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EFFECT OF GENERALIZED RELATIVE ORDER ON THE
GROWTH OF COMPOSITE ENTIRE FUNCTIONS

SANJIB KUMAR DATTA, TANMAY BISWAS, AND CHINMAY GHOSH

Abstract. In this paper we establish some newly developed results related to
the growth rates of composite entire functions on the basis of their generalized
relative orders and generalized relative lower orders.

1. Introduction

Let f be an entire function defined on set of all finite complex numbers

C. The maximum modulus Mf (r) of f =
∞∑
n=0

anz
n on |z| = r is defined by

Mf (r) = max
|z|=r
|f (z) |. If f is non-constant entire then Mf (r) is strictly increasing

and continuous and therefore there exists its inverse function M−1f : (|f (0)| ,∞)→
(0,∞) with lim

s→∞
M−1f (s) = ∞. On the other hand the maximum term µf (r) of f

can be defined in the following way:

µf (r) = max
n≥0

(|an|rn)

whose inverse is also a increasing function of r.
The ratios Mf (r)

Mg(r)
as r →∞ and

µf (r)

µg(r)
as r →∞ are called the growth of f

with respect to g in terms of their maximum moduli and the maximum term respec-
tively. And the study of comparative growth properties of entire functions which
is one of a prominent branch of the value distribution theory of entire functions is
the prime concern of the paper. Our notations are standard within the theory of
Nevanlinna’s value distribution of entire functions and therefore we do not explain
those in detail as available in [15]. In the sequel the following two notations are
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used:

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, · · · ;

log[0] x = x

and

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · · ;

exp[0] x = x.

Taking this into account the generalized order (respectively, generalized
lower order) of an entire function f as introduced by Sato [11] is given by:

ρ
[l]
f = lim sup

r→∞

log[l]Mf (r)

log logMexp z (r)
= lim sup

r→∞

log[l]Mf (r)

log r(
respectively λ[l]f = lim infr→∞

log[l]Mf (r)

log logMexp z (r)
= lim inf

r→∞

log[l]Mf (r)

log r

)
where l ≥ 1.

These definitions extend the definitions of order ρf and lower order λf
of an entire function f since for l = 2, these correspond to the particular case
ρ
[2]
f = ρf (2, 1) = ρf and λ

[2]
f = λf (2, 1) = λf .

Using the inequality

µf (r) ≤Mf (r) ≤
R

R− rµf (R) {cf. [13] } for 0 ≤ r < R,

the growth indicator ρf ( respectively λf ) and consequently ρ
[l]
f ( respectively λ[l]f )

are reformulated as:

ρf = lim sup
r→∞

log[2] µf (r)

log r

(
respectively λf = lim inf

r→∞

log[2] µf (r)

log r

)
and

ρ
[l]
f = lim sup

r→∞

log[l] µf (r)

log r

(
respectively λ[l]f = lim infr→∞

log[l] µf (r)

log r

)
where l ≥ 1.

For any two entire functions f and g, Bernal {[1], [2]} introduced the defi-
nition of relative order of f with respect to g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 :Mf (r) < Mg (r
µ) for all r > r0 (µ) > 0}

= lim sup
r→∞

logM−1g Mf (r)

log r
,
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which avoid comparing growth just with exp z to determine order of entire functions
as we see in the earlier and naturally this definition coincides with the classical one
[14] for g = exp z.

Similarly, one can define the relative lower order of f with respect to g
denoted by λg (f) as

λg (f) = lim inf
r→∞

logM−1g Mf (r)

log r
.

In the case of relative order, it therefore seems reasonable to state suitably
an alternative definition of relative order of entire function in terms of its maximum
terms. Datta and Maji [6] introduced such a definition in the following way:

Definition 1. [6] The relative order ρg (f) and the relative lower order λg (f) of
an entire function f with respect to another entire function g are defined as follows:

ρg (f) = lim sup
r→∞

logµ−1g µf (r)

log r
and λg (f) = lim inf

r→∞

logµ−1g µf (r)

log r
.

Lahiri and Banerjee [10] gave a more generalized concept of relative order
in the following way:

Definition 2. [10] If l ≥ 1 is a positive integer, then the l- th generalized relative
order of f with respect to g, denoted by ρlf (g) is defined by

ρ[l]g (f) = inf
{
µ > 0 :Mf (r) < Mg

(
exp[l−1] rµ

)
for all r > r0 (µ) > 0

}
= lim sup

r→∞

log[l]M−1g Mf (r)

log r
.

Clearly ρ1g (f) = ρg (f) and ρ
1
exp z (f) = ρf .

Likewise, one can define the generalized relative lower order of f with respect to
g denoted by λ[l]g (f) as

λ[l]g (f) = lim inf
r→∞

log[l]M−1g Mf (r)

log r
.

In terms of maximum terms of entire functions, Definition 2 can be refor-
mulated as:

Definition 3. For any positive integer l ≥ 1, the growth indicatorsρ[l]g (f) and
λ[l]g (f) for an entire function f are defined as:

ρ[l]g (f) = lim sup
r→∞

log[l] µ−1g µf (r)

log r
and λ[l]g (f) = lim inf

r→∞

log[l] µ−1g µf (r)

log r
.

In fact, Lemma 6 states the equivalence of Definition 2 and
Definition 3.
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For entire functions, the notions of the growth indicators such as order is
classical in complex analysis and during the past decades, several researchers have
already been exploring their studies in the area of comparative growth properties
of composite entire functions in different directions using the classical growth in-
dicators. But at that time, the concepts of relative orders and consequently the
generalized relative orders of entire functions and as well as their technical ad-
vantages of not comparing with the growths of exp z are not at all known to the
researchers of this area. Therefore the growth of composite entire functions needs
to be modified on the basis of their relative order some of which has been explored
in [4], [5], [6], [7], [8] and [9]. In this paper we establish some newly developed
results related to the growth rates of composite entire functions on the basis of
their generalized relative orders ( respectively generalized relative lower orders).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1. [12] Let f and g be any two entire functions Then for every α > 1 and
0 < r < R,

µf◦g (r) ≤
α

α− 1µf
(

αR

R− rµg (R)
)
.

Lemma 2. [12] If f and g are any two entire functions with g (0) = 0. Then for
all suffi ciently large values of r,

µf◦g(r) ≥
1

2
µf

(
1

8
µg

(r
4

)
− |g (0)|

)
.

Lemma 3. [3] If f and g are two entire functions then for all suffi ciently large
values of r,

Mf

(
1

8
Mg

(r
2

)
− |g (0)|

)
≤Mf◦g(r) ≤Mf (Mg (r)) .

Lemma 4. [2] Suppose that f be an entire function and α > 1, 0 < β < α. Then
for all suffi ciently large r,

Mf (αr) ≥ βMf (r).

Lemma 5. [6] If f be an entire and α > 1, 0 < β < α, then for all suffi ciently
large r,

µf (αr) ≥ βµf (r) .

Lemma 6. Definition 2 and Definition 3 are equivalent.

Proof. Taking R = αr in the inequalities µh (r) ≤Mh (r) ≤ R
R−rµh (R) {cf. [13] } ,

for 0 ≤ r < R we obtain that

M−1h (r) ≤ µ−1h (r)
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and

µ−1h (r) ≤ αM−1h
(

αr

(α− 1)

)
.

SinceM−1h (r) and µ−1h (r) are increasing functions of r, then for any α > 1 it follows
from the above and the inequalities µf (r) ≤Mf (r) ≤ α

α−1µf (αr) {cf. [13] } that

M−1h Mf (r) ≤ µ−1h
[

α

(α− 1)µf (αr)
]

(1)

and

µ−1h µf (r) ≤ αM−1h
[

α

(α− 1)Mf (r)

]
. (2)

Therefore in view of Lemma 5 we have from (1) that

M−1h Mf (r) ≤ µ−1h µf

[
(2α− 1)α
(α− 1) · r

]
.

Thus from above we get that

log[l]M−1g Mf (r)

log r
≤

log[l] µ−1h µf

[
(2α−1)α
(α−1) · r

]
log r

i.e.,
log[l]M−1g Mf (r)

log r
≤

log[l] µ−1h µf

[
(2α−1)α
(α−1) · r

]
log
[
(2α−1)α
(α−1) · r

]
+O(1)

i.e. ρ[l]g (f) = lim sup
r→∞

log[l]M−1g Mf (r)

log r

≤ lim sup
r→∞

log[l] µ−1h µf

[
(2α−1)α
(α−1) · r

]
log
[
(2α−1)α
(α−1) · r

]
+O(1)

i.e., ρ[l]g (f) ≤ lim sup
r→∞

log[l] µ−1h µf (r)

log r
(3)

and accordingly

λ[l]g (f) ≤ lim inf
r→∞

log[l] µ−1h µf (r)

log r
. (4)

Similarly, in view of Lemma 4 it follows from (2) that

µ−1h µf (r) ≤ αM−1h Mf

[(
2α− 1
α− 1

)
· r
]
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and from above we obtain that

log[l] µ−1h µf (r)

log r
≤

log[l] αM−1h Mf

[(
2α−1
α−1

)
· r
]

log r

i.e.,
log[l] µ−1h µf (r)

log r
≤

log[l]M−1h Mf

[(
2α−1
α−1

)
· r
]
+O(1)

log
[(

2α−1
α−1

)
· r
]
+O(1)

i.e. ρ[l]g (f) = lim sup
r→∞

log[l]M−1h Mf

[(
2α−1
α−1

)
· r
]
+O(1)

log
[(

2α−1
α−1

)
· r
]
+O(1)

≥ lim sup
r→∞

log[l] µ−1h µf (r)

log r

i.e., ρ[l]g (f) ≥ lim sup
r→∞

log[l] µ−1h µf (r)

log r
(5)

and consequently

λ[l]g (f) ≥ lim inf
r→∞

log[l] µ−1h µf (r)

log r
. (6)

Combining (3), (5) and (4), (6) we obtain that

ρ[l]g (f) = lim sup
r→∞

log[l] µ−1g µf (r)

log r
and λ[l]g (f) = lim inf

r→∞

log[l] µ−1g µf (r)

log r
.

This proves the lemma. �

3. Main Results

In this section we present the main results of the paper.

Theorem 1. Let f, g and h be any three entire functions such that λ[q]g < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ where p and q are any two positive integers with p > 1 and q > 2.
Then

(i) lim inf
r→∞

log[p] µ−1h µf◦g (r)

log[p−q+1] µ−1h µf (r)
= 0

and

(ii) lim inf
r→∞

log[p]M−1h Mf◦g (r)

log[p−q+1]M−1h Mf (r)
= 0 .
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Proof. Since µ−1h (r) is an increasing function of r, taking R = βr (β > 1) in Lemma
1 and in view of Lemma 5 it follows for a sequence of values of r tending to infinity
that

µf◦g (r) ≤
α

α− 1µf
(

αβ

(β − 1)µg (βr)
)

i.e., µf◦g (r) ≤ µf

(
(2α− 1)αβ
(α− 1) (β − 1)µg (βr)

)

i.e., log[p] µ−1h µf◦g (r) ≤ log[p] µ−1h µf

(
(2α− 1)αβ
(α− 1) (β − 1)µg (βr)

)
(7)

i.e., log[p] µ−1h µf◦g (r) ≤
(
ρ
[p]
h (f) + ε

)
exp[q−2] (βr)

λ[q]g +ε
+O(1). (8)

Again from Definition 3, we obtain for all suffi ciently large values of r that

log[p−q+1] µ−1h µf (r) > exp[q−2] rλ
[p]
h (f)−ε . (9)

Now in view of (8) and (9) , we get for a sequence of values of r tending to infinity
that

log[p] µ−1h µf◦g (r)

log[p−q+1] µ−1h µf (r)
≤

(
ρ
[p]
h (f) + ε

)
exp[q−2] (βr)

λ[q]g +ε
+O(1)

exp[q−2] rλ
[p]
h (f)−ε

. (10)

Since λ[q]g < λ
[p]
h (f) , we can choose ε (> 0) in such a way that λ[q]g + ε < λ

[p]
h (f)− ε

and therefore, first part of the theorem follows from (10) .
As M−1h (r) is an increasing function of r, by similar reasoning as above the

second part of the theorem follows from the second part of Lemma 3 and therefore
its proof is omitted. �

Remark 1. If we take ρ[q]g < λ
[p]
h (f) ≤ ρ

[p]
h (f) < ∞ instead of λ[q]g < λ

[p]
h (f) ≤

ρ
[p]
h (f) <∞ and the other conditions remain the same, the conclusion of Theorem
1 remains valid with “limit inferior” replaced by “limit”.

Theorem 2. Let f, g and h be any three entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) <∞ and λ[q]g <∞ where p, q are any integers with p ≥ 1 and q ≥ 2. Then
for every positive constant A and each α ∈ (−∞,∞) ,

(i) lim inf
r→∞

{
log[p] µ−1h µf◦g (r)

}1+α
log[p] µ−1h µf (exp

[q−1] rA)
= 0 if A > (1 + α)λ[q]g

and

(ii) lim inf
r→∞

{
log[p]M−1h Mf◦g (r)

}1+α
log[p]M−1h Mf (exp[q−1] rA)

= 0 if A > (1 + α)λ[q]g .
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Proof. If 1 + α ≤ 0, then the theorem is obvious. We consider 1 + α > 0.
Now from the definition of generalized relative lower order, we get for all suffi ciently
large values of r that

log[p] µ−1h µf (exp
[q−1] rA) ≥

(
λ
[p]
h (f)− ε

)
exp[q−2] rA . (11)

Therefore we get from (8) and (11) , for a sequence of values of r tending to infinity
that {

log[p] µ−1h µf◦g (r)
}1+α

log[p] µ−1h µf (exp
[q−1] rA)

≤

(
ρ
[p]
h (f) + ε

)1+α
· exp[q−2] (βr)(λ

[q]
g +ε)(1+α)(

λ
[p]
h (f)− ε

)
exp[q−2] rA

×

1 + O(1)(
ρ
[p]
h (f) + ε

)1+α
· exp[q−2] (βr)

(
λ
[q]
g +ε

)
(1+α)


(1+α)

, (12)

where we choose 0 < ε < min
{
λ
[p]
h (f) , A

1+α − λ
[q]
g

}
. So from (12) we obtain that

lim inf
r→∞

{
log[p] µ−1h µf◦g (r)

}1+α
log[p] µ−1h µf (exp

[q−1] rA)
= 0 .

This proves the first part of the theorem.
Similarly, the second part of the theorem can be carried out using the same tech-
nique as above and with the help of Lemma 3. Therefore its proof is omitted. �

In view of Theorem 2, the following theorem can be carried out:

Theorem 3. Let f, g, h and k be any four entire functions with ρ[p]h (f) < ∞,
λ[q]g < ∞ and λ[m]k (g) > 0 where p, q,m are any three integers with p ≥ 1, q ≥ 2
and m ≥ 1. Then for every positive constant A and each α ∈ (−∞,∞) ,

(i) lim inf
r→∞

{
log[p] µ−1h µf◦g (r)

}1+α
log[m] µ−1k µg(exp

[q−1] rA)
= 0 if A > (1 + α)λ[q]g

and

(ii) lim inf
r→∞

{
log[p]M−1h Mf◦g (r)

}1+α
log[m]M−1k Mg(exp[q−1] rA)

= 0 if A > (1 + α)λ[q]g .

The proof is omitted.
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Theorem 4. Let f, g, h, k, l, b and a be any seven entire functions such that λ[m]b (l) >

0, ρ[p]h (f) <∞, ρ[s]a (g) <∞ and ρ[n]g < λ
[q]
k where p, q,m, n, s are all positive inte-

gers with p ≥ 1, m ≥ 1, s ≥ 1 n ≥ 2, q ≥ 2 and q ≥ n. Then

(i) lim
r→∞

log[m] µ−1b µl◦k (r)

log[p] µ−1h µf◦g (r) + log
[s] µ−1a µg (r)

=∞

and

(ii) lim
r→∞

log[m]M−1b Ml◦k (r)

log[p]M−1h Mf◦g (r) + log
[s]M−1a Mg (r)

=∞ .

Proof. Since µ−1b (r) is an increasing function of r, it follows from Lemma 2 and
Lemma 5 for all suffi ciently large values of r that

log[m] µ−1b µl◦k (r) ≥ log[m] µ−1b µl

(
1

24
µk

(r
4

)
− |k(0)|

3

)
i.e., log[m] µ−1b µl◦k (r) ≥

(
λ
[m]
b (l)− ε

)
log

(
1

24
µk

(r
4

)
− |k(0)|

3

)
i.e., log[m] µ−1b µl◦k (r) ≥

(
λ
[m]
b (l)− ε

)
logµk

(r
4

)
+O (1)

i.e., log[m] µ−1b µl◦k (r) ≥
(
λ
[m]
b (l)− ε

)
exp[q−2]

(r
4

)λ[q]k −ε
+O (1) . (13)

Also for any β > 1, it follows from (7) for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r) ≤
(
ρ
[p]
h (f) + ε

)
exp[n−2] (βr)

ρ[n]g +ε
+O(1). (14)

Further from the definition of generalized relative order, we have for arbitrary
positive ε and for all suffi ciently large values of r that

log[s] µ−1a µg (r) ≤
(
ρ[s]a (g) + ε

)
log r . (15)

Since ρ[n]g < λ
[q]
k , we can choose ε (> 0) in such a manner that

ρ[n]g + ε < λ
[q]
k − ε . (16)

Therefore combining (13), (14) and (15) and in view of (16) , we get for all suffi -
ciently large values of r that

log[m] µ−1b µl◦k (r)

log[p] µ−1h µf◦g (r) + log
[s] µ−1a µg (r)

>

(
λ
[m]
b (l)− ε

)
exp[q−2]

(
r
4

)λ[q]k −ε +O (1)(
ρ
[s]
a (g) + ε

)
log r +

(
ρ
[p]
h (f) + ε

)
exp[n−2] (βr)

ρ
[n]
g +ε

+O(1)

i.e., lim
r→∞

log[m] µ−1b µl◦k (r)

log[p] µ−1h µf◦g (r) + log
[s] µ−1a µg (r)

=∞ .
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Thus the first part of the theorem follows from above.
Similarly, the second part of the theorem can be deduced with the help of Lemma
3 and therefore the proof is omitted. �

Theorem 5. Let f, g, h, k, l and b be any six entire functions such that λ[m]b (l) > 0,

ρ
[p]
h (f) < ∞ and ρ[n]g < λ

[q]
k where p, q,m, n are all positive integers with p ≥ 1,

m ≥ 1, n ≥ 2, q ≥ 2 and q ≥ n. Then

(i) lim
r→∞

log[m] µ−1b µl◦k (r)

log[p] µ−1h µf◦g (r) + log
[p] µ−1h µf (r)

=∞

and

(ii) lim
r→∞

log[m]M−1b Ml◦k (r)

log[p]M−1h Mf◦g (r) + log
[p]M−1h Mf (r)

=∞ .

We omit the proof of Theorem 5 because it can be carried out in the line of
Theorem 4.

Theorem 6. Let f, g, h, k, l, b and a be any seven entire functions such that λ[m]b (l) >

0, ρ[p]h (f) <∞, ρ[s]a (g) <∞ and ρ[n]g < λ
[q]
k where p, q,m, n, s are all positive inte-

gers with p ≥ 1, m ≥ 1, s ≥ 1, n ≥ 2, q ≥ 2 and q ≥ n. Then

(i) lim
r→∞

log[m−p] µ−1b µl◦k (r)

µ−1h µf◦g (r) · log[s−p] µ−1a µg (r)
=∞ if p = min {m, p, s}

(ii) lim
r→∞

µ−1b µl◦k (r)

log[p−m] µ−1h µf◦g (r) · log[s−m] µ−1a µg (r)
=∞ if m = min {m, p, s}

(iii) lim
r→∞

log[m−s] µ−1b µl◦k (r)

log[p−s] µ−1h µf◦g (r) · µ−1a µg (r)
=∞ if s = min {m, p, s}

and

(iv) lim
r→∞

log[m−p]M−1b Ml◦k (r)

M−1h Mf◦g (r) · log[s−p]M−1a Mg (r)
=∞ if p = min {m, p, s}

(v) lim
r→∞

M−1b Ml◦k (r)

log[p−m]M−1h Mf◦g (r) · log[s−m]M−1a Mg (r)
=∞ if m = min {m, p, s}

(vi) lim
r→∞

log[m−s]M−1b Ml◦k (r)

log[p−s]M−1h Mf◦g (r) ·M−1a Mg (r)
=∞ if s = min {m, p, s} .

Proof. From (15) it follows for arbitrary positive ε and for all suffi ciently large
values of r that

log[s−1] µ−1a µg (r) ≤ r(ρ
[s]
a (g)+ε) . (17)
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Case I. Let p = min {m, p, s} .
Therefore combining (13), (14) and (17) and in view of (16) , we get for all suffi -
ciently large values of r that

log[m−p] µ−1b µl◦k (r)

µ−1h µf◦g (r) · log[s−p] µ−1a µg (r)

>
exp[p]

[(
λ
[m]
b (l)− ε

)
exp[q−2]

(
r
4

)λ[q]k −ε +O (1)]
exp[p−1] r

(
ρ
[s]
a (g)+ε

)
· exp[p]

[(
ρ
[p]
h (f) + ε

)
exp[n−2] (βr)

ρ
[n]
g +ε

+O(1)
]

i.e., lim
r→∞

log[m−p] µ−1b µl◦k (r)

µ−1h µf◦g (r) · log[s−p] µ−1a µg (r)
=∞ .

Thus the first part of the theorem follows from above.
Case II. Let m = min {m, p, s} .
Then combining (13), (14) and (17) and in view of (16) , we obtain for all suffi ciently
large values of r that

µ−1b µl◦k (r)

log[p−m] µ−1h µf◦g (r) · log[s−m] µ−1a µg (r)

>
exp[m]

[(
λ
[m]
b (l)− ε

)
exp[q−2]

(
r
4

)λ[q]k −ε +O (1)]
exp[m−1] r

(
ρ
[s]
a (g)+ε

)
· exp[m]

[(
ρ
[p]
h (f) + ε

)
exp[n−2] (βr)

ρ
[n]
g +ε

+O(1)
]

i.e., lim
r→∞

µ−1b µl◦k (r)

log[p−m] µ−1h µf◦g (r) · log[s−m] µ−1a µg (r)
=∞,

which is the second part of the theorem.
Case III. Let s = min {m, p, s} .
Now combining (13), (14) and (17) and in view of (16) , it follows for all suffi ciently
large values of r that

log[m−s] µ−1b µl◦k (r)

log[p−s] µ−1h µf◦g (r) · µ−1a µg (r)

>
exp[s]

[(
λ
[m]
b (l)− ε

)
exp[q−2]

(
r
4

)λ[q]k −ε +O (1)]
exp[s−1] r

(
ρ
[s]
a (g)+ε

)
· exp[s]

[(
ρ
[p]
h (f) + ε

)
exp[n−2] (βr)

ρ
[n]
g +ε

+O(1)
]

i.e., lim
r→∞

log[m−s] µ−1b µl◦k (r)

log[p−s] µ−1h µf◦g (r) · µ−1a µg (r)
=∞ .
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Thus the third part of the theorem is established.
Analogously using the same technique, the remaining parts of the theorem follows
from Lemma 3 and therefore their proofs are omitted. �

In view of Theorem 6, the following theorem can be carried out and therefore
its proof is omitted:

Theorem 7. Let f, g, h, k, l and b be any six entire functions such that λ[m]b (l) > 0,

ρ
[p]
h (f) <∞ and ρ[n]g < λ

[q]
k where p, q,m are all positive integers with p ≥ 1, m ≥ 1,

n ≥ 2, q ≥ 2 and q ≥ n. Then

(i) lim
r→∞

log[m−p] µ−1b µl◦k (r)

µ−1h µf◦g (r) · µ−1h µf (r)
=∞ if p = min {m, p}

(ii) lim
r→∞

µ−1b µl◦k (r)

log[p−m] µ−1h µf◦g (r) · log[p−m] µ−1h µf (r)
=∞ if m = min {m, p}

and

(iii) lim
r→∞

log[m−p]M−1b Ml◦k (r)

M−1h Mf◦g (r) ·M−1h Mf (r)
=∞ if p = min {m, p}

(iv) lim
r→∞

M−1b Ml◦k (r)

log[p−m]M−1h Mf◦g (r) · log[p−m]M−1h Mf (r)
=∞ if m = min {m, p} .

Remark 2. If we consider ρ[n]g < ρ
[q]
k or λ[n]g < λ

[q]
k instead of ρ[n]g < λ

[q]
k in

Theorem 4, Theorem 5, Theorem 6 and Theorem 7 and the other conditions remain
the same, the conclusion of Theorem 4, Theorem 5, Theorem 6 and Theorem 7
remains valid with “limit superior ” replaced by “ limit”.

Theorem 8. Let f , g, h and k be any four entire functions such that (i) ρ[p]h (f ◦ g) <
∞ and (ii) λ[q]k (g) > 0 where p, q are any two positive integers. Then

(i) lim
r→∞

[
log[p] µ−1h µf◦g (r)

]2
log[q−1] µ−1k µg (exp (r)) · log[q] µ−1k µg (r)

= 0

and

(ii) lim
r→∞

[
log[p]M−1h Mf◦g (r)

]2
log[q−1]M−1k Mg (exp (r)) · log[q]M−1k Mg (r)

= 0 .

Proof. For any arbitrary positive ε, we have for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r) ≤
(
ρ
[p]
h (f ◦ g) + ε

)
log r . (18)

Again for all suffi ciently large values of r we get that

log[q] µ−1k µg (r) ≥
(
λ
[q]
k (g)− ε

)
log r . (19)



EFFECT OF GENERALIZED RELATIVE ORDER 51

Similarly, for all suffi ciently large values of r we have

log[q] µ−1k µg (exp (r)) ≥
(
λ
[q]
k (g)− ε

)
r

i.e., log[q−1] µ−1k µg (exp (r)) ≥ exp
[(
λ
[q]
k (g)− ε

)
r
]
. (20)

From (18) and (19) , we have for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r)

log[q] µ−1k µg (r)
≤

(
ρ
[p]
h (f ◦ g) + ε

)
log r(

λ
[q]
k (g)− ε

)
log r

.

As ε (> 0) is arbitrary, we obtain from above that

lim sup
r→∞

log[p] µ−1h µf◦g (r)

log[q] µ−1k µg (r)
≤ ρ

[p]
h (f ◦ g)
λ
[q]
k (g)

. (21)

Again from (18) and (20) , we get for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r)

log[q−1] µ−1k µg (exp (r))
≤

(
ρ
[p]
h (f ◦ g) + ε

)
log r

exp
[(
λ
[q]
k (g)− ε

)
r
] .

Since ε (> 0) is arbitrary, it follows from above that

lim sup
r→∞

log[p] µ−1h µf◦g (r)

log[q−1] µ−1k µg (exp (r))
= 0

i.e., lim
r→∞

log[p] µ−1h µf◦g (r)

log[q−1] µ−1k µg (exp (r))
= 0 . (22)

Thus the first part of the theorem follows from (21) and (22) .
By similar reasoning as above the second part of the theorem can also be deduced
and therefore its proof is omitted. �

In view of Theorem 8, the following theorem can be carried out:

Theorem 9. Let f , g, h and k be any four entire functions such that (i) ρ[p]h (f ◦ g) <
∞ and (ii) λ[q]k (f) > 0 where p, q are any two positive integers. Then

(i) lim
r→∞

[
log[p] µ−1h µf◦g (r)

]2
log[q−1] µ−1k µf (exp (r)) · log[q] µ−1k µf (r)

= 0

and

(ii) lim
r→∞

[
log[p]M−1h Mf◦g (r)

]2
log[q−1]M−1k Mf (exp (r)) · log[q]M−1k Mf (r)

= 0 .

The proof is omitted.
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Theorem 10. Let f , g, h, k and l be any five entire functions such that (i)
ρ
[m]
k (g) < ∞ (ii) λ

[n]
l (f ◦ g) > 0, and (ii) λ[p]h (f) > 0 where m,n, p are any

three positive integers. Then for every positive constant δ with δ < ρ
[q]
g where q is

any positive integer ≥ 2,

(i) lim sup
r→∞

log[n] µ−1l µf◦g (r) · log[p] µ−1h µf◦g (r)

log[m] µ−1k µg
(
exp[q−1] rδ

)
· log[m] µ−1k µg (r)

=∞

and

(ii) lim sup
r→∞

log[n]M−1l Mf◦g (r) · log[p]M−1h Mf◦g (r)

log[m]M−1k Mg

(
exp[q−1] rδ

)
· log[m]M−1k Mg (r)

=∞.

Proof. Since µ−1h (r) is an increasing function of r, it follows from Lemma 2 and
Lemma 5 for a sequence of values of r that

log[p] µ−1h µf◦g (r) ≥ log[p] µ−1h µf

(
1

24
µg

(r
4

)
− |g(0)|

3

)
i.e., log[p] µ−1h µf◦g (r) ≥

(
λ
[p]
h (f)− ε

)
log

(
1

24
µg

(r
4

)
− |g(0)|

3

)
i.e., log[p] µ−1h µf◦g (r) ≥

(
λ
[p]
h (f)− ε

)
logµg

(r
4

)
+O (1) (23)

i.e., log[p] µ−1h µf◦g (r) ≥
(
λ
[p]
h (f)− ε

)
exp[q−2]

(r
4

)ρ[q]g −ε
+O (1) . (24)

Again for any arbitrary positive ε, we have for all suffi ciently large values of r that

log[m] µ−1k µg

(
exp[q−1] rδ

)
≤
(
ρ
[m]
k (g) + ε

)
exp[q−2] rδ . (25)

Now from (24) and (25) , it follows for a sequence of values of r that

log[p] µ−1h µf◦g (r)

log[m] µ−1k µg
(
exp[q−1] rδ

) ≥
(
λ
[p]
h (f)− ε

)
exp[q−2]

(
r
4

)ρ[q]g −ε +O (1)(
ρ
[m]
k (g) + ε

)
exp[q−2] rδ

. (26)

Again for all suffi ciently large values of r we get that

log[n] µ−1l µf◦g (r) ≥
(
λ
[n]
l (f ◦ g)− ε

)
log r

and

log[m] µ−1k µg (r) ≤
(
ρ
[m]
k (g) + ε

)
log r .
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Therefore from the above two inequalities, we obtain for all suffi ciently large values
of r that

log[n] µ−1l µf◦g (r)

log[m] µ−1k µg (r)
≥

(
λ
[n]
l (f ◦ g)− ε

)
log r(

ρ
[m]
k (g) + ε

)
log r

i.e., lim inf
r→∞

log[n] µ−1l µf◦g (r)

log[m] µ−1k µg (r)
≥ λ

[n]
l (f ◦ g)

ρ
[m]
k (g) + ε

. (27)

Since δ < ρ
[q]
g , therefore from (26) it follows that

lim sup
r→∞

log[p] µ−1h µf◦g (r)

log[m] µ−1k µg
(
exp[q−1] rδ

) =∞ . (28)

Thus the first part of the theorem follows from (27) and (28) .
In a like manner the second part of the theorem can be established. �

Theorem 11. Let f , g, h and l be any four entire functions such that (i) 0 <
λ
[p]
h (f) ≤ ρ[p]h (f) <∞ (ii) λ

[n]
l (f ◦ g) > 0 where n, p are any two positive integers.

Then for every positive constant δ with δ < ρ
[q]
g where q is any positive integer ≥ 2,

(i) lim sup
r→∞

log[n] µ−1l µf◦g (r) · log[p] µ−1h µf◦g (r)

log[p] µ−1h µf
(
exp[q−1] rδ

)
· log[p] µ−1h µf (r)

=∞

and

(ii) lim sup
r→∞

log[n]M−1l Mf◦g (r) · log[p]M−1h Mf◦g (r)

log[p]M−1h Mf

(
exp[q−1] rδ

)
· log[p]M−1h Mf (r)

=∞.

We omit the proof of Theorem 11 as it can be carried out in the line of
Theorem 10.

Theorem 12. Let f , g and h be any three entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞ and 0 < λ[q]g ≤ ρ[q]g < ∞ where p, q are any two positive integers
such that p ≥ 1 and q ≥ 2. Then for every positive constant A,

(i)
λ[q]g

A · ρ[p]h (f)
≤ lim inf

r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤ min
{

λ[q]g

A · λ[p]h (f)
,

ρ
[q]
g

A · ρ[p]h (f)

}
≤ max

{
λ[q]g

A · λ[p]h (f)
,

ρ
[q]
g

A · ρ[p]h (f)

}

≤ lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤ ρ
[q]
g

A · λ[p]h (f)
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and

(ii)
λ[q]g

A · ρ[p]h (f)
≤ lim inf

r→∞

log[p+q−1]M−1h Mf◦g (r)

log[p]M−1h Mf (rA)

≤ min
{

λ[q]g

A · λ[p]h (f)
,

ρ
[q]
g

A · ρ[p]h (f)

}
≤ max

{
λ[q]g

A · λ[p]h (f)
,

ρ
[q]
g

A · ρ[p]h (f)

}

≤ lim sup
r→∞

log[p+q−1]M−1h Mf◦g (r)

log[p]M−1h Mf (rA)
≤ ρ

[q]
g

A · λ[p]h (f)
.

Proof. For any β > 1, it follows from (7) for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r) ≤
(
ρ
[p]
h (f) + ε

)
logµg (βr) +O (1)

i.e., log[p+q−1] µ−1h µf◦g (r) ≤ log[q] µg (βr) +O (1)

i.e., log[p+q−1] µ−1h µf◦g (r) ≤
(
ρ[q]g + ε

)
log r +O (1) (29)

and for a sequence of values of r that

log[p+q−1] µ−1h µf◦g (r) ≤
(
λ[q]g + ε

)
log r +O (1) . (30)

Further from (23) , it follows for a sequence of values of r that

log[p+q−1] µ−1h µf◦g (r) ≥ log[q] µg

(r
4

)
+O (1)

i.e., log[p+q−1] µ−1h µf◦g (r) ≥
(
ρ[q]g − ε

)
log r +O (1) (31)

and for all suffi ciently large values of r that

log[p+q−1] µ−1h µf◦g (r) ≥
(
λ[q]g − ε

)
log r +O (1) . (32)

Again from the definition of generalized order and generalized lower order, we have
for arbitrary positive ε and for all suffi ciently large values of r that

log[p] µ−1h µf
(
rA
)
> A ·

(
λ
[p]
h (f)− ε

)
log r (33)

and

log[p] µ−1h µf
(
rA
)
≤ A ·

(
ρ
[p]
h (f) + ε

)
log r . (34)

Again we get for a sequence of values of r tending to infinity that

log[p] µ−1h µf
(
rA
)
≤ A ·

(
λ
[p]
h (f) + ε

)
log r (35)

and

log[p] µ−1h µf
(
rA
)
> A ·

(
ρ
[p]
h (f)− ε

)
log r . (36)
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Therefore from (29) and (33) , we obtain for all suffi ciently large values of r that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤

(
ρ
[q]
g + ε

)
log r +O (1)

A ·
(
λ
[p]
h (f)− ε

)
log r

i.e., lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤ ρ
[q]
g

A · λ[p]h (f)
. (37)

Similarly, from (29) and (36) we have for a sequence of values of r tending to infinity
that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤

(
ρ
[q]
g + ε

)
log r +O (1)

A ·
(
ρ
[p]
h (f)− ε

)
log r

i.e., lim inf
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤ ρ
[q]
g

A · ρ[p]h (f)
. (38)

Analogously we get from (30) and (33) for a sequence of values of r tending to
infinity that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤

(
λ[q]g + ε

)
log r +O (1)

A ·
(
λ
[p]
h (f)− ε

)
log r

i.e., lim inf
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤
λ[q]g

A · λ[p]h (f)
. (39)

Now from (38) and (39) , it follows that

lim inf
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≤ min
{

λ[q]g

A · λ[p]h (f)
,

ρ[q]g

A · ρ[p]h (f)

}
. (40)

Further from (31) and (34) , we get for a sequence of values of r tending to infinity
that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥

(
ρ
[q]
g − ε

)
log r +O (1)

A ·
(
ρ
[p]
h (f) + ε

)
log r

i.e., lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥ ρ
[q]
g

A · ρ[p]h (f)
. (41)
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Likewise from (32) and (35) , we obtain for a sequence of values of r tending to
infinity that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥

(
λ[q]g − ε

)
log r +O (1)

A ·
(
λ
[p]
h (f) + ε

)
log r

i.e., lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥
λ[q]g

A · λ[p]h (f)
. (42)

Thus from (41) and (42) , it follows that

lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥ max
{

λ[q]g

A · λ[p]h (f)
,

ρ
[q]
g

A · ρ[p]h (f)

}
. (43)

Also from (32) and (34) , we obtain for all suffi ciently large values of r that

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥

(
λ[q]g − ε

)
log r +O (1)

A ·
(
ρ
[p]
h (f) + ε

)
log r

i.e., lim inf
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[p] µ−1h µf (r
A)

≥
λ[q]g

A · ρ[p]h (f)
. (44)

Therefore the first part of the theorem follows from (37) , (40) , (43) and (44) .
Using the similar technique as above, the second part of the theorem follows from
Lemma 3 and therefore its proof is omitted. �

Theorem 13. Let f , g, h and k be any four entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) < ∞, 0 < λ

[m]
k (g) ≤ ρ

[m]
k (g) < ∞ and 0 < λ[q]g ≤ ρ[q]g < ∞ where p, q,m

are any three positive integers such that p ≥ 1, m ≥ 1 and q ≥ 2. Then for every
positive constant B,

(i)
λ[q]g

B · ρ[m]k (g)
≤ lim inf

r→∞

log[p+q−1] µ−1h µf◦g (r)

log[m] µ−1k µg (r
B)

≤ min
{

λ[q]g

B · λ[m]k (g)
,

ρ
[q]
g

B · ρ[m]k (g)

}
≤ max

{
λ[q]g

B · λ[m]k (g)
,

ρ
[q]
g

B · ρ[m]k (g)

}

≤ lim sup
r→∞

log[p+q−1] µ−1h µf◦g (r)

log[m] µ−1k µg (r
B)

≤ ρ
[q]
g

B · λ[m]k (g)
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and

(ii)
λ[q]g

B · ρ[m]k (g)
≤ lim inf

r→∞

log[p+q−1]M−1h Mf◦g (r)

log[m]M−1k Mg (rB)

≤ min
{

λ[q]g

B · λ[m]k (g)
,

ρ
[q]
g

B · ρ[m]k (g)

}
≤ max

{
λ[q]g

B · λ[m]k (g)
,

ρ
[q]
g

B · ρ[m]k (g)

}

≤ lim sup
r→∞

log[p+q−1]M−1h Mf◦g (r)

log[m]M−1k Mg (rB)
≤ ρ

[q]
g

B · λ[m]k (g)
.

The proof of Theorem 13 is omitted as it can be carried out in the line of
Theorem 12.

Theorem 14. Let f and h be any two entire functions such that 0 < λ
[p]
h (f) ≤

ρ
[p]
h (f) <∞ for any positive integer p > 1. Then for any entire g with 0 < A < λ[q]g
where q is any positive integer > 2

(i) lim
r→∞

µ−1h µf◦g (r)

µ−1h µf
(
exp[q−1] rA

) =∞
and

(ii) lim
r→∞

M−1h Mf◦g (r)

M−1h Mf

(
exp[q−1] rA

) =∞ .

Proof. We have from (23) , for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r) ≥
(
λ
[p]
h (f)− ε

)
exp[q−2]

(r
4

)λ[q]g −ε
+O (1) . (45)

Again from the definition of the generalized relative order, we obtain for all suffi -
ciently large values of r that

log[p] µ−1h µf

(
exp[q−1] rA

)
≤
(
ρ
[p]
h (f) + ε

)
exp[q−2] rA . (46)

So combining (45) and (46) , we obtain for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r)

log[p] µ−1h µf
(
exp[q−1] rA

) >
(
λ
[p]
h (f)− ε

)
exp[q−2]

(
r
4

)λ[q]g −ε +O (1)(
ρ
[p]
h (f) + ε

)
exp[q−2] rA

. (47)

Since 0 < A < λ[q]g , we can choose ε (ε > 0) in such a way that

A < λ[q]g − ε . (48)

Thus from (47) and (48) , we get that

lim
r→∞

log[p] µ−1h µf◦g (r)

log[p] µ−1h µf
(
exp[q−1] rA

) =∞ .
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So from above it follows for all suffi ciently large values of r that

log[p] µ−1h µf◦g (r) > K log[p] µ−1h µf

(
exp[q−1] rA

)
, for K > 1

i.e., log[p−1] µ−1h µf◦g (r) >
{
log[p−1] µ−1h µf

(
exp[q−1] rA

)}K
,

from which the first part of the theorem follows.
Accordingly the second part of the theorem can be deduced with the help of the
first part of Lemma 3 and therefore its proof is omitted. �

Analogously the following theorem can be carried out in the line of Theorem 15:

Theorem 15. Let f, g, h and k be any four entire functions with λ[p]h (f) > 0 and

ρ
[m]
k (g) <∞ where p,m are any positive integers. Then for every positive constant
A such that 0 < A < λ[q]g for any positive integer q > 1,

(i) lim
r→∞

log[p] µ−1h µf◦g (r)

log[m] µ−1k µg
(
exp[q−1] rA

) =∞
and

(ii) lim
r→∞

log[p]M−1h Mf◦g (r)

log[m]M−1k Mg

(
exp[q−1] rA

) =∞ .

The proof is omitted.
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0Başlık: Bileşik tam fonksiyonların büyümesi üzerinde genelleştirilmiş bağıl basamağın etkisi
Anahtar Kelimeler: Tam fonksiyon, genelleştirilmiş bağıl alt basamak, bileşke, büyüme.


