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SELF-SIMILAR ASYMPTOTICS FOR LINEAR AND
NONLINEAR MATHEMATICAL MODELS OF TUMOR

ANGIOGENESIS: A REVIEW

SERDAL PAMUK AND IREM ATAC

Abstract. We show that the long time asymptotic solutions of initial value
problems for linear and nonlinear mathematical models of tumor angiogenesis
are self-similar spreading solutions. The symmetries of the governing equations
yield three-parameter families of these solutions given in terms of their mass,
center of mass, and variance. Unlike the mass and center of mass, the variance,
or ”time-shift,” of a solution is not a conserved quantity for the nonlinear
problem.

1. Biological Background and the Derivation of the Model Equation

Angiogenesis, the formation of new capillaries (small blood vessels) from pre-
existing vessels, is essential for tumor progression. It is critical for the growth of
primary cancers. Solid tumors progress through essentially two distinct phases of
growth, namely the avascular phase and the vascular phase. In the avascular phase,
the tumor does not have its own blood supply. At this stage it is 2-3mm in diameter
and grows by feeding on nutrients in the Extra Cellular Matrix (ECM), which are
supplied to it via diffusion. In the vascular phase, the tumor has its own blood
supply and rapidly grows. It is known that the tumor releases certain chemicals
known as Tumor Angiogenesis Factor (TAF) which stimulates the Endothelial Cells
(EC) in neighboring capillaries to migrate the tumor. Finally angiogenesis occurs.
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Figure 1: Formation of a new blood vessel.

Figure 2: Formation of metastasis of a tumor.

As seen from the Figs.1 & 2, the real tissues can be treated as porous media.
In [7] a code has been used to investigate the validity of the semi-infinite tumor
assumption in an epithelial tissue model. The epithelial tissue model consists of
three layers, which includes the top epithelium, the middle tumor and the bottom
stroma. Usually each layer is assumed to be semi-infinite where the thickness is
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finite while the width and length are infinite. The tissue model in their program
is layer structured in which each layer is assumed to be semi-infinite. Therefore,
we will assume −∞ < x < ∞ for biological purposes. The porous medium equa-
tion is proposed in order to describe the distribution of the density of a substance
that flows through a uniformly distributed porous medium. It often occurs in non-
linear problems of heat and mass transfer, cumbustion theory . For example it
describes unsteady heat transfer in a quiescent medium with heat diffusivity be-
ing a power law function of temperature. It is usually derived as follows [2]. Let
ρ = ρ(x, t) ≥ 0 denote the density of the substance (TAF, EC, Epithelial Cell, for
example). Moreover, v = v(x, t) ∈ Rn denotes the velocity vector of the substance
and p = p(x, t) ∈ R denotes the pressure. By the conservation law we obtain

∂tρ+ div(ρv) = 0. (1.1)

By Darcy’s law, which reflects the fact that the substance flows in a porous medium,
we obtain

v = −∇p. (1.2)

Assuming the constitutive law for pressure and densities one obtains

p(ρ) = ργ , γ ≥ 1. (1.3)

Substitution of (1.2) and (1.3) into (1.1) yields

∂tρ−
γ

1 + γ
4ρ1+γ = 0. (1.4)

To simplify the last equation, we shall take a constant C such that Cγ = γ
1+γ ,

and set u = Cρ, and then (1.4) is equivalent to

∂tu−4um = 0, (1.5)

where m = γ+1 [2]. The assumption γ ≥ 1 corresponds to m ≥ 2. For m = 1, (1.5)
is the heat equation. While m > 1, it is called the porous medium equation. The
equation is also important for m satisfying 0 < m < 1, since it describes plasma
phenomena, for example. We will only consider the case m > 1. Since u originally
denotes a positive constant (multiple of the density), we consider only non-negative
solutions.
In [3] it is described how this model has been used to represent "population pres-

sure" in biological systems. It is called a degenerate parabolic differential equation
because the diffusion coeffi cient D(u) = um does not satisfy the conditions for
classical diffusion equations, D(u) > 0. For the motion of thin viscous films, this
equation with m = 3 can be derived from Navier-Stokes Equation.
Let us now calculate self similar solutions of the porous medium equation (1.5).

If u satisfies (1.5) in Rn × (0,∞) (and u and um are smooth), then
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uµ,λ = µu(λx, λ2µm−1t), λ > 0, µ > 0 (1.6)

also satisfies (1.5) in Rn × (0,∞).
Moreover, it can be shown that its total mass

∫
Rn

u(x, t)dx is conserved for evo-
lution of time in the same way as for the heat equation. Since the total mass is
conserved under the scaling transformation uµ,λ with µ = λn above, we define the
scaling transformation by

uk(x, t) = λnu(kx, k2+(m−1)nt), k > 0. (1.7)

This preserves the total mass and is a generalization of the scaling transforma-
tion for the heat equation. Below we shall consider only the case m > 1. Let u be a
function invariant under the scaling transformation (1.7), and which preserves the
total mass. Then, it is clear that

uk(x, t) = u(x, t), x ∈ Rn, t > 0, k > 0, (1.8)

is satisfied.
Also u can be expressed as

u(x, t) = t−`w(t−`/nx), (1.9)

with

w(y) = u(y, t), y ∈ Rn, k = t−`/n, ` =
n

2 + (m− 1)n
. (1.10)

A direct calculation shows that [2] a function u which is invariant under the scaling
transformation (1.7) is a solution of (1.5) if and only if w satisfies

4wm(y) + `/n < y,∇w(y) > +`w(y) = 0, y ∈ Rn. (1.11)

(This is a formal argument under the assumption that u and um are suffi ciently
smooth). Now we shall choose the pressure v = wm−1 as a dependent variable
instead of density. If v > 0, then we obtain an equation for v = v(y) from equation
(1.11):

v
1

m−1
m

m− 1
{4v +

1

m− 1
|∇v|2v−1 `

mn
v−1 < y,∇v > +

`(m− 1)

m
} = 0, (1.12)

for y ∈ Rn.
Let us find a non-negative solution radially symmetric with respect to the origin

and quadratic in |y| near the origin. We in particular consider a solution of the form

v̄(y) = (β2 − c2|y|2)+, y ∈ Rn, (1.13)

where (a)+ = max(a, 0). Here β and c are constants.
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Since 4v̄ = −2nc2 at y ∈ Rn with v̄(y) > 0, setting

c2 =
`(m− 1)

2nm
, (1.14)

we have 4v̄ + `(m−1)
m = 0. By a direct calculation we obtain

1

m− 1
|∇v̄|2 +

`

mn
< y,∇v̄ > =

4c4|y|2
m− 1

− 2`c2|y|2
mn

(1.15)

= 2c2|y|2(
2c2

m− 1
− `

mn
)

= 0.

The final equality is due to the choice of c in (1.14). This shows that v̄ with (1.14)
formally satisfies (1.12).
Definition: Let v̄ be a function on Rn of the form v̄(y) = (β2 − c2|y|2)+ with

c2 = `(m−1)
2nm , ` = n

2+(m−1)n . Take β
2 such that

∫
Rn

v̄(y)dy = 1. For L > 0 we call

VL(x, t) = L
1

m−1
1

(Lt)`
v̄(

|x|
(Lt)`/n

), x ∈ Rn, t > 0, (1.16)

a Barenblatt Self Similar Solution. From the expression of VL we see that VL is
invariant under the scaling transformation (1.7). Also, VL satisfies (1.5) at (x, t)
where VL(x, t) > 0. By the choice of β, we obtain∫

Rn
VL(x, t)dx = L

1
m−1 , (1.17)

hence the total mass is conserved for t > 0. A similarity solution of (1.5) is [5]

u = u(z), z =
x√
t
, (0 ≤ x <∞), (1.18)

where the function u(z) is determined by the ODE

2(umu′)′ + zu′ = 0. (1.19)

To the particular solution of this equation with u(z) = k2z
2/m there corresponds

the solution

u(x, t) =

[
m(x−A)2

2(m+ 2)(B − t)

]1/m

. (1.20)

With the boundary conditions u = 1 at z = 0, u = 0 at z = ∞, the solution of
this differential equation is localized and has the structure [5]

u =

{
(1− Z)1/m P (1−Z,m)

P (1,m) , for 0 ≤ Z ≤ 1

0, for 1 ≤ Z <∞,
(1.21)
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where

Z =
z

z0
, z2

0 =
2

mP (1,m)
, P (ξ,m) =

∞∑
k=0

bkξ
k. (1.22)

Another self-similar solution of (1.5) is [5]:

u = t
−1
m+2F (ξ), ξ = xt

−1
m+2 , (0 ≤ x <∞). (1.23)

Here, the function F = F (ξ) is determined by the first-order differential equation

(m+ 2)FmF ′ + ξF = C, (1.24)

where C is an arbitrary constant. To C = 0 there corresponds the solution

u(x, t) =

[
A|t+B|

−m
m+2 − m

2(m+ 2)

(x+ C)2

t+B

]1/m

. (1.25)

Self-similar solution of a more general form can be obtained by setting [5]:

u = tβg(ζ), ζ = xt
−(mβ+1)

2 , (1.26)

where β is any constant.
Here, the function g = g(ζ) is determined by the differential equation

G′′ = A1ζG
−m
m+1G′ +A2G

1
m+1 , G = gm+1, (1.27)

where A1 = −(mβ+1)
2 and A2 = β(m+ 1).

One obtains a generalized self-similar solution by setting:

u = e−2λtϕ(ζ), ζ = xeλmt, (1.28)

where λ is any constant, and the function ϕ = ϕ(ζ) is determined by the differential
equation

(ϕmϕ′)′ = λmuϕ′ − 2λϕ. (1.29)

An unsteady point source solution may be given as follows [5]:

u(x, t) =

{
At−1/(m+2)

(
η2

0 − x2

t2/(m+2)

)
for |x| ≤ η0t

1/(m+2),

0 for |x| > η0t
1/(m+2),

(1.30)

where A =
[

m
2(m+2)

]1/m
, η0 =

[
Γ(1/m+3/2)
A
√
πΓ(1/m+1)

E0

]m/(m+2)

, with Γ(z) being the

gamma function. The above solution satisfies the initial condition u(x, 0) = E0δ(x),



SELF-SIMILAR ASYMPTOTICS 77

where δ(x) is the Dirac delta function, and the condition of conservation of energy is∫ ∞
−∞

u(x, t)dx = E0 > 0. (1.31)

2. Self Similar Solutions of the Model

Throughout this paper the variable u = u(x, t) will stand for the TAF concen-
tration. The linear TAF equation is of the form

ut = uxx, u(x, 0) = u0(x), −∞ < x <∞ (2.1)

and its nonlinear generalization, the porous medium equation, is of the form

ut = (un+1)xx, n > 0, u(x, 0) = u0(x), −∞ < x <∞, (2.2)

for non-negative, integrable, compactly-supported initial data u0(x).

Some partial analytical solutions of the problem (2.2) was obtained in [4].
In the porous medium case there can be no entrance of EC into the ECM for a finite
time after the tumor begins to emit TAF. We will now discuss the issues involved in
selecting the correct long-time asymptotic self-similar solution for these problems.
For suffi ciently localized initial conditions, as t → ∞ the solution of problem

(2.1) approaches a self-similar spreading Gaussian pulse (see Fig.3(a)) [6]:

u(x, t) ∼ 1√
4π(t+ t∗)

exp

(
1

4

(
a2
∗ −

(x− x∗)2

t+ t∗

))
+O((t+ t∗)

−2) (2.3)

Similarly, as t→∞, the solution of problem (2.2) for the porous medium equa-
tion approaches a Barenblatt similarity solution
(see Fig.3(b))[1]:

u(x, t) ∼ 1

(t+ t∗)α

(
nα

2(n+ 1)

(
a2
∗ −

(
x− x∗

(t+ t∗)α

)2
)

+

) 1
n

(2.4)

+ O((t+ t∗)
−(3n+4)α)

Here w+ ≡ max(w, 0) and α = 1
n+2 .

(2.3) and (2.4) are characterized by three parameters (a∗, x∗, t∗) that correspond
to their mass, center of mass, and variance. Parameters x∗ and t∗ denote spatial
and temporal coordinate translations, and a∗ denotes a change of mass rescaling.
We rewrite the diffusion equations in terms of their mass-preserving similarity vari-
ables. In these coordinates the similarity solution corresponds to a steady state.
Linearizing about this state yields an eigenvalue problem that governs the rate of
decay of deviations from the stable similarity solution. The rate of convergence can
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Figure 1. Figure 3: (a) Gauss solotion, (b) Barenblatt solotion

be maximized by selecting the values of (a∗, x∗, t∗) that eliminate the first three
terms in the eigenfunction expansion. The similarity solution with these values for
the parameters is called the optimal similarity solution.
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