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MANNHEIM CURVES IN n—DIMENSIONAL EUCLIDEAN SPACE

HANDAN ÖZTEKİN AND ESRA METİN

Abstract. In this study, we define the generalized Mannheim Curves in n-
dimensional Euclidean Space and obtain the caracterizations of the generalized
Mannheim curves.

1. Introduction

The curves are a fundamental structure of differential geometry. In differential
geometry, to study the corresponding relations between the curves is very important
problem. Especially, Mannheim curves are one of them. Space curves of which prin-
cipal normals are the binormal of another curFve are called Mannheim curves. the
notion of Mannheim curve was discovered by A. Mannheim in 1878. These curves
have beeen studied by many mathematicians (see [1] and [3-11]). For instance, In
[5], Liu and Wang had obtained the necessary and suffi cient conditions between the
curvature and the torsion for a curve to be the Mannheim partner curves. In [3],
Önder, Kazaz and Uğurlu had studied some characterizations of Mannheim part-
ner curves in Minkowski 3-space. In [4], Kızıltuğ and Yaylıhad given a study on
the quaternionic Mannheim curves of AW(k)-type in Euclidean space. In [6] and
[9], the authors had studied the generalized Mannheim curves in Euclidean 4-space
and Minkowski space-time. In [10], Önder and Kızıltuğ had studied Bertrand and
Mannheim Partner D-curves on Parallel surfaces in Minkowski 3-Space.
On the other hand, the articles concerning Mannheim curves in n-dimensional

space are rather few. In [11], D.W. Yoon studied non-null Mannheim curve and
null Mannheim curve in an n-dimensional Lorentzian manifold. To the best of our
knowledge, Mannheim curves have not been presented in n-dimensional Euclidean
space. Thus, the study is proposed to serve such a need.
The main goal of this paper is to carryout some results which were given in [6]

to Mannheim curves in n-dimensional Euclidean space En.
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2. Preliminaries

Let En be an n-dimensional Euclidean space with cartesian coordinates (x1, x2,
... , xn). By a parametrized curve α of class C∞, we mean a mapping α of a certain
interval I into En given by

α (t) =
[
x1 (t) , x2 (t) , · · · , xn (t)

]
,∀t ∈ I.

If
∥∥dα(t)

dt

∥∥ =
〈
dα(t)
dt , dα(t)dt

〉1/2
6= 0 for t ∈ I, then α is called a regular curve in

En. Here 〈., .〉 denotes the Euclidean inner product on En. A regular curve α is
parametrized by the arc-length parameter s. Then the tangent vector field dα

ds along

α has unit length, that is,
∥∥∥dα(s)ds

∥∥∥ = 1 for all s ∈ I.
During this paper, curves considered are regular C∞-curves in En parametrized

by the arc-length parameter. The Frenet equations for such a curve are given by
as follow:

de1(s)
ds = k1 (s) e2 (s)

de2(s)
ds = −k1 (s) e1 (s) + k2 (s) e3 (s)

...
den−1(s)

ds = −kn−2 (s) en−2 (s) + kn−1 (s) en (s)
den(s)
ds = −kn−1 (s) en−1 (s)

,

for all s ∈ I. The unit vector field ej+1, j = 1, 2, ..., n − 1, along α is called the
Frenet j-normal vector field along α. A straight line is called the Frenet j-normal
line of α at α (s), if it passes throught the point α (s) and is collinear to the j-normal
vector ej+1, j = 1, 2, ..., n− 1, of α at α (s), [2].

3. Mannheim Curves in En

Definition 3.1. Let α be a special Frenet curve in En. The curve α is called a
generalized Mannheim curve if there exists a distinct special Frenet curve α̃ in En

such that the first normal line at each point of α is included in the space spanned
by the second normal line, the third normal line ,...,nth normal line of α̃ at corre-
sponding point under φ. Here φ is a bijection from α to α̃. The curve α̃ is called
the generalized Mannheim mate curve of α.

Now, we give following theorems for generalized Mannheim curves in En:

Theorem 3.1. Let α be a special Frenet curve in En. If the curve α is a generalized
Mannheim curve, then the first curvature function k1 and second curvature function
k2 of α satisfy the equality

k1 (s) = λ
{

(k1 (s))
2

+ (k2 (s))
2
}
, s ∈ I,

where λ is a positive constant number.
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Proof. Let α be a generalized Mannheim curve and
∼
α be the generalized Mannheim

mate curve of α.
By the definition, a generalized Mannheim mate

∼
α is given by

∼
α (s) = α (s) + λ (s) e2 (s) , s ∈ I, (3.1)

where α is a smooth function on I. Generally, the parameter s isn’t arc-length of
∼
α. Let

∼
s be the arc-parameter of

∼
α defined by

∼
s =

s∫
0

∥∥∥∥∥d
∼
α (s)

ds

∥∥∥∥∥ ds.
We can consider a smooth function f : I →

∼
I given by f (s) =

∼
s. Then we have

f ′ (s) =

√
[1− λ (s) k1 (s)]

2
+ [λ′ (s)]2 + [λ (s) k2 (s)]

2 (3.2)

Thus , we can write the reparametrization of
∼
α by

∼
α (f (s)) = α (s) + λ (s) e2 (s) (3.3)

here φ is a bijection from α to
∼
α defined by

φ (α (s)) =
∼
α (f (s)) .

By differentiating both sides of (3.3) with respect to s, we obtain

f ′ (s)
∼
e1 (f (s)) = (1− λ (s) k1 (s)) e1 (s) + λ′ (s) e2 (s) + λ (s) k2 (s) e3 (s) (3.4)

From Definition 3.1. and since the first normal line at the each point of α is
lying in the plane generated by the second normal line, the third normal line ,...,nth

normal line
∼
α at the correspending points under bijection φ, we have e2 (s) =

x3 (s)
∼
e3 (f (s)) + x4 (s)

∼
e4 (f (s)) + ... + xn (s)

∼
en (f (s)), where x3, x4, ..., xn are

some smooth functions on I. Thus we obtain λ′ (s) = 0, that is, the function α is
constant. Then we rewrite the equation (3.4) by

∼
e1 (f (s)) =

(1− λk1 (s))

f ′ (s)
e1 (s) +

λk2 (s)

f ′ (s)
e3 (s) , (3.5)

where

f ′ (s) =

√
[1− λk1 (s)]

2
+ [λk2 (s)]

2
, s ∈ I.
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By taking differentiation both sides of the equation (3.5) with respect to s, we
obtain

f ′ (s) k̃1 (f (s)) ẽ2 (f (s)) =

(
1− λk1 (s)

f ′ (s)

)′
e1 (s)

+

(
(1− λk1 (s)) k1 (s)− λ (k2 (s))

2

f ′ (s)

)
e2 (s)

+

(
λk2 (s)

f ′ (s)

)′
e3 (s) +

(
λk2 (s) k3 (s)

f ′ (s)

)
e4 (s) , s ∈ I.

By the fact

〈
ẽ2 (f (s)) , x3 (s)

∼
e3 (f (s)) + x4 (s)

∼
e4 (f (s)) + ...+ xn (s)

∼
en (f (s))

〉
= 0, s ∈ I,

we have that coeffi cient of e2 in the above equation is zero, that is,

(1− λk1 (s)) k1 (s)− λ (k2 (s))
2

= 0, s ∈ I.

Thus we obtain

k1 (s) = λ
[
(k1 (s))

2
+ (k2 (s))

2
]
, s ∈ I

which completes the proof. �

Following theorem gives a parametric representation for Mannheim curves in
n-dimensional Euclidean space En.

Theorem 3.2. Let α be a curve defined by

α (u) =

[
λ

∫
f (u) sin (u) du, λ

∫
f (u) cos (u) du, λ

∫
f (u)h1 (u) du,

· · · , λ
∫
f (u)hn−2 (u) du

]
,
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where λ is a positive constant, hi : U → IR, i ∈ {1, 2, ..., n− 2} are any smooth
functions, and the smooth function f : U → IR+, i 6= j is given by

f =

(
1 +

n−2∑
i=1

h2i

)−3/2 1 +

n−2∑
i=1

(
h2i + ḣ2i

)
+

n−2∑
i,j=1
j<i

(
hiḣj − ḣihj

)2
−5/2

×


1 +

n−2∑
i=1

(
h2i + ḣ2i

)
+

n−2∑
i,j=1
j<i

(
hiḣj − ḣihj

)2
3

+

(
1 +

n−2∑
i=1

h2i

)3
×


n−2∑
i=1

(
hi + ḧi

)2
+

n−2∑
i,j=1
j<i

[((
hiḣj − ḣihj

)
−
(
ḣiḧj − ḧiḣj

))2
+
(
hiḧj − ḧihj

)2]
for u ∈ U . Then the curvature functions k1 and k2 of α satisfy

k1 (u) = λ
{

[k1 (u)]
2

+ [k2 (u)]
2
}

at the each point α (u) of α.

Proof. Let α be a curve defined by

α (u) =

[
λ

∫
f (u) sin (u) du, λ

∫
f (u) cos (u) du, λ

∫
f (u)h1 (u) du,

· · · , λ
∫
f (u)hn−2 (u) du

]
,

where λ is a non-zero constant number, h1, h2, ..., hn−2 are any smooth functions,
f is a positive valued smooth function. Thus, we obtain

α̇ (u) = [λf (u) sin (u) , λf(u) cos (u) , λf (u)h1 (u) , · · · , λf (u)hn−2 (u)] , u ∈ U
where the subscript dot (·) denotes the differentiation with respect to u. The arc-
length parameter s of α is given by

s = ψ (u) =

u∫
u0

‖α̇ (u)‖ du, and ‖α̇ (u)‖ = λf (u)

{
1 +

n−2∑
i=1

(hi (u))
2

} 1
2

.

Let ϕ denotes the inverse function of ψ : U → I ⊂ IR, then u = ϕ (s) and

ϕ′ (s) =

∥∥∥∥dα (u)

du
|u=ϕ(s)

∥∥∥∥ , s ∈ I,
where the prime (′) denotes the differentiation with respect to s.
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The unit tangent vector e1 (s) of the curve α at the each point α (ϕ (s)) is given
by

e1 (s)

=

{1 +

n−2∑
i=1

(hi (ϕ (s)))
2

}−1/2
sin (ϕ (s)) ,

{
1 +

n−2∑
i=1

(hi (ϕ (s)))
2

}−1/2
cos (ϕ (s)) ,

{
1 +

n−2∑
i=1

(hi (ϕ (s)))
2

}−1/2
h1 (ϕ (s)) , · · · ,

{
1 +

n−2∑
i=1

(hi (ϕ (s)))
2

}−1/2
hn−2 (ϕ (s))


Now, we use the following abbreviations for the sake of brevity:

h1 = h1 (ϕ (s)) , h2 = h2 (ϕ (s)) , ..., hn−2 = hn−2 (ϕ (s))

ḣ1 (ϕ (s)) =
dh1 (u)

du
|u=(ϕ(s)), ḣ2 (ϕ (s)) =

dh2 (u)

du
|u=(ϕ(s)), ..., ḣn−2 (ϕ (s))

=
dhn−2 (u)

du
|u=(ϕ(s)),

ḧ1 (ϕ (s)) =
d2h1 (u)

du2
|u=(ϕ(s)), ḧ2 (ϕ (s)) =

d2h2 (u)

du2
|u=(ϕ(s)), ..., ḧn−2 (ϕ (s))

=
d2hn−2 (u)

du2
|u=(ϕ(s)),

ϕ′ = ϕ′ (s) =
dϕ (s)

du
|s, A = 1 +

n−2∑
i=1

h2i , B =

n−2∑
i=1

hiḣi, C =

n−2∑
i=1

ḣ2i , D =

n−2∑
i=1

hiḧi, E

=

n−2∑
i=1

ḣiḧi, F =

n−2∑
i=1

ḧ2i

Then we have

Ȧ = 2B, Ḃ = C +D, Ċ = 2E, ϕ́ = λ−1f−1A−1/2

and

e1 (s) =
[
A−1/2 sin (ϕ (s)) , A−1/2 cos (ϕ (s)) , A−1/2h, · · ·A−1/2hn−2

]
By differentiation the last equation with respect to s, we find

k1 = k1 (s) = ‖e′1 (s)‖ = ϕ′A−1
(
A+AC −B2

)1/2
(3.6)
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By the fact that e2 = (k1)
−1
e′1, we have

e2 =



−A−1/2B(A+AC −B)2−1/2 sin (ϕ (s)) +A1/2(A+AC −B2)−1/2 cos(ϕ(s))

−A−1/2B(A+AC −B2)−1/2 cos(ϕ(s))−A1/2
(
A+AC −B2

)−1/2
sin(ϕ(s))

−A−1/2B
(
A+AC −B2

)−1/2
h1−A1/2

(
A+AC −B2

)−1/2
ḣ1

...

−A−1/2B
(
A+AC −B2

)−1/2
hn−2−A1/2

(
A+AC −B2

)−1/2
ḣn−2

 .

After long process of calculation, we have

e′2 + k1e1 = ϕ′A1/2
(
A+AC −B2

)−3/2


(
P̆ − Q̆

)
sin (ϕ (s))− R̆ cos (ϕ (s))(

P̆ − Q̆
)

cos (ϕ (s)) + R̆ sin (ϕ (s))

P̆ h1 − R̆ḣ1 + Q̆ḧ1
...

P̆ hn−2 − R̆ḣn−2 + Q̆ḧn−2


,

(3.7)
where

P̆ = (1 + C +BE −D − CD) , Q̆ =
(
A+AC −B2

)
, R̆ = (B +AE −BD)

Consequently, from the (3.7) and (3.8) we find

‖e′2 + k1e1‖2 = (ϕ′)
2
A
(
A+AC −B2

)−3 {P̆ 2 − 2P̆ Q̆+ Q̆2 + R̆2

+ P̆ 2
(
h21 + h22 + ...+ h2n−2

)
+ R̆2

(
ḣ21 + ḣ22 + ...+ ḣ2n−2

)
+ Q̆2

(
ḧ21 + ḧ22 + ...+ ḧ2n−2

)
− 2P̆ R̆

(
h1ḣ1 + h2ḣ2 + ...+ hn−2ḣn−2

)
− 2R̆Q̆

(
ḣ1ḧ1 + ḣ2ḧ2 + ...+ ḣn−2ḧn−2

)
+ 2P̆ Q̆

(
h1ḧ1 + h2ḧ2 + ...+ hn−2ḧn−2

)
}.

Thus we obtain

(k2)
2

= (ϕ′)
2
A
(
A+AC −B2

)−2
×
{(
A+AC −B2

)
(1 + F ) + 2 (D − 1) (1 + C +BE −D − CD)

− 2E (B +AE −BD) + 1 + C − 2D − 2CD +D2

+CD2 + 2BE − 2BDE +AE2
}

= (ϕ′)
2
A
(
A+AC −B2

)−2
×{
(
A+AC −B2

)
(1 + F )− 1− C + 2D

+2CD − 2BE −AE2 −D2 − CD2 + 2BDE}.
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Moreover, from the equation (3.6) we have

(k1)
2

= ϕ′A−2
(
A+AC −B2

)
.

The last two equation gives us

(k1)
2

+ (k2)
2

= λ−2f−2A−3
(
A+AC −B2

)−2
× {
(
A+AC −B2

)3
+A3(A+AC −B2 +AF +ACF −B2F − 1− C + 2D

+ 2CD − 2BE −AE2 −D2 − CD2 + 2BDE)}

and

k1 = λ−1f−1A−3/2
(
A+AC −B2

)1/2
.

Thus, by setting

f =

(
1 +

n−2∑
i=1

h2i

)−3/2

×

1 +

n−2∑
i=1

(
h2i + ḣ2i

)
+

n−2∑
i,j=1
j<i

(
hiḣj − ḣihj

)2
−5/2

×


1 +

n−2∑
i=1

(
h2i + ḣ2i

)
+

n−2∑
i,j=1
j<i

(
hiḣj − ḣihj

)2
3

+

(
1 +

n−2∑
i=1

h2i

)3
×
{
n−2∑
i=1

(
hi + ḧi

)2
+

n−2∑
i,j=1
j<i

[((
hiḣj − ḣihj

)
−
(
ḣiḧj − ḧiḣj

))2
+
(
hiḧj − ḧihj

)2]
we obtain k1 = λ

(
(k1)

2
+ (k2)

2
)
. �

Theorem 3.3. Let {α, α̃} , be a generalized Mannheim mate in En. Let M, M̃
be the curvature centers at two corresponding point of α and α̃ , respectively. Then

the ratio ‖α̃(s̃)M‖‖α(s)M‖ :
‖α̃(s̃)M̃‖
‖α(s)M̃‖ is not constant.
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Proof. If M is the curvature centers of α, then we can write M = α (s) + 1
k1
· e2

and ‖α (s)M‖ = ‖M − α (s)‖ = 1
k1
. Similarly, we have

∥∥∥α̃ (s̃) M̃
∥∥∥ =

1

k̃1
,
∥∥∥α (s) M̃

∥∥∥ =

√√√√1 + k̃21.

n∑
i=3

µ2i

k̃1
, ‖α̃ (s̃)M‖ =

(1 + k1)

k1

√√√√ n∑
i=3

µ2i .

Therefore, we obtain

‖α̃ (s̃)M‖
‖α (s)M‖ :

∥∥∥α̃ (s̃) M̃
∥∥∥∥∥∥α (s) M̃
∥∥∥ = (1 + k1)

√√√√ n∑
i=3

µ2i

√√√√1 + k̃21.

n∑
i=3

µ2i

which completes the proof. �

From the above Theorem 3.3, we have following Corollory:

Corollary 3.4. The Mannheim theorem for the generalized Mannheim curves in
En is not valid.

Theorem 3.5. Let α and α̃ be two curves parametrized by the arc-length parameter
s. If {α, α̃} is a generalized Mannheim mate in En , then there exists following
relation

n∑
i=3

ξi

(
µi−1k̃i−1 − µi+1k̃i

)
= 0,

where µi,ξi, i ∈ {1, 2, ..., n} are arbitrary constants and k̃1, k̃2, ..., k̃n−1 are curva-
tures of α̃.

Proof. Since the curve α is Mannheim curve, then we have

α (s̃) = α̃ (s̃)+

n∑
i=3

µi (s̃) ẽi (s̃) and e1
ds

ds̃
= ẽ1−µ3k̃2ẽ2+

n∑
i=3

(
µi−1k̃i−1 − µi+1k̃i

)
ẽi.

(3.9)

By taking inner product with e2 =

n∑
i=3

ξiẽi second equation of the equation (3.9),

we have ,
n∑
i=3

ξi

(
µi−1k̃i−1 − µi+1k̃i

)
= 0.Thus the proof is completed. �

Theorem 3.6. The distance between corresponding points of a generalized Mannheim
curve and of its generalized Mannheim partner curve in En is a constant.

Proof. The proof is trivial. �
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