |W} in aM (X; θ)

results a∗M (W ; θ) having the property that

E {a∗M (W ; θ)|X} = E
{
∂

∂θT
ΨM (Y,W ; θ) | X

}
.

and replacing the covariateX byW in bM (X; θ), b∗M (W ; θ) is obtained as b
∗
M (W ; θ) =

E {bM (W + iσUZ; θ)|W, } satisfying
E {b∗M (W ; θ)|X} = bM (X; θ).

5. E������� ��
 C	�
���	�� M	
� B���
 M��-�	
� 	� E���������
A�����	��� C	�������� M��-���

In this section, two methods of estimating the covariance matrix of θ are
described. The first is often called the sandwich variance estimator which uses
empirical expectation to estimate the A and B matrices appearing in the sandwich
variance matrix. In this case, the estimators of An(θ) and Bn(θ) for the conditional-
score and the corrected-score functions are

Ân(θ̂) =
1

n

n∑
i=1

∂

∂θT
Ψ(Yi,Wi; θ)

∣∣
θ=̂θ ,

B̂n(θ̂) =
1

n

n∑
i=1

Ψ(Yi,Wi; θ̂)Ψ
T (Yi,Wi; θ̂).

Thus, the sandwich variance estimator of the asymptotic covariance matrix of θ̂ is

V̂ (θ̂) = n−1{Ân(θ̂)}−1B̂n(θ̂)
[
{Ân(θ̂)}−1

]T
.

The second method is called the conditional model-based expectation method.
For the conditional-score function, we have the distribution of Y given the sufficient
statistic Δ for X in (2.2) and the observed covariate. It follows from (4.1) that
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ÃCn(θ̂) =
1

n

n∑
i=1

aC(Δi, θ̂),

B̃Cn(θ̂) =
1

n

n∑
i=1

bC(Δi, θ̂),

are consistent estimators of AC and BC , respectively.
When the true predictor X is measured without error, Ψ is the likelihood score

function. Thus, the estimator of θ that satisfies the M-estimating equations in
(3.1) is the maximum likelihood estimator (MLE) and denoted θ̂True. In this case,
the matrices An(θ) and Bn(θ) are equal to the Fisher Information matrix, denoted
by I(θ),

I(θ) = Bn(θ) = −An(θ) = − 1
n

n∑
i=1

E

{
∂

∂θT
Ψ(Yi,Wi; θ)

}
,

and the asymptotic distribution of θ̂True is
√
n
(
θ̂True − θ

)
D−→ N

(
0,I−1 (θ)

)
.

6. T�� R����� 	� ��� M	��� C��	 S������	�

In this section, results from a Monte Carlo simulation study are reported. The
SAS PROC IML software was used to perform all simulations and analysis of the
output for both the conditional-score and the corrected-score functions. Each sim-
ulation consisted of generating B = 100 data sets of size n. The data {Xj , εj , Uj}nj=1
were generated from the normal distribution⎛⎝ X

ε
U

⎞⎠ ∼ N
⎧⎨⎩
⎛⎝ 0
0
0

⎞⎠ ,
⎛⎝ 1 0 0
0 σ2ε 0
0 0 σ2U

⎞⎠⎫⎬⎭ .
For each data set, the response variable Yj is normally distributed with mean θ

TXj ,
where Xj = (1, Xj , )

T . The measured data Wj was generated as Wj = Xj + Uj ,
j = 1, . . . , n.
For the simulation study θ = (α, βX , σ

2
ε)
T = (0, 0.5, 0.5)T , the measurement

error variance σ2U = {0.5, 0.75} and sample sizes of n = {50, 100, 200, 500} were
investigated. Four estimators were studied:

• θ̂True calculated from the true data {Yj , Xj , }nj=1;
• θ̂Naive calculated from the observed data {Yj ,Wj}nj=1;
• θ̂C , the conditional-score estimator, calculated from the observed data
{Yj ,Wj}nj=1;

• θ̂M , the corrected-score estimator, calculated from the observed data {Yj ,Wj}nj=1.
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For all of the estimators given above, Newton-Raphson iterations with an initial

guess, say θ̂
(0)
are

θ̂
(k+1) ≈ θ̂(k) − Â−1n (θ̂

(k)
)Gn(θ̂

(k)
), k = 1, 2, · · ·B,

where B is the iteration number, and

Ân(θ̂
(k)
) =

1

n

n∑
i=1

∂

∂θT
Ψ(Yi,Wi; θ)

∣∣∣
θ=̂θ

(k) ,

Gn(θ̂
(k)
) =

1

n

n∑
i=1

Ψ(Yi,Wi; θ̂
(k)
).

The iteration stops when two successive iterates differ by less than a specified
tolerance or when the number of iterations exceeds an allowed maximum.
The true, naive, conditional-score, corrected-score estimators of α, βX and σ2ε

were compared and Monte Carlo means are reported in Table 1 for sample size
50, 100, 200, 500 and 1000 when measurement error variance σ2U takes 0.5 and 0.75
values. The silent features of Table 1 include the attenuation in the naive estima-
tors of βX for two different values of σ

2
U .When the sample size increases, the naive

estimator cannot obtain better estimate. The conditional-score and corrected-score
estimates of slope using W as the measurement of X produce unbiased estima-
tors under the assumption that the error variance is known and equal to 0.5 and
0.75. Both the conditional-score estimator and the corrected-score estimator of the
slope completely correct for the attenuation due to measurement error, even if the
sample size is small. When measurement error variance is 0.5, the naive estimator
is drastically biased even though the sample is large. If the conditional-score and
the corrected-score methods are compared for the slope estimator, both methods
correct the attenuation and yield much better estimators for σ2U = 0.5. When
the true and naive slope estimators are obtained by the conditional-score and the
corrrected-score methods, both estimators are the same. Also noteworthy is the
fact that the conditional-score and corrected-score methods obtain the same true
and naive estimator, therefore it shows both methods work skillfully for error-free
and error-prone regressor at all sample sizes.
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T��� 1. Simulation study results of the true, naive, conditional-
score and corrected-score estimators for the simple linear regression
model with parameters θ = (α, βX , σ

2
ε)
T = (0, 0.5, 0.5)T and mea-

surement error variance σ2U = {0.5, 0.75}. Table entries are means
of 100 Monte Carlo runs for sample size n =
{50, 100, 200, 500, 1000}.

σ2U = 0.5 σ2U = 0.75
n Estimator α = 0 βX = 0.5 σ2ε = 0.5 α = 0 βX = 0.5 σ2ε = 0.5
50 True −0.0091 0.4949 0.4672 −0.0028 0.4803 0.4596

Naive −0.0114 0.3304 0.5602 0.0020 0.2794 0.5556
Conditional −0.0152 0.5509 0.4431 0.0065 0.4156 0.4752
Corrected −0.0198 0.5016 0.4557 0.0071 0.4187 0.4681

100 True 0.0032 0.4989 0.4930 −0.0048 0.5054 0.4823
Naive 0.0014 0.3356 0.5890 −0.0101 0.2882 0.5964
Conditional 0.0012 0.5297 0.4852 −0.0097 0.4243 0.5188
Corrected −0.0000 0.5301 0.4777 −0.0096 0.4224 0.5211

200 True 0.0056 0.5064 0.4829 0.0015 0.5000 0.4862
Naive 0.0095 0.3351 0.5829 −0.0006 0.2883 0.6088
Conditional 0.0098 0.5080 0.4809 −0.0017 0.4151 0.5323
Corrected 0.0099 0.5083 0.4800 −0.0017 0.4099 0.5386

500 True 0.0003 0.4974 0.4941 −0.0045 0.5035 0.4933
Naive −0.0023 0.3312 0.5884 −0.0050 0.2887 0.6184
Conditional −0.0024 0.5026 0.4907 −0.0047 0.4096 0.5424
Corrected −0.0025 0.5025 0.4907 −0.0050 0.4045 0.5498

1000 True −0.0014 0.4999 0.4987 −0.0025 0.5023 0.4950
Naive −0.0022 0.3315 0.5826 −0.0025 0.2884 0.6027
Conditional −0.0014 0.5008 0.4991 −0.0018 0.4047 0.5438
Corrected −0.0014 0.5009 0.4990 −0.0019 0.4047 0.5439

Two methods, the conditional score model-based expectation method and the
corrected score model-based expectation method, for estimating the covariance ma-
trix of θ are given in Table 2 via Monte Carlo simulation for {100, 1000, 10000, 100000} .
The conditional-score yields smaller variance estimates then the corrected-score.
ARE shows that the corrected-score produces smaller variances then conditional-
score for 100 and 1000 Monte Carlo runs when σ2U = 0.5. If the measurement
error variance is equal or greater than 0.75, the variance of the conditional-score
estimator is obtained smaller than the corrected score’s.
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T��� 2. Simulation study results of variance estimations of
the conditional-score and corrected-score estimators for the sim-
ple linear regression model with parameters θ = (α, βX , σ

2
ε)
T =

(0, 0.5, 0.5)T and measurement error variance σ2U = {0.5, 0.75}.
Table entries are means of B = {100, 1000, 10000, 100000} Monte
Carlo runs

Variance Estimation
σ2U = 0.5 σ2U = 0.75

B Estimator α = 0 βX = 0.5 σ2ε = 0.5 α = 0 βX = 0.5 σ2ε = 0.5

100 V ar(θ̂C) 0.6834 0.8676 0.7647 0.7801 1.4140 0.8945
V ar(θ̂M ) 0.6893 0.7947 0.8261 0.8035 1.5077 1.0297
ARE 0.9914 1.0917 0.9257 0.9708 0.9378 0.8687

1000 V ar(θ̂C) 0.6420 1.1921 0.7809 0.7171 1.6050 0.9218
V ar(θ̂M ) 0.6434 1.1620 0.8547 0.7220 1.8470 1.0930
ARE 0.9978 1.0259 0.9136 0.9932 0.8689 0.8434

10000 V ar(θ̂C) 0.6437 1.0070 0.7803 0.7153 1.7303 0.9130
V ar(θ̂M ) 0.6445 1.0309 0.8566 0.7180 2.3505 1.0763
ARE 0.9987 0.9768 0.9109 0.9962 0.7361 0.8483

100000 V ar(θ̂C) 0.6434 1.0009 0.7793 0.7148 1.6532 0.9141
V ar(θ̂M ) 0.6445 1.0375 0.8555 0.7171 2.1672 1.0796
ARE 0.9983 0.9647 0.9109 0.9967 0.7628 0.8467
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