PAPER DETAILS

TITLE: COMPLEX FACTORIZATION OF SOME TWO-PERIODIC LINEAR RECURRENCE

SYSTEMS

AUTHORS: Semih YILMAZ, Abulent EKIN

PAGES: 129-134

ORIGINAL PDF URL: https://dergipark.org.tr/tr/download/article-file/773776

Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. Volume 63, Number 2, Pages 129–134 (2014) ISSN 1303-5991

COMPLEX FACTORIZATION OF SOME TWO-PERIODIC LINEAR RECURRENCE SYSTEMS

SEMIH YILMAZ AND A.BULENT EKIN

ABSTRACT. In this paper, we define the generalized two-periodic linear recurrence systems and find the factorizations of this recurrence systems. We also solve an open problem given in [3] under certain conditions.

1. INTRODUCTION

Definition 1.1. Let a_0 , a_1 , b_0 , b_1 are real numbers. The two-periodic second order linear recurrence system $\{v_n\}$ is defined by $v_0 := 0$, $v_1 \in \mathbb{R}$ and for $n \ge 1$

$$v_{2n} := a_0 v_{2n-1} + b_0 v_{2n-2}$$
$$v_{2n+1} := a_1 v_{2n} + b_1 v_{2n-1}.$$

Also, let $A := a_0 a_1 + b_0 + b_1$, $B := b_0 b_1$, and assume $A^2 - 4B \neq 0$.

Heleman studied two periodic second order linear recurrence systems and called it as $\{f_n\}$ in [2]. Curtis and Parry also worked on the same linear recurrence systems in [3]. If we take $v_0 = 0$, $v_1 = 1$ then we get the sequence $\{f_n\}$, so here we study more general case.

We need the following results of Theorem 6 and Theorem 9 in [1], in the case r = 2.

The generating function of the sequence $\{v_n\}$ is

$$G(x) = \frac{v_1 x + a_0 v_1 x^2 - b_0 v_1 x^3}{1 - Ax^2 + Bx^4}$$

and the terms of the sequences $\{v_n\}$ satisfy

$$v_{2n} = \frac{\alpha^n - \beta^n}{\alpha - \beta} a_0 v_1 \tag{1.1}$$

©2014 Ankara University

Received by the editors: Sep. 16, 2014; Revised: Dec.05, 2014; Accepted: Dec. 08, 2014.

²⁰⁰⁰ Mathematics Subject Classification. 11B37, 11B39, 11B83, 15A18.

Key words and phrases. Recurrences, Fibonacci and Lucas numbers, Special sequences and polynomials, Periodic Recurrence, Factorization.

where

$$\alpha = \frac{A + \sqrt{A^2 - 4B}}{2}$$
, $\beta = \frac{A - \sqrt{A^2 - 4B}}{2}$

that is, α and β are the roots of the polynomial $p(z) = z^2 - Az + B$. Since $A^2 - 4B \neq 0$ thus α and β are distinct.

We also need to define, the following matrix, for a positive integer n,

It is easily seen by induction that for $n \ge 1$,

$$v_n = \det\left(T\left(n\right)\right). \tag{1.2}$$

2. The Factorization of v_{2n}

We give two lemmas to prove our main results, Theorem 2.3 and Theorem 2.4. Lemma 2.1. Let $n \ge 2$, then

det
$$(T(2n)) = 0 \iff a_0 = 0 \text{ or } v_1 = 0 \text{ or } a_0 a_1 + b_0 + b_1 = 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)$$

where $1 \le k \le n - 1$.

Proof. By 1.1 and 1.2

$$\det (T (2n)) = 0 \iff v_{2n} = \frac{\alpha^n - \beta^n}{\alpha - \beta} a_0 v_1 = 0$$
$$\iff a_0 = 0 \text{ or } v_1 = 0 \text{ or } \alpha^n - \beta^n = 0$$
$$\alpha^n - \beta^n = 0 \iff \left(\frac{\alpha}{\beta}\right)^n = 1$$

Hence, for some $0 \le k \le n-1$ we have

$$\left(\frac{\alpha}{\beta}\right)^n = e^{2k\pi i}$$
$$\iff \frac{\alpha}{\beta} = e^{\frac{2k\pi i}{n}}$$

We note here that $k \neq 0$ since $\alpha \neq \beta$.

Let

$$\theta:=\ \frac{2k\pi i}{n}$$

for some $1 \leq k \leq n-1$. Then,

$$\frac{\alpha}{\beta} = \frac{A + \sqrt{A^2 - 4B}}{A - \sqrt{A^2 - 4B}} = e^{i\theta}$$
$$\iff A + \sqrt{A^2 - 4B} = e^{i\theta} \left(A - \sqrt{A^2 - 4B}\right).$$

Next,

$$\sqrt{A^2 - 4B}e^{i\theta} + \sqrt{A^2 - 4B} = Ae^{i\theta} - A.$$

Then,

$$\sqrt{A^2 - 4B} = A \frac{e^{i\theta} - 1}{e^{i\theta} + 1} = A \frac{e^{i\theta} - 1}{e^{i\theta} + 1} \frac{e^{-i\theta} + 1}{e^{-i\theta} + 1} = A \frac{e^{i\theta} - e^{-i\theta}}{2 + e^{i\theta} + e^{-i\theta}}.$$

Now, since

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$
 and $\sin(-\theta) = -\sin(\theta)$, $\cos(-\theta) = \cos(\theta)$
we have

$$\sqrt{A^2 - 4B} = A \frac{e^{i\theta} - e^{-i\theta}}{2 + e^{i\theta} + e^{-i\theta}} = A \frac{i\sin\left(\theta\right)}{1 + \cos\left(\theta\right)} = Ai\tan\left(\frac{\theta}{2}\right).$$

Squaring both sides of this equality and after some simplifications we have

$$A = 2\sqrt{B}\cos\left(\frac{\theta}{2}\right).$$
 (2.1)

Now, substituting the values of A, B and θ in 2.1, we get

$$a_0a_1 + b_0 + b_1 = 2\sqrt{b_0b_1}\cos\left(\frac{k\pi}{n}\right)$$

for some $1 \le k \le n-1$. This is what we wanted prove.

Lemma 2.2. Let $n \geq 2$. The eigenvalues of T(2n) are

$$a_0, v_1 \text{ and } \frac{a_0 + a_1}{2} \pm \sqrt{\left(\frac{a_0 - a_1}{2}\right)^2 - (b_0 + b_1) + 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)}, \quad 1 \le k \le n-1.$$

Proof. Let $g_0 := 0$, $g_1 := v_1 - t$ and for $n \ge 1$

$$g_{2n} := (a_0 - t) g_{2n-1} + b_0 g_{2n-2}$$

$$g_{2n+1} := (a_1 - t) g_{2n} + b_1 g_{2n-1}.$$

The eigenvalues of T(2n) are the solutions of det $(T(2n) - tI_{2n}) = g_{2n} = 0$. By Lemma 2.1,

$$g_{2n} = 0 \iff a_0 - t = 0 \text{ or } g_1 = v_1 - t = 0 \text{ or } (a_0 - t)(a_1 - t) + b_0 + b_1 = 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)$$

131

for some $1 \le k \le n-1$. Therefore, the eigenvalues of T(2n) are a_0, v_1 and the solutions of the quadratic equation

$$t^{2} - (a_{0} + a_{1})t + a_{0}a_{1} + b_{0} + b_{1} = 2\sqrt{b_{0}b_{1}}\cos\left(\frac{k\pi}{n}\right)$$

for some $1 \le k \le n-1$. Completing the square we have

$$t^{2} - (a_{0} + a_{1})t + \left(\frac{a_{0} + a_{1}}{2}\right)^{2} = \left(\frac{a_{0} + a_{1}}{2}\right)^{2} - a_{0}a_{1} - b_{0} - b_{1} + 2\sqrt{b_{0}b_{1}}\cos\left(\frac{k\pi}{n}\right).$$

Therefore, the eigenvalues of $T(2n)$ are $a_{1} - a_{1}$ and

Therefore, the eigenvalues of T(2n) are a_0, v_1 and

$$\frac{a_0 + a_1}{2} \pm \sqrt{\left(\frac{a_0 - a_1}{2}\right)^2 - (b_0 + b_1) + 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)}$$

for some $1 \le k \le n - 1$.

Theorem 2.3. Let $\{v_n\}$ be the two-periodic second order linear recurrence system,

Theorem 2.3. Let $\{v_n\}$ be the two-periodic second order linear recurrence system and $n \ge 2$. Then

$$v_{2n} = a_0 v_1 \prod_{k=1}^{n-1} \left(\frac{a_0 + a_1}{2} \pm \sqrt{\left(\frac{a_0 - a_1}{2}\right)^2 - (b_0 + b_1) + 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)} \right).$$

Proof. The result follows from Lemma 2.2, $v_{2n} = \det(T(2n))$ and the fact that the determinant of a matrix is the product of the eigenvalues of the matrix. \Box

Theorem 2.4. Let $\{v_n\}$ be the two-periodic second order linear recurrence system, $n \ge 2$ and $b_1 := 0$. Then

$$v_{2n+1} = a_0 a_1 v_1 \left(a_0 a_1 + b_0 \right)^{n-1}$$
.

Proof. If we take $b_1 = 0$ in Definition 1, we get $v_0 = 0, v_1 \in \mathbb{R}$ and for $n \ge 1$

$$v_{2n} = a_0 v_{2n-1} + b_0 v_{2n-2}$$

$$v_{2n+1} = a_1 v_{2n}.$$

By Theorem 2.3, we have

$$v_{2n} = a_0 v_1 \prod_{k=1}^{n-1} \left(\frac{a_0 + a_1}{2} \pm \sqrt{\left(\frac{a_0 - a_1}{2}\right)^2 - b_0} \right)$$
$$= a_0 v_1 \prod_{k=1}^{n-1} (a_0 a_1 + b_0)$$
$$= a_0 v_1 (a_0 a_1 + b_0)^{n-1}.$$

Hence, by the definition of $\{v_n\}$, we get the result

$$v_{2n+1} = a_1 v_{2n} = a_0 a_1 v_1 \left(a_0 a_1 + b_0 \right)^{n-1}$$

Example 2.5. Let $v_0 = 0$, $v_1 = 1$ and for $n \ge 1$

$$v_{2n} = a_0 v_{2n-1} + b_0 v_{2n-2}$$
$$v_{2n+1} = a_1 v_{2n} + b_1 v_{2n-1}.$$

Then $\{v_n\}$ is added one term to beginning of $\{f_n\}$ sequences in [3]. Namely,

$$f_n = v_{n+1}, \quad n \ge 0$$

Hence

$$f_{2n+1} = v_{2n} = a_0 \prod_{k=1}^{n-1} \left(\frac{a_0 + a_1}{2} \pm \sqrt{\left(\frac{a_0 - a_1}{2}\right)^2 - (b_0 + b_1) + 2\sqrt{b_0 b_1} \cos\left(\frac{k\pi}{n}\right)} \right)$$

Therefore this factorization is the same as Theorem 11 in [3].

They give several open questions for future work. One of this question is a complex factorization of the terms f_{2n} . We have solved in the following way at condition $b_1 = 0$ of this question by Theorem 2.4,

$$f_{2n} = v_{2n+1} = a_0 a_1 v_1 \left(a_0 a_1 + b_0 \right)^{n-1}$$

2.1. Special Cases:

Case 1. The case $v_0 := 0$, $v_1 := 1$, $a_0 := 1$, $a_1 := 1$, $b_0 := 1$, $b_1 := 1$, then $\{v_n\}$ becomes the sequence of Fibonacci numbers. Therefore, we get

$$F_{2n} = \prod_{k=1}^{n-1} \left(3 - 2\cos\left(\frac{k\pi}{n}\right) \right)$$

that is the equation 4.1 in [4].

Case 2. The case $v_0 := 0$, $v_1 := 1$, $a_0 := 2$, $a_1 := 2$, $b_0 := 1$, $b_1 := 1$, then $\{v_n\}$ becomes the sequence of Pell numbers. Therefore,

$$P_{2n} = 2\prod_{k=1}^{n-1} \left(6 - 2\cos\left(\frac{k\pi}{n}\right) \right) = 2^n \prod_{k=1}^{n-1} \left(3 - \cos\left(\frac{k\pi}{n}\right) \right)$$

Case 3. The case $v_0 := 0$, $v_1 := 1$, $a_0 := 1$, $a_1 := 1$, $b_0 := 2$, $b_1 := 2$, then $\{v_n\}$ becomes the sequence of Jacobsthal numbers. Therefore,

$$J_{2n} = \prod_{k=1}^{n-1} \left(5 - 4\cos\left(\frac{k\pi}{n}\right) \right)$$

Case 4. The case $v_0 := 0$, $v_1 := 1$, $a_0 := 1$, $a_1 := 1$, $b_0 := -1$, $b_1 := 1$, then $\{v_n\}$ becomes the sequence of A053602 on [5]. Then $\{v_{2n}\}$ becomes the sequence of Fibonacci numbers. Therefore, we get

$$F_n = \prod_{k=1}^{n-1} \left(1 - 2i \cos\left(\frac{k\pi}{n}\right) \right).$$

that is the equation 1.1 in [4].

Case 5. The case $v_0 := 0$, $v_1 := 1$, $a_0 := 3$, $a_1 := 3$, $b_0 := -2$, $b_1 := -2$, then $\{v_n\}$ becomes the sequence of Mersenne numbers. Therefore,

$$M_{2n} = 3 \prod_{k=1}^{n-1} \left(5 - 4 \cos\left(\frac{k\pi}{n}\right) \right) = 3J_{2n}.$$

References

- Daniel Panario, Murat Şahin, Qiang Wang; A family of Fibonacci-like conditional sequences, INTEGERS Electronic Journal of Combinatorial Number Theory, 13, A78, 2013.
- [2] Heleman R. P. Ferguson; The Fibonacci Pseudogroup, Characteristic Polynomials and Eigenvalues of Tridiagonal Matrices, Periodic Linear Recurrence Systems and Application to Quantum Mechanics, The Fibonacci Quarterly, 16.4 (1978): 435–447.
- [3] Curtis Cooper, Richard Parry; Factorizations Of Some Periodic Linear Recurrence Systems, The Eleventh International Conference on Fibonacci Numbers and Their Applications, Germany (July 2004).
- [4] Nathan D. Cahill, John R. D'Errico, John P. Spence; Complex Factorizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 41, No.1 (2003), 13-19.
- [5] www.oeis.org , The On-Line Encyclopedia of Integer Sequences.
- *Current address*: Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

 $E\text{-}mail\ address:\ \texttt{semihyilmaz@ankara.edu.tr},\ \texttt{ekin@science.ankara.edu.tr}\ URL:\ \texttt{http://communications.science.ankara.edu.tr/index.php?series=A1}$